Overview
S Balance
0 S
S Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
4273768 | 28 hrs ago | Contract Creation | 0 S |
Loading...
Loading
Minimal Proxy Contract for 0x7940cb3a486545ca310908edb0d62a41f91d3008
Contract Name:
GaugeHookReceiver
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.28; import {Ownable2Step, Ownable} from "openzeppelin5/access/Ownable2Step.sol"; import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol"; import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol"; import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol"; import {Hook} from "silo-core/contracts/lib/Hook.sol"; import {PartialLiquidation} from "../liquidation/PartialLiquidation.sol"; import {IGaugeLike as IGauge} from "../../../interfaces/IGaugeLike.sol"; import {IGaugeHookReceiver, IHookReceiver} from "../../../interfaces/IGaugeHookReceiver.sol"; import {SiloHookReceiver} from "../_common/SiloHookReceiver.sol"; /// @notice Silo share token hook receiver for the gauge. /// It notifies the gauge (if configured) about any balance update in the Silo share token. contract GaugeHookReceiver is PartialLiquidation, IGaugeHookReceiver, SiloHookReceiver, Ownable2Step, Initializable { using Hook for uint256; using Hook for bytes; uint24 internal constant _HOOKS_BEFORE_NOT_CONFIGURED = 0; IShareToken public shareToken; mapping(IShareToken => IGauge) public configuredGauges; constructor() Ownable(msg.sender) { _disableInitializers(); _transferOwnership(address(0)); } /// @inheritdoc IHookReceiver function initialize(ISiloConfig _siloConfig, bytes calldata _data) external virtual initializer override(IHookReceiver, PartialLiquidation) { (address owner) = abi.decode(_data, (address)); require(owner != address(0), OwnerIsZeroAddress()); _initialize(_siloConfig); _transferOwnership(owner); } /// @inheritdoc IGaugeHookReceiver function setGauge(IGauge _gauge, IShareToken _shareToken) external virtual onlyOwner { require(address(_gauge) != address(0), EmptyGaugeAddress()); require(_gauge.share_token() == address(_shareToken), WrongGaugeShareToken()); address configuredGauge = address(configuredGauges[_shareToken]); require(configuredGauge == address(0), GaugeAlreadyConfigured()); address silo = address(_shareToken.silo()); uint256 tokenType = _getTokenType(silo, address(_shareToken)); uint256 hooksAfter = _getHooksAfter(silo); uint256 action = tokenType | Hook.SHARE_TOKEN_TRANSFER; hooksAfter = hooksAfter.addAction(action); _setHookConfig(silo, _HOOKS_BEFORE_NOT_CONFIGURED, hooksAfter); configuredGauges[_shareToken] = _gauge; emit GaugeConfigured(address(_gauge), address(_shareToken)); } /// @inheritdoc IGaugeHookReceiver function removeGauge(IShareToken _shareToken) external virtual onlyOwner { IGauge configuredGauge = configuredGauges[_shareToken]; require(address(configuredGauge) != address(0), GaugeIsNotConfigured()); require(configuredGauge.is_killed(), CantRemoveActiveGauge()); address silo = address(_shareToken.silo()); uint256 tokenType = _getTokenType(silo, address(_shareToken)); uint256 hooksAfter = _getHooksAfter(silo); hooksAfter = hooksAfter.removeAction(tokenType); _setHookConfig(silo, _HOOKS_BEFORE_NOT_CONFIGURED, hooksAfter); delete configuredGauges[_shareToken]; emit GaugeRemoved(address(_shareToken)); } /// @inheritdoc IHookReceiver function beforeAction(address, uint256, bytes calldata) external virtual override(IHookReceiver, PartialLiquidation) { // Do not expect any actions. revert RequestNotSupported(); } /// @inheritdoc IHookReceiver function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external virtual override(IHookReceiver, PartialLiquidation) { IGauge theGauge = configuredGauges[IShareToken(msg.sender)]; require(theGauge != IGauge(address(0)), GaugeIsNotConfigured()); if (theGauge.is_killed()) return; // Do not revert if gauge is killed. Ignore the action. if (!_getHooksAfter(_silo).matchAction(_action)) return; // Should not happen, but just in case Hook.AfterTokenTransfer memory input = _inputAndOutput.afterTokenTransferDecode(); theGauge.afterTokenTransfer( input.sender, input.senderBalance, input.recipient, input.recipientBalance, input.totalSupply, input.amount ); } function hookReceiverConfig(address _silo) external view virtual override(PartialLiquidation, IHookReceiver) returns (uint24 hooksBefore, uint24 hooksAfter) { return _hookReceiverConfig(_silo); } /// @notice Get the token type for the share token /// @param _silo Silo address for which tokens was deployed /// @param _shareToken Share token address /// @dev Revert if wrong silo /// @dev Revert if the share token is not one of the collateral, protected or debt tokens function _getTokenType(address _silo, address _shareToken) internal view virtual returns (uint256) { ( address protectedShareToken, address collateralShareToken, address debtShareToken ) = siloConfig.getShareTokens(_silo); if (_shareToken == collateralShareToken) return Hook.COLLATERAL_TOKEN; if (_shareToken == protectedShareToken) return Hook.PROTECTED_TOKEN; if (_shareToken == debtShareToken) return Hook.DEBT_TOKEN; revert InvalidShareToken(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * This extension of the {Ownable} contract includes a two-step mechanism to transfer * ownership, where the new owner must call {acceptOwnership} in order to replace the * old one. This can help prevent common mistakes, such as transfers of ownership to * incorrect accounts, or to contracts that are unable to interact with the * permission system. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; import {ISilo} from "./ISilo.sol"; interface IShareToken is IERC20Metadata { struct HookSetup { /// @param this is the same as in siloConfig address hookReceiver; /// @param hooks bitmap uint24 hooksBefore; /// @param hooks bitmap uint24 hooksAfter; /// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN uint24 tokenType; } struct ShareTokenStorage { /// @notice Silo address for which tokens was deployed ISilo silo; /// @dev cached silo config address ISiloConfig siloConfig; /// @notice Copy of hooks setup from SiloConfig for optimisation purposes HookSetup hookSetup; bool transferWithChecks; } /// @notice Emitted every time receiver is notified about token transfer /// @param notificationReceiver receiver address /// @param success false if TX reverted on `notificationReceiver` side, otherwise true event NotificationSent(address indexed notificationReceiver, bool success); error OnlySilo(); error OnlySiloConfig(); error OwnerIsZero(); error RecipientIsZero(); error AmountExceedsAllowance(); error RecipientNotSolventAfterTransfer(); error SenderNotSolventAfterTransfer(); error ZeroTransfer(); /// @notice method for SiloConfig to synchronize hooks /// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action /// @param _hooksAfter hooks bitmap to trigger hooks AFTER action function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external; /// @notice Mint method for Silo to create debt /// @param _owner wallet for which to mint token /// @param _spender wallet that asks for mint /// @param _amount amount of token to be minted function mint(address _owner, address _spender, uint256 _amount) external; /// @notice Burn method for Silo to close debt /// @param _owner wallet for which to burn token /// @param _spender wallet that asks for burn /// @param _amount amount of token to be burned function burn(address _owner, address _spender, uint256 _amount) external; /// @notice TransferFrom method for liquidation /// @param _from wallet from which we transferring tokens /// @param _to wallet that will get tokens /// @param _amount amount of token to transfer function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external; /// @dev Returns the amount of tokens owned by `account`. /// @param _account address for which to return data /// @return balance of the _account /// @return totalSupply total supply of the token function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply); /// @notice Returns silo address for which token was deployed /// @return silo address function silo() external view returns (ISilo silo); function siloConfig() external view returns (ISiloConfig silo); /// @notice Returns hook setup function hookSetup() external view returns (HookSetup memory); /// @notice Returns hook receiver address function hookReceiver() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISilo} from "./ISilo.sol"; import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol"; interface ISiloConfig is ICrossReentrancyGuard { struct InitData { /// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then /// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer /// fees. NFT can be transferred with the right to claim. address deployer; /// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also /// implements liquidation logic and veSilo gauge connection. address hookReceiver; /// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned /// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%. uint256 deployerFee; /// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned /// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%. uint256 daoFee; /// @notice Address of the first token address token0; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle0; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle0; /// @notice Address of the interest rate model address interestRateModel0; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower /// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT. uint256 maxLtv0; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals /// points. LT must not be lower than maxLTV. uint256 lt0; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv0; /// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns /// for repaying insolvent loan. uint256 liquidationFee0; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee0; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote0; /// @notice Address of the second token address token1; /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed. address solvencyOracle1; /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency /// oracle. If neither is set price of 1 will be assumed. address maxLtvOracle1; /// @notice Address of the interest rate model address interestRateModel1; /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, /// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points uint256 maxLtv1; /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points uint256 lt1; /// @notice minimal acceptable LTV after liquidation, in 18 decimals points uint256 liquidationTargetLtv1; /// @notice Liquidation fee is what liquidator earns for repaying insolvent loan. uint256 liquidationFee1; /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points uint256 flashloanFee1; /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price bool callBeforeQuote1; } struct ConfigData { uint256 daoFee; uint256 deployerFee; address silo; address token; address protectedShareToken; address collateralShareToken; address debtShareToken; address solvencyOracle; address maxLtvOracle; address interestRateModel; uint256 maxLtv; uint256 lt; uint256 liquidationTargetLtv; uint256 liquidationFee; uint256 flashloanFee; address hookReceiver; bool callBeforeQuote; } struct DepositConfig { address silo; address token; address collateralShareToken; address protectedShareToken; uint256 daoFee; uint256 deployerFee; address interestRateModel; } error OnlySilo(); error OnlySiloOrTokenOrHookReceiver(); error WrongSilo(); error OnlyDebtShareToken(); error DebtExistInOtherSilo(); error FeeTooHigh(); /// @dev It should be called on debt transfer (debt share token transfer). /// In the case if the`_recipient` doesn't have configured a collateral silo, /// it will be set to the collateral silo of the `_sender`. /// @param _sender sender address /// @param _recipient recipient address function onDebtTransfer(address _sender, address _recipient) external; /// @notice Set collateral silo. /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo the same as msg.sender. /// @param _borrower borrower address function setThisSiloAsCollateralSilo(address _borrower) external; /// @notice Set collateral silo /// @dev Revert if msg.sender is not a SILO_0 or SILO_1. /// @dev Always set collateral silo opposite to the msg.sender. /// @param _borrower borrower address function setOtherSiloAsCollateralSilo(address _borrower) external; /// @notice Accrue interest for the silo /// @param _silo silo for which accrue interest function accrueInterestForSilo(address _silo) external; /// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config) function accrueInterestForBothSilos() external; /// @notice Retrieves the collateral silo for a specific borrower. /// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo /// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks. /// After being set, the collateral silo is never set to `address(0)` again but such getters as /// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty /// collateral silo config if borrower doesn't have debt. /// /// In the SiloConfig collateral silo is set by the following functions: /// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender) /// This function is called on debt share token transfer (debt transfer). /// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function. /// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function. /// /// In the Silo collateral silo is set by the following functions: /// `borrow` - always sets opposite silo as collateral. /// If Silo0 borrows, then Silo1 will be collateral and vice versa. /// `borrowSameAsset` - always sets the same silo as collateral. /// `switchCollateralToThisSilo` - always sets the same silo as collateral. /// @param _borrower The address of the borrower for which the collateral silo is being retrieved /// @return collateralSilo The address of the collateral silo for the specified borrower function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo); /// @notice Retrieves the silo ID /// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer. /// An owner of that token receives the deployer fees. /// @return siloId The ID of the silo function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase /// @notice Retrieves the addresses of the two silos /// @return silo0 The address of the first silo /// @return silo1 The address of the second silo function getSilos() external view returns (address silo0, address silo1); /// @notice Retrieves the asset associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which the associated asset is being retrieved /// @return asset The address of the asset associated with the specified silo function getAssetForSilo(address _silo) external view returns (address asset); /// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance /// @param _thisSilo The address of the silo in respect of which the debt is checked /// @param _borrower The address of the borrower for which the debt is checked /// @return hasDebt true if the borrower has debt in other silo function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt); /// @notice Retrieves the debt silo associated with a specific borrower /// @dev This function reverts if debt present in two silo (should not happen) /// @param _borrower The address of the borrower for which the debt silo is being retrieved function getDebtSilo(address _borrower) external view returns (address debtSilo); /// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs. /// @param borrower borrower address for which debtConfig will be returned /// @return collateralConfig The configuration data for collateral silo (empty if there is no debt). /// @return debtConfig The configuration data for debt silo (empty if there is no debt). function getConfigsForSolvency(address borrower) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves configuration data for a specific silo /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return config The configuration data for the specified silo function getConfig(address _silo) external view returns (ConfigData memory config); /// @notice Retrieves configuration data for a specific silo for withdraw fn. /// @dev This function reverts for incorrect silo address input. /// @param _silo The address of the silo for which configuration data is being retrieved /// @return depositConfig The configuration data for the specified silo (always config for `_silo`) /// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt) /// @return debtConfig The configuration data for the debt silo (empty if there is no debt) function getConfigsForWithdraw(address _silo, address _borrower) external view returns ( DepositConfig memory depositConfig, ConfigData memory collateralConfig, ConfigData memory debtConfig ); /// @notice Retrieves configuration data for a specific silo for borrow fn. /// @dev This function reverts for incorrect silo address input. /// @param _debtSilo The address of the silo for which configuration data is being retrieved /// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`) /// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`) function getConfigsForBorrow(address _debtSilo) external view returns (ConfigData memory collateralConfig, ConfigData memory debtConfig); /// @notice Retrieves fee-related information for a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which fee-related information is being retrieved. /// @return daoFee The DAO fee percentage in 18 decimals points. /// @return deployerFee The deployer fee percentage in 18 decimals points. /// @return flashloanFee The flashloan fee percentage in 18 decimals points. /// @return asset The address of the asset associated with the specified silo. function getFeesWithAsset(address _silo) external view returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset); /// @notice Retrieves share tokens associated with a specific silo /// @dev This function reverts for incorrect silo address input /// @param _silo The address of the silo for which share tokens are being retrieved /// @return protectedShareToken The address of the protected (non-borrowable) share token /// @return collateralShareToken The address of the collateral share token /// @return debtShareToken The address of the debt share token function getShareTokens(address _silo) external view returns (address protectedShareToken, address collateralShareToken, address debtShareToken); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @param _collateralType The type of collateral /// @return shareToken The address of the share token (collateral or protected collateral) /// @return asset The address of the silo token function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType) external view returns (address shareToken, address asset); /// @notice Retrieves the share token and the silo token associated with a specific silo /// @param _silo The address of the silo for which the share token and silo token are being retrieved /// @return shareToken The address of the share token (debt) /// @return asset The address of the silo token function getDebtShareTokenAndAsset(address _silo) external view returns (address shareToken, address asset); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {ISilo} from "../interfaces/ISilo.sol"; // solhint-disable private-vars-leading-underscore library Hook { /// @notice The data structure for the deposit hook /// @param assets The amount of assets deposited /// @param shares The amount of shares deposited /// @param receiver The receiver of the deposit struct BeforeDepositInput { uint256 assets; uint256 shares; address receiver; } /// @notice The data structure for the deposit hook /// @param assets The amount of assets deposited /// @param shares The amount of shares deposited /// @param receiver The receiver of the deposit /// @param receivedAssets The exact amount of assets being deposited /// @param mintedShares The exact amount of shares being minted struct AfterDepositInput { uint256 assets; uint256 shares; address receiver; uint256 receivedAssets; uint256 mintedShares; } /// @notice The data structure for the withdraw hook /// @param assets The amount of assets withdrawn /// @param shares The amount of shares withdrawn /// @param receiver The receiver of the withdrawal /// @param owner The owner of the shares /// @param spender The spender of the shares struct BeforeWithdrawInput { uint256 assets; uint256 shares; address receiver; address owner; address spender; } /// @notice The data structure for the withdraw hook /// @param assets The amount of assets withdrawn /// @param shares The amount of shares withdrawn /// @param receiver The receiver of the withdrawal /// @param owner The owner of the shares /// @param spender The spender of the shares /// @param withdrawnAssets The exact amount of assets being withdrawn /// @param withdrawnShares The exact amount of shares being withdrawn struct AfterWithdrawInput { uint256 assets; uint256 shares; address receiver; address owner; address spender; uint256 withdrawnAssets; uint256 withdrawnShares; } /// @notice The data structure for the share token transfer hook /// @param sender The sender of the transfer (address(0) on mint) /// @param recipient The recipient of the transfer (address(0) on burn) /// @param amount The amount of tokens transferred/minted/burned /// @param senderBalance The balance of the sender after the transfer (empty on mint) /// @param recipientBalance The balance of the recipient after the transfer (empty on burn) /// @param totalSupply The total supply of the share token struct AfterTokenTransfer { address sender; address recipient; uint256 amount; uint256 senderBalance; uint256 recipientBalance; uint256 totalSupply; } /// @notice The data structure for the before borrow hook /// @param assets The amount of assets to borrow /// @param shares The amount of shares to borrow /// @param receiver The receiver of the borrow /// @param borrower The borrower of the assets /// @param _spender Address which initiates the borrowing action on behalf of the borrower struct BeforeBorrowInput { uint256 assets; uint256 shares; address receiver; address borrower; address spender; } /// @notice The data structure for the after borrow hook /// @param assets The amount of assets borrowed /// @param shares The amount of shares borrowed /// @param receiver The receiver of the borrow /// @param borrower The borrower of the assets /// @param spender Address which initiates the borrowing action on behalf of the borrower /// @param borrowedAssets The exact amount of assets being borrowed /// @param borrowedShares The exact amount of shares being borrowed struct AfterBorrowInput { uint256 assets; uint256 shares; address receiver; address borrower; address spender; uint256 borrowedAssets; uint256 borrowedShares; } /// @notice The data structure for the before repay hook /// @param assets The amount of assets to repay /// @param shares The amount of shares to repay /// @param borrower The borrower of the assets /// @param repayer The repayer of the assets struct BeforeRepayInput { uint256 assets; uint256 shares; address borrower; address repayer; } /// @notice The data structure for the after repay hook /// @param assets The amount of assets to repay /// @param shares The amount of shares to repay /// @param borrower The borrower of the assets /// @param repayer The repayer of the assets /// @param repaidAssets The exact amount of assets being repaid /// @param repaidShares The exact amount of shares being repaid struct AfterRepayInput { uint256 assets; uint256 shares; address borrower; address repayer; uint256 repaidAssets; uint256 repaidShares; } /// @notice The data structure for the before flash loan hook /// @param receiver The flash loan receiver /// @param token The flash loan token /// @param amount Requested amount of tokens struct BeforeFlashLoanInput { address receiver; address token; uint256 amount; } /// @notice The data structure for the after flash loan hook /// @param receiver The flash loan receiver /// @param token The flash loan token /// @param amount Received amount of tokens /// @param fee The flash loan fee struct AfterFlashLoanInput { address receiver; address token; uint256 amount; uint256 fee; } /// @notice The data structure for the before transition collateral hook /// @param shares The amount of shares to transition struct BeforeTransitionCollateralInput { uint256 shares; address owner; } /// @notice The data structure for the after transition collateral hook /// @param shares The amount of shares to transition struct AfterTransitionCollateralInput { uint256 shares; address owner; uint256 assets; } /// @notice The data structure for the switch collateral hook /// @param user The user switching collateral struct SwitchCollateralInput { address user; } /// @notice Supported hooks /// @dev The hooks are stored as a bitmap and can be combined with bitwise OR uint256 internal constant NONE = 0; uint256 internal constant DEPOSIT = 2 ** 1; uint256 internal constant BORROW = 2 ** 2; uint256 internal constant BORROW_SAME_ASSET = 2 ** 3; uint256 internal constant REPAY = 2 ** 4; uint256 internal constant WITHDRAW = 2 ** 5; uint256 internal constant FLASH_LOAN = 2 ** 6; uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7; uint256 internal constant SWITCH_COLLATERAL = 2 ** 8; uint256 internal constant LIQUIDATION = 2 ** 9; uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10; uint256 internal constant COLLATERAL_TOKEN = 2 ** 11; uint256 internal constant PROTECTED_TOKEN = 2 ** 12; uint256 internal constant DEBT_TOKEN = 2 ** 13; // note: currently we can support hook value up to 2 ** 23, // because for optimisation purposes, we storing hooks as uint24 // For decoding packed data uint256 private constant PACKED_ADDRESS_LENGTH = 20; uint256 private constant PACKED_FULL_LENGTH = 32; uint256 private constant PACKED_ENUM_LENGTH = 1; uint256 private constant PACKED_BOOL_LENGTH = 1; error FailedToParseBoolean(); /// @notice Checks if the action has a specific hook /// @param _action The action /// @param _expectedHook The expected hook /// @dev The function returns true if the action has the expected hook. /// As hooks actions can be combined with bitwise OR, the following examples are valid: /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true` /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true` /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true` function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) { return _action & _expectedHook == _expectedHook; } /// @notice Adds a hook to an action /// @param _action The action /// @param _newAction The new hook to be added function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) { return _action | _newAction; } /// @dev please be careful with removing actions, because other hooks might using them /// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER` /// and you want to remove action on protected token transfer by doing /// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN` /// and it will not trigger collateral token transfer. In this example you should do: /// `remove(_action, PROTECTED_TOKEN)` function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) { return _action & (~_actionToRemove); } /// @notice Returns the action for depositing a specific collateral type /// @param _type The collateral type function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) { return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the action for withdrawing a specific collateral type /// @param _type The collateral type function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) { return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the action for collateral transition /// @param _type The collateral type function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) { return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN); } /// @notice Returns the share token transfer action /// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN) function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) { return SHARE_TOKEN_TRANSFER | _tokenType; } /// @dev Decodes packed data from the share token after the transfer hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterTokenTransferDecode(bytes memory packed) internal pure returns (AfterTokenTransfer memory input) { address sender; address recipient; uint256 amount; uint256 senderBalance; uint256 recipientBalance; uint256 totalSupply; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH sender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) recipient := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) senderBalance := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) recipientBalance := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) totalSupply := mload(add(packed, pointer)) } input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply); } /// @dev Decodes packed data from the deposit hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeDepositDecode(bytes memory packed) internal pure returns (BeforeDepositInput memory input) { uint256 assets; uint256 shares; address receiver; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) } input = BeforeDepositInput(assets, shares, receiver); } /// @dev Decodes packed data from the deposit hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterDepositDecode(bytes memory packed) internal pure returns (AfterDepositInput memory input) { uint256 assets; uint256 shares; address receiver; uint256 receivedAssets; uint256 mintedShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) receivedAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) mintedShares := mload(add(packed, pointer)) } input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares); } /// @dev Decodes packed data from the withdraw hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeWithdrawDecode(bytes memory packed) internal pure returns (BeforeWithdrawInput memory input) { uint256 assets; uint256 shares; address receiver; address owner; address spender; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) } input = BeforeWithdrawInput(assets, shares, receiver, owner, spender); } /// @dev Decodes packed data from the withdraw hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterWithdrawDecode(bytes memory packed) internal pure returns (AfterWithdrawInput memory input) { uint256 assets; uint256 shares; address receiver; address owner; address spender; uint256 withdrawnAssets; uint256 withdrawnShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) withdrawnAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) withdrawnShares := mload(add(packed, pointer)) } input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares); } /// @dev Decodes packed data from the before borrow hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeBorrowDecode(bytes memory packed) internal pure returns (BeforeBorrowInput memory input) { uint256 assets; uint256 shares; address receiver; address borrower; address spender; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) } input = BeforeBorrowInput(assets, shares, receiver, borrower, spender); } /// @dev Decodes packed data from the after borrow hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterBorrowDecode(bytes memory packed) internal pure returns (AfterBorrowInput memory input) { uint256 assets; uint256 shares; address receiver; address borrower; address spender; uint256 borrowedAssets; uint256 borrowedShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) spender := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) borrowedAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) borrowedShares := mload(add(packed, pointer)) } input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares); } /// @dev Decodes packed data from the before repay hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeRepayDecode(bytes memory packed) internal pure returns (BeforeRepayInput memory input) { uint256 assets; uint256 shares; address borrower; address repayer; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) repayer := mload(add(packed, pointer)) } input = BeforeRepayInput(assets, shares, borrower, repayer); } /// @dev Decodes packed data from the after repay hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterRepayDecode(bytes memory packed) internal pure returns (AfterRepayInput memory input) { uint256 assets; uint256 shares; address borrower; address repayer; uint256 repaidAssets; uint256 repaidShares; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH assets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) borrower := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) repayer := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) repaidAssets := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) repaidShares := mload(add(packed, pointer)) } input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares); } /// @dev Decodes packed data from the before flash loan hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeFlashLoanDecode(bytes memory packed) internal pure returns (BeforeFlashLoanInput memory input) { address receiver; address token; uint256 amount; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) token := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) } input = BeforeFlashLoanInput(receiver, token, amount); } /// @dev Decodes packed data from the before flash loan hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterFlashLoanDecode(bytes memory packed) internal pure returns (AfterFlashLoanInput memory input) { address receiver; address token; uint256 amount; uint256 fee; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH receiver := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) token := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) amount := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) fee := mload(add(packed, pointer)) } input = AfterFlashLoanInput(receiver, token, amount, fee); } /// @dev Decodes packed data from the transition collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function beforeTransitionCollateralDecode(bytes memory packed) internal pure returns (BeforeTransitionCollateralInput memory input) { uint256 shares; address owner; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) } input = BeforeTransitionCollateralInput(shares, owner); } /// @dev Decodes packed data from the transition collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function afterTransitionCollateralDecode(bytes memory packed) internal pure returns (AfterTransitionCollateralInput memory input) { uint256 shares; address owner; uint256 assets; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_FULL_LENGTH shares := mload(add(packed, pointer)) pointer := add(pointer, PACKED_ADDRESS_LENGTH) owner := mload(add(packed, pointer)) pointer := add(pointer, PACKED_FULL_LENGTH) assets := mload(add(packed, pointer)) } input = AfterTransitionCollateralInput(shares, owner, assets); } /// @dev Decodes packed data from the switch collateral hook /// @param packed The packed data (via abi.encodePacked) /// @return input decoded function switchCollateralDecode(bytes memory packed) internal pure returns (SwitchCollateralInput memory input) { address user; assembly { // solhint-disable-line no-inline-assembly let pointer := PACKED_ADDRESS_LENGTH user := mload(add(packed, pointer)) } input = SwitchCollateralInput(user); } /// @dev Converts a uint8 to a boolean function _toBoolean(uint8 _value) internal pure returns (bool result) { if (_value == 0) { result = false; } else if (_value == 1) { result = true; } else { revert FailedToParseBoolean(); } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.28; import {IERC20} from "openzeppelin5/interfaces/IERC20.sol"; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol"; import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol"; import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol"; import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol"; import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol"; import {SiloMathLib} from "silo-core/contracts/lib/SiloMathLib.sol"; import {Hook} from "silo-core/contracts/lib/Hook.sol"; import {Rounding} from "silo-core/contracts/lib/Rounding.sol"; import {RevertLib} from "silo-core/contracts/lib/RevertLib.sol"; import {CallBeforeQuoteLib} from "silo-core/contracts/lib/CallBeforeQuoteLib.sol"; import {PartialLiquidationExecLib} from "./lib/PartialLiquidationExecLib.sol"; /// @title PartialLiquidation module for executing liquidations /// @dev if we need additional hook functionality, this contract should be included as parent contract PartialLiquidation is IPartialLiquidation, IHookReceiver { using SafeERC20 for IERC20; using Hook for uint24; using CallBeforeQuoteLib for ISiloConfig.ConfigData; ISiloConfig public siloConfig; struct LiquidationCallParams { uint256 collateralShares; uint256 protectedShares; uint256 withdrawAssetsFromCollateral; uint256 withdrawAssetsFromProtected; bytes4 customError; } function initialize(ISiloConfig _siloConfig, bytes calldata) external virtual { _initialize(_siloConfig); } function beforeAction(address, uint256, bytes calldata) external virtual { // not in use } function afterAction(address, uint256, bytes calldata) external virtual { // not in use } /// @inheritdoc IPartialLiquidation function liquidationCall( // solhint-disable-line function-max-lines, code-complexity address _collateralAsset, address _debtAsset, address _borrower, uint256 _maxDebtToCover, bool _receiveSToken ) external virtual returns (uint256 withdrawCollateral, uint256 repayDebtAssets) { ISiloConfig siloConfigCached = siloConfig; require(address(siloConfigCached) != address(0), EmptySiloConfig()); require(_maxDebtToCover != 0, NoDebtToCover()); siloConfigCached.turnOnReentrancyProtection(); ( ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) = _fetchConfigs(siloConfigCached, _collateralAsset, _debtAsset, _borrower); LiquidationCallParams memory params; ( params.withdrawAssetsFromCollateral, params.withdrawAssetsFromProtected, repayDebtAssets, params.customError ) = PartialLiquidationExecLib.getExactLiquidationAmounts( collateralConfig, debtConfig, _borrower, _maxDebtToCover, collateralConfig.liquidationFee ); RevertLib.revertIfError(params.customError); // we do not allow dust so full liquidation is required require(repayDebtAssets <= _maxDebtToCover, FullLiquidationRequired()); IERC20(debtConfig.token).safeTransferFrom(msg.sender, address(this), repayDebtAssets); IERC20(debtConfig.token).safeIncreaseAllowance(debtConfig.silo, repayDebtAssets); address shareTokenReceiver = _receiveSToken ? msg.sender : address(this); params.collateralShares = _callShareTokenForwardTransferNoChecks( collateralConfig.silo, _borrower, shareTokenReceiver, params.withdrawAssetsFromCollateral, collateralConfig.collateralShareToken, ISilo.AssetType.Collateral ); params.protectedShares = _callShareTokenForwardTransferNoChecks( collateralConfig.silo, _borrower, shareTokenReceiver, params.withdrawAssetsFromProtected, collateralConfig.protectedShareToken, ISilo.AssetType.Protected ); siloConfigCached.turnOffReentrancyProtection(); ISilo(debtConfig.silo).repay(repayDebtAssets, _borrower); if (_receiveSToken) { if (params.collateralShares != 0) { withdrawCollateral = ISilo(collateralConfig.silo).previewRedeem( params.collateralShares, ISilo.CollateralType.Collateral ); } if (params.protectedShares != 0) { unchecked { // protected and collateral values were split from total collateral to withdraw, // so we will not overflow when we sum them back, especially that on redeem, we rounding down withdrawCollateral += ISilo(collateralConfig.silo).previewRedeem( params.protectedShares, ISilo.CollateralType.Protected ); } } } else { // in case of liquidation redeem, hook transfers sTokens to itself and it has no debt // so solvency will not be checked in silo on redeem action // if share token offset is more than 0, positive number of shares can generate 0 assets // so there is a need to check assets before we withdraw collateral/protected if (params.collateralShares != 0) { withdrawCollateral = ISilo(collateralConfig.silo).redeem({ _shares: params.collateralShares, _receiver: msg.sender, _owner: address(this), _collateralType: ISilo.CollateralType.Collateral }); } if (params.protectedShares != 0) { unchecked { // protected and collateral values were split from total collateral to withdraw, // so we will not overflow when we sum them back, especially that on redeem, we rounding down withdrawCollateral += ISilo(collateralConfig.silo).redeem({ _shares: params.protectedShares, _receiver: msg.sender, _owner: address(this), _collateralType: ISilo.CollateralType.Protected }); } } } emit LiquidationCall( msg.sender, debtConfig.silo, _borrower, repayDebtAssets, withdrawCollateral, _receiveSToken ); } function hookReceiverConfig(address) external virtual view returns (uint24 hooksBefore, uint24 hooksAfter) { return (0, 0); } /// @inheritdoc IPartialLiquidation function maxLiquidation(address _borrower) external view virtual returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired) { return PartialLiquidationExecLib.maxLiquidation(siloConfig, _borrower); } function _fetchConfigs( ISiloConfig _siloConfigCached, address _collateralAsset, address _debtAsset, address _borrower ) internal virtual returns ( ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) { (collateralConfig, debtConfig) = _siloConfigCached.getConfigsForSolvency(_borrower); require(debtConfig.silo != address(0), UserIsSolvent()); require(_collateralAsset == collateralConfig.token, UnexpectedCollateralToken()); require(_debtAsset == debtConfig.token, UnexpectedDebtToken()); ISilo(debtConfig.silo).accrueInterest(); if (collateralConfig.silo != debtConfig.silo) { ISilo(collateralConfig.silo).accrueInterest(); collateralConfig.callSolvencyOracleBeforeQuote(); debtConfig.callSolvencyOracleBeforeQuote(); } } function _callShareTokenForwardTransferNoChecks( address _silo, address _borrower, address _receiver, uint256 _withdrawAssets, address _shareToken, ISilo.AssetType _assetType ) internal virtual returns (uint256 shares) { if (_withdrawAssets == 0) return 0; shares = SiloMathLib.convertToShares( _withdrawAssets, ISilo(_silo).getTotalAssetsStorage(_assetType), IShareToken(_shareToken).totalSupply(), Rounding.LIQUIDATE_TO_SHARES, ISilo.AssetType(_assetType) ); if (shares == 0) return 0; IShareToken(_shareToken).forwardTransferFromNoChecks(_borrower, _receiver, shares); } function _initialize(ISiloConfig _siloConfig) internal virtual { require(address(_siloConfig) != address(0), EmptySiloConfig()); require(address(siloConfig) == address(0), AlreadyConfigured()); siloConfig = _siloConfig; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IGaugeLike { event GaugeKilled(); event GaugeUnKilled(); error EmptyShareToken(); function afterTokenTransfer( address _sender, uint256 _senderBalance, address _recipient, uint256 _recipientBalance, uint256 _totalSupply, uint256 _amount ) external; /// @notice Kills the gauge function killGauge() external; /// @notice Un kills the gauge function unkillGauge() external; // solhint-disable func-name-mixedcase function share_token() external view returns (address); function is_killed() external view returns (bool); // solhint-enable func-name-mixedcase }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IShareToken} from "./IShareToken.sol"; import {IHookReceiver} from "./IHookReceiver.sol"; import {IGaugeLike as IGauge} from "./IGaugeLike.sol"; /// @notice Silo share token hook receiver for the gauge interface IGaugeHookReceiver is IHookReceiver { /// @dev Emit when the new gauge is configured /// @param gauge Gauge for which hook receiver will send notification about the share token balance updates. /// @param shareToken Share token. event GaugeConfigured(address gauge, address shareToken); /// @dev Emit when the gauge is removed /// @param shareToken Share token for which the gauge was removed event GaugeRemoved(address shareToken); /// @dev Revert on an attempt to initialize with a zero `_owner` address error OwnerIsZeroAddress(); /// @dev Revert on an attempt to initialize with an invalid `_shareToken` address error InvalidShareToken(); /// @dev Revert on an attempt to setup a `_gauge` with a different `_shareToken` /// than hook receiver were initialized error WrongGaugeShareToken(); /// @dev Revert on an attempt to remove a `gauge` that still can mint SILO tokens error CantRemoveActiveGauge(); /// @dev Revert on an attempt to set a gauge with a zero address error EmptyGaugeAddress(); /// @dev Revert if the hook received `beforeAction` notification error RequestNotSupported(); /// @dev Revert on an attempt to remove not configured gauge error GaugeIsNotConfigured(); /// @dev Revert on an attempt to configure already configured gauge error GaugeAlreadyConfigured(); /// @notice Configuration of the gauge /// for which the hook receiver should send notifications about the share token balance updates. /// The `_gauge` can be updated by an owner (DAO) /// @dev Overrides existing configuration /// @param _shareToken Share token for which the gauge is configured /// @param _gauge Array of gauges for which hook receiver will send notification. function setGauge(IGauge _gauge, IShareToken _shareToken) external; /// @notice Remove the gauge from the hook receiver for the share token /// @param _shareToken Share token for which the gauge needs to be removed function removeGauge(IShareToken _shareToken) external; /// @notice Get the share token function shareToken() external view returns (IShareToken); /// @notice Get the gauge for the share token /// @param _shareToken Share token function configuredGauges(IShareToken _shareToken) external view returns (IGauge); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.28; import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol"; import {IHookReceiver} from "../../../interfaces/IHookReceiver.sol"; abstract contract SiloHookReceiver is IHookReceiver { mapping(address silo => HookConfig) private _hookConfig; function _setHookConfig(address _silo, uint256 _hooksBefore, uint256 _hooksAfter) internal virtual { _hookConfig[_silo] = HookConfig(uint24(_hooksBefore), uint24(_hooksAfter)); emit HookConfigured(_silo, uint24(_hooksBefore), uint24(_hooksAfter)); ISilo(_silo).updateHooks(); } function _hookReceiverConfig(address _silo) internal view virtual returns (uint24 hooksBefore, uint24 hooksAfter) { HookConfig memory hookConfig = _hookConfig[_silo]; hooksBefore = hookConfig.hooksBefore; hooksAfter = hookConfig.hooksAfter; } function _getHooksBefore(address _silo) internal view virtual returns (uint256 hooksBefore) { hooksBefore = _hookConfig[_silo].hooksBefore; } function _getHooksAfter(address _silo) internal view virtual returns (uint256 hooksAfter) { hooksAfter = _hookConfig[_silo].hooksAfter; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol"; import {IERC3156FlashLender} from "./IERC3156FlashLender.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; import {ISiloFactory} from "./ISiloFactory.sol"; import {IHookReceiver} from "./IHookReceiver.sol"; // solhint-disable ordering interface ISilo is IERC20, IERC4626, IERC3156FlashLender { /// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be /// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used /// to make a decision inside functions if interest should be accrued in memory to work on updated values. enum AccrueInterestInMemory { No, Yes } /// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency /// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo /// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle /// because it's used as denominator for ETH and it's "price" can be assume as 1. enum OracleType { Solvency, MaxLtv } /// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected", /// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum AssetType { Protected, // default Collateral, Debt } /// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and /// for borrowable collateral deposit called "collateral". System does /// identical calculations for each type of accounting but it uses different data. To avoid code duplication /// this enum is used to decide which data should be read. enum CollateralType { Protected, // default Collateral } /// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn enum CallType { Call, // default Delegatecall } /// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided. /// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided. /// @param _receiver Address receiving the withdrawn assets /// @param _owner Address of the owner of the shares being burned /// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set /// @param _collateralType Type of the asset being withdrawn (Collateral or Protected) struct WithdrawArgs { uint256 assets; uint256 shares; address receiver; address owner; address spender; ISilo.CollateralType collateralType; } /// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided. /// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if /// assets are provided. /// @param receiver Address that will receive the borrowed assets /// @param borrower The user who is borrowing the assets struct BorrowArgs { uint256 assets; uint256 shares; address receiver; address borrower; } /// @param shares Amount of shares the user wishes to transit. /// @param owner owner of the shares after transition. /// @param transitionFrom type of collateral that will be transitioned. struct TransitionCollateralArgs { uint256 shares; address owner; ISilo.CollateralType transitionFrom; } struct UtilizationData { /// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. uint256 collateralAssets; /// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest. uint256 debtAssets; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; } struct SiloStorage { /// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer /// but not yet withdrawn uint192 daoAndDeployerRevenue; /// @dev timestamp of the last interest accrual uint64 interestRateTimestamp; /// @dev silo is just for one asset, /// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type. /// Assets based on type: /// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used /// as collateral. These deposits do NOT earn interest and CANNOT be borrowed. /// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors. /// It also includes token amount that has been borrowed. /// - DEBT: Amount of asset token that has been borrowed plus accrued interest. /// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call) /// please use getters eg `getCollateralAssets()` to fetch value that includes interest. mapping(AssetType assetType => uint256 assets) totalAssets; } /// @notice Emitted on protected deposit /// @param sender wallet address that deposited asset /// @param owner wallet address that received shares in Silo /// @param assets amount of asset that was deposited /// @param shares amount of shares that was minted event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice Emitted on protected withdraw /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owned asset /// @param assets amount of asset that was withdrew /// @param shares amount of shares that was burn event WithdrawProtected( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on borrow /// @param sender wallet address that sent transaction /// @param receiver wallet address that received asset /// @param owner wallet address that owes assets /// @param assets amount of asset that was borrowed /// @param shares amount of shares that was minted event Borrow( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /// @notice Emitted on repayment /// @param sender wallet address that repaid asset /// @param owner wallet address that owed asset /// @param assets amount of asset that was repaid /// @param shares amount of shares that was burn event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares); /// @notice emitted only when collateral has been switched to other one event CollateralTypeChanged(address indexed borrower); event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter); event AccruedInterest(uint256 hooksBefore); event FlashLoan(uint256 amount); event WithdrawnFeed(uint256 daoFees, uint256 deployerFees); error Unsupported(); error NothingToWithdraw(); error NotEnoughLiquidity(); error NotSolvent(); error BorrowNotPossible(); error EarnedZero(); error FlashloanFailed(); error AboveMaxLtv(); error SiloInitialized(); error OnlyHookReceiver(); error NoLiquidity(); error InputCanBeAssetsOrShares(); error CollateralSiloAlreadySet(); error RepayTooHigh(); error ZeroAmount(); error InputZeroShares(); error ReturnZeroAssets(); error ReturnZeroShares(); /// @return siloFactory The associated factory of the silo function factory() external view returns (ISiloFactory siloFactory); /// @notice Method for HookReceiver only to call on behalf of Silo /// @param _target address of the contract to call /// @param _value amount of ETH to send /// @param _callType type of the call (Call or Delegatecall) /// @param _input calldata for the call function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input) external payable returns (bool success, bytes memory result); /// @notice Initialize Silo /// @param _siloConfig address of ISiloConfig with full config for this Silo function initialize(ISiloConfig _siloConfig) external; /// @notice Update hooks configuration for Silo /// @dev This function must be called after the hooks configuration is changed in the hook receiver function updateHooks() external; /// @notice Fetches the silo configuration contract /// @return siloConfig Address of the configuration contract associated with the silo function config() external view returns (ISiloConfig siloConfig); /// @notice Fetches the utilization data of the silo used by IRM function utilizationData() external view returns (UtilizationData memory utilizationData); /// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest /// @return liquidity The amount of liquidity function getLiquidity() external view returns (uint256 liquidity); /// @notice Determines if a borrower is solvent /// @param _borrower Address of the borrower to check for solvency /// @return True if the borrower is solvent, otherwise false function isSolvent(address _borrower) external view returns (bool); /// @notice Retrieves the raw total amount of assets based on provided type (direct storage access) function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256); /// @notice Direct storage access to silo storage /// @dev See struct `SiloStorage` for more details function getSiloStorage() external view returns ( uint192 daoAndDeployerRevenue, uint64 interestRateTimestamp, uint256 protectedAssets, uint256 collateralAssets, uint256 debtAssets ); /// @notice Retrieves the total amount of collateral (borrowable) assets with interest /// @return totalCollateralAssets The total amount of assets of type 'Collateral' function getCollateralAssets() external view returns (uint256 totalCollateralAssets); /// @notice Retrieves the total amount of debt assets with interest /// @return totalDebtAssets The total amount of assets of type 'Debt' function getDebtAssets() external view returns (uint256 totalDebtAssets); /// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalProtectedAssets The total amount of protected (non-borrowable) assets function getCollateralAndProtectedTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets); /// @notice Retrieves the total amounts of collateral and debt assets /// @return totalCollateralAssets The total amount of assets of type 'Collateral' /// @return totalDebtAssets The total amount of debt assets of type 'Debt' function getCollateralAndDebtTotalsStorage() external view returns (uint256 totalCollateralAssets, uint256 totalDebtAssets); /// @notice Implements IERC4626.convertToShares for each asset type function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares); /// @notice Implements IERC4626.convertToAssets for each asset type function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets); /// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function deposit(uint256 _assets, address _receiver, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets); /// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets); /// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares); /// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 shares); /// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares); /// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets); /// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral /// @dev Reverts for debt asset type function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType) external returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrow(address _borrower) external view returns (uint256 maxAssets); /// @notice Previews the amount of shares equivalent to the given asset amount for borrowing /// @param _assets Amount of assets to preview the equivalent shares for /// @return shares Amount of shares equivalent to the provided asset amount function previewBorrow(uint256 _assets) external view returns (uint256 shares); /// @notice Allows an address to borrow a specified amount of assets /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrow(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum amount of shares that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxShares Maximum number of shares that the borrower can borrow function maxBorrowShares(address _borrower) external view returns (uint256 maxShares); /// @notice Previews the amount of assets equivalent to the given share amount for borrowing /// @param _shares Amount of shares to preview the equivalent assets for /// @return assets Amount of assets equivalent to the provided share amount function previewBorrowShares(uint256 _shares) external view returns (uint256 assets); /// @notice Calculates the maximum amount of assets that can be borrowed by the given address /// @param _borrower Address of the potential borrower /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei /// Reason for underestimation is to return value that will not cause borrow revert function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets); /// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the /// same asset /// @param _assets Amount of assets to borrow /// @param _receiver Address receiving the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return shares Amount of shares equivalent to the borrowed assets function borrowSameAsset(uint256 _assets, address _receiver, address _borrower) external returns (uint256 shares); /// @notice Allows a user to borrow assets based on the provided share amount /// @param _shares Amount of shares to borrow against /// @param _receiver Address to receive the borrowed assets /// @param _borrower Address responsible for the borrowed assets /// @return assets Amount of assets borrowed function borrowShares(uint256 _shares, address _receiver, address _borrower) external returns (uint256 assets); /// @notice Calculates the maximum amount an address can repay based on their debt shares /// @param _borrower Address of the borrower /// @return assets Maximum amount of assets the borrower can repay function maxRepay(address _borrower) external view returns (uint256 assets); /// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment /// @param _assets Amount of assets to be repaid /// @return shares Estimated number of shares equivalent to the provided asset amount function previewRepay(uint256 _assets) external view returns (uint256 shares); /// @notice Repays a given asset amount and returns the equivalent number of shares /// @param _assets Amount of assets to be repaid /// @param _borrower Address of the borrower whose debt is being repaid /// @return shares The equivalent number of shares for the provided asset amount function repay(uint256 _assets, address _borrower) external returns (uint256 shares); /// @notice Calculates the maximum number of shares that can be repaid for a given borrower /// @param _borrower Address of the borrower /// @return shares The maximum number of shares that can be repaid for the borrower function maxRepayShares(address _borrower) external view returns (uint256 shares); /// @notice Provides a preview of the equivalent assets for a given number of shares to repay /// @param _shares Number of shares to preview repayment for /// @return assets Equivalent assets for the provided shares function previewRepayShares(uint256 _shares) external view returns (uint256 assets); /// @notice Allows a user to repay a loan using shares instead of assets /// @param _shares The number of shares the borrower wants to repay with /// @param _borrower The address of the borrower for whom to repay the loan /// @return assets The equivalent assets amount for the provided shares function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets); /// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states /// @dev This function allows assets to move between collateral and protected (non-borrowable) states without /// leaving the protocol /// @param _shares Amount of shares to be transitioned /// @param _owner Owner of the assets being transitioned /// @param _transitionFrom Specifies if the transition is from collateral or protected assets /// @return assets Amount of assets transitioned function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom) external returns (uint256 assets); /// @notice Switches the collateral silo to this silo /// @dev Revert if the collateral silo is already set function switchCollateralToThisSilo() external; /// @notice Accrues interest for the asset and returns the accrued interest amount /// @return accruedInterest The total interest accrued during this operation function accrueInterest() external returns (uint256 accruedInterest); /// @notice only for SiloConfig function accrueInterestForConfig( address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) external; /// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers function withdrawFees() external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface ICrossReentrancyGuard { error CrossReentrantCall(); error CrossReentrancyNotActive(); /// @notice only silo method for cross Silo reentrancy function turnOnReentrancyProtection() external; /// @notice only silo method for cross Silo reentrancy function turnOffReentrancyProtection() external; /// @notice view method for checking cross Silo reentrancy flag /// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a /// `nonReentrant` function in the call stack. function reentrancyGuardEntered() external view returns (bool entered); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IPartialLiquidation { struct HookSetup { /// @param this is the same as in siloConfig address hookReceiver; /// @param hooks bitmap uint24 hooksBefore; /// @param hooks bitmap uint24 hooksAfter; } /// @dev Emitted when a borrower is liquidated. /// @param liquidator The address of the liquidator /// @param silo The address of the silo on which position was liquidated /// @param borrower The address of the borrower /// @param repayDebtAssets Repay amount /// @param withdrawCollateral Total (collateral + protected) withdraw amount, in case `receiveSToken` is TRUE /// then this is estimated withdraw, and representation of this amount in sToken was transferred /// @param receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants /// to receive the underlying collateral asset directly event LiquidationCall( address indexed liquidator, address indexed silo, address indexed borrower, uint256 repayDebtAssets, uint256 withdrawCollateral, bool receiveSToken ); /// @dev Revert if provided silo configuration during initialization is empty error EmptySiloConfig(); /// @dev Revert if the hook receiver is already configured/initialized error AlreadyConfigured(); error UnexpectedCollateralToken(); error UnexpectedDebtToken(); error NoDebtToCover(); error FullLiquidationRequired(); error UserIsSolvent(); error UnknownRatio(); error NoRepayAssets(); /// @notice Function to liquidate insolvent position /// - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives /// an equivalent amount in `collateralAsset` plus a liquidation fee to cover market risk /// @dev this method reverts when: /// - `_maxDebtToCover` is zero /// - `_collateralAsset` is not `_user` collateral token (note, that user can have both tokens in Silo, but only one /// is for backing debt /// - `_debtAsset` is not a token that `_user` borrow /// - `_user` is solvent and there is no debt to cover /// - `_maxDebtToCover` is set to cover only part of the debt but full liquidation is required /// - when not enough liquidity to transfer from `_user` collateral to liquidator /// (use `_receiveSToken == true` in that case) /// @param _collateralAsset The address of the underlying asset used as collateral, to receive as result /// @param _debtAsset The address of the underlying borrowed asset to be repaid with the liquidation /// @param _user The address of the borrower getting liquidated /// @param _maxDebtToCover The maximum debt amount of borrowed `asset` the liquidator wants to cover, /// in case this amount is too big, it will be reduced to maximum allowed liquidation amount /// @param _receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants /// to receive the underlying collateral asset directly /// @return withdrawCollateral collateral that was send to `msg.sender`, in case of `_receiveSToken` is TRUE, /// `withdrawCollateral` will be estimated, on redeem one can expect this value to be rounded down /// @return repayDebtAssets actual debt value that was repaid by `msg.sender` function liquidationCall( address _collateralAsset, address _debtAsset, address _user, uint256 _maxDebtToCover, bool _receiveSToken ) external returns (uint256 withdrawCollateral, uint256 repayDebtAssets); /// @dev debt is keep growing over time, so when dApp use this view to calculate max, tx should never revert /// because actual max can be only higher /// @return collateralToLiquidate underestimated amount of collateral liquidator will get /// @return debtToRepay debt amount needed to be repay to get `collateralToLiquidate` /// @return sTokenRequired TRUE, when liquidation with underlying asset is not possible because of not enough /// liquidity function maxLiquidation(address _borrower) external view returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {ISiloConfig} from "./ISiloConfig.sol"; interface IHookReceiver { struct HookConfig { uint24 hooksBefore; uint24 hooksAfter; } event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter); /// @notice Initialize a hook receiver /// @param _siloConfig Silo configuration with all the details about the silo /// @param _data Data to initialize the hook receiver (if needed) function initialize(ISiloConfig _siloConfig, bytes calldata _data) external; /// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest() function beforeAction(address _silo, uint256 _action, bytes calldata _input) external; function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external; /// @notice return hooksBefore and hooksAfter configuration function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {Rounding} from "../lib/Rounding.sol"; import {ISilo} from "../interfaces/ISilo.sol"; library SiloMathLib { using Math for uint256; uint256 internal constant _PRECISION_DECIMALS = 1e18; uint256 internal constant _DECIMALS_OFFSET = 3; /// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET; /// @notice Returns available liquidity to be borrowed /// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The /// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable /// liquidity. function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) { unchecked { // we checked the underflow liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets; } } /// @notice Calculate collateral assets with accrued interest and associated fees /// @param _collateralAssets The total amount of collateral assets /// @param _debtAssets The total amount of debt assets /// @param _rcomp Compound interest rate for debt /// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO /// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer /// @return collateralAssetsWithInterest The total collateral assets including the accrued interest /// @return debtAssetsWithInterest The debt assets with accrued interest /// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer /// @return accruedInterest The total accrued interest function getCollateralAmountsWithInterest( uint256 _collateralAssets, uint256 _debtAssets, uint256 _rcomp, uint256 _daoFee, uint256 _deployerFee ) internal pure returns ( uint256 collateralAssetsWithInterest, uint256 debtAssetsWithInterest, uint256 daoAndDeployerRevenue, uint256 accruedInterest ) { (debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp); uint256 fees; // _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow unchecked { fees = _daoFee + _deployerFee; } daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS); // we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue; // save to uncheck because variable can not be more than max uint256 cap = type(uint256).max - _collateralAssets; if (cap < collateralInterest) { // avoid overflow on interest collateralInterest = cap; } // safe to uncheck because of cap unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; } } /// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow /// @param _totalDebtAssets The total amount of debt assets before accrued interest /// @param _rcomp Compound interest rate for the debt in 18 decimal precision /// @return debtAssetsWithInterest The debt assets including the accrued interest /// @return accruedInterest The total amount of interest accrued on the debt assets function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp) internal pure returns (uint256 debtAssetsWithInterest, uint256 accruedInterest) { if (_totalDebtAssets == 0 || _rcomp == 0) { return (_totalDebtAssets, 0); } accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS); unchecked { // We intentionally allow overflow here, to prevent transaction revert due to interest calculation. debtAssetsWithInterest = _totalDebtAssets + accruedInterest; // If overflow occurs, we skip accruing interest. if (debtAssetsWithInterest < _totalDebtAssets) { debtAssetsWithInterest = _totalDebtAssets; accruedInterest = 0; } } } /// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage /// @dev It assumes `_dp` = 100%. /// @param _dp decimal points used by model /// @param _collateralAssets current total deposits for assets /// @param _debtAssets current total borrows for assets /// @return utilization value, capped to 100% /// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations /// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt. function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 utilization) { if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0; /* how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST): 1. max > _debtAssets * _dp / _collateralAssets 2. max / _dp > _debtAssets / _collateralAssets */ if (type(uint256).max / _dp > _debtAssets / _collateralAssets) { utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST); // cap at 100% if (utilization > _dp) utilization = _dp; } else { // we have overflow utilization = _dp; } } function convertToAssetsOrToShares( uint256 _assets, uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _roundingToAssets, Math.Rounding _roundingToShares, ISilo.AssetType _assetType ) internal pure returns (uint256 assets, uint256 shares) { if (_assets == 0) { require(_shares != 0, ISilo.InputZeroShares()); shares = _shares; assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType); require(assets != 0, ISilo.ReturnZeroAssets()); } else if (_shares == 0) { shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType); assets = _assets; require(shares != 0, ISilo.ReturnZeroShares()); } else { revert ISilo.InputCanBeAssetsOrShares(); } } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares function convertToShares( uint256 _assets, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 shares) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo` if (totalShares == 0) return _assets; shares = _assets.mulDiv(totalShares, totalAssets, _rounding); } /// @dev Math for collateral is exact copy of /// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets function convertToAssets( uint256 _shares, uint256 _totalAssets, uint256 _totalShares, Math.Rounding _rounding, ISilo.AssetType _assetType ) internal pure returns (uint256 assets) { (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType); // initially, in case of debt, if silo is empty we return shares==assets // for collateral, this will never be the case, because of `+1` in line above if (totalShares == 0) return _shares; assets = _shares.mulDiv(totalAssets, totalShares, _rounding); } /// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset /// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected) /// @param _borrowerDebtValue total value of borrower debt /// @return maxBorrowValue max borrow value yet available for borrower function calculateMaxBorrowValue( uint256 _collateralMaxLtv, uint256 _sumOfBorrowerCollateralValue, uint256 _borrowerDebtValue ) internal pure returns (uint256 maxBorrowValue) { if (_sumOfBorrowerCollateralValue == 0) { return 0; } uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv( _collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE ); unchecked { // we will not underflow because we checking `maxDebtValue > _borrowerDebtValue` maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0; } } /// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold /// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower /// @param _debtValue The total debt value of the borrower /// @param _lt The liquidation threshold in 18 decimal points /// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal /// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal /// @return maxAssets The maximum assets the borrower can safely withdraw function calculateMaxAssetsToWithdraw( uint256 _sumOfCollateralsValue, uint256 _debtValue, uint256 _lt, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets ) internal pure returns (uint256 maxAssets) { if (_sumOfCollateralsValue == 0) return 0; if (_debtValue == 0) return _sumOfCollateralsValue; if (_lt == 0) return 0; // using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV); // if we over LT, we can not withdraw if (_sumOfCollateralsValue <= minimumCollateralValue) { return 0; } uint256 spareCollateralValue; // safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)` unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; } maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets) .mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS); } /// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw /// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation /// threshold /// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower /// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower /// @param _collateralType Specifies whether the asset is of type Collateral or Protected /// @param _totalAssets The entire quantity of assets available in the system for withdrawal /// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type /// @param _liquidity Current liquidity in the system for the asset type /// @return assets Maximum assets the borrower can withdraw /// @return shares Corresponding number of shares for the derived `assets` amount function maxWithdrawToAssetsAndShares( uint256 _maxAssets, uint256 _borrowerCollateralAssets, uint256 _borrowerProtectedAssets, ISilo.CollateralType _collateralType, uint256 _totalAssets, uint256 _assetTypeShareTokenTotalSupply, uint256 _liquidity ) internal pure returns (uint256 assets, uint256 shares) { if (_maxAssets == 0) return (0, 0); if (_assetTypeShareTokenTotalSupply == 0) return (0, 0); if (_collateralType == ISilo.CollateralType.Collateral) { assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets; if (assets > _liquidity) { assets = _liquidity; } } else { assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets; } shares = SiloMathLib.convertToShares( assets, _totalAssets, _assetTypeShareTokenTotalSupply, Rounding.MAX_WITHDRAW_TO_SHARES, ISilo.AssetType(uint256(_collateralType)) ); } /// @dev executed `_a * _b / _c`, reverts on _c == 0 /// @return mulDivResult on overflow returns 0 function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c) internal pure returns (uint256 mulDivResult) { if (_a == 0) return (0); unchecked { // we have to uncheck to detect overflow mulDivResult = _a * _b; if (mulDivResult / _a != _b) return 0; mulDivResult /= _c; } } /// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for /// itself. It should return actual result and round it up. function _commonConvertTo( uint256 _totalAssets, uint256 _totalShares, ISilo.AssetType _assetType ) private pure returns (uint256 totalShares, uint256 totalAssets) { if (_totalShares == 0) { // silo is empty and we have dust to redistribute: this can only happen when everyone exits silo // this case can happen only for collateral, because for collateral we rounding in favorite of protocol // by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state _totalAssets = 0; } (totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt ? (_totalShares, _totalAssets) : (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; // solhint-disable private-vars-leading-underscore library Rounding { Math.Rounding internal constant UP = (Math.Rounding.Ceil); Math.Rounding internal constant DOWN = (Math.Rounding.Floor); Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil); // COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down) Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor); // why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down? // DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens // so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why // different rounding policy Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor); Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil); Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil); Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor); Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor); Math.Rounding internal constant LTV = (Math.Rounding.Ceil); Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.7.6 <=0.9.0; library RevertLib { function revertBytes(bytes memory _errMsg, string memory _customErr) internal pure { if (_errMsg.length > 0) { assembly { // solhint-disable-line no-inline-assembly revert(add(32, _errMsg), mload(_errMsg)) } } revert(_customErr); } function revertIfError(bytes4 _errorSelector) internal pure { if (_errorSelector == 0) return; bytes memory customError = abi.encodeWithSelector(_errorSelector); assembly { revert(add(32, customError), mload(customError)) } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; library CallBeforeQuoteLib { /// @dev Call `beforeQuote` on the `solvencyOracle` oracle /// @param _config Silo config data function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal { if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) { ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token); } } /// @dev Call `beforeQuote` on the `maxLtvOracle` oracle /// @param _config Silo config data function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal { if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) { ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token); } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.28; import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol"; import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol"; import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol"; import {SiloSolvencyLib} from "silo-core/contracts/lib/SiloSolvencyLib.sol"; import {PartialLiquidationLib} from "./PartialLiquidationLib.sol"; library PartialLiquidationExecLib { /// @dev it will be user responsibility to check profit, this method expect interest to be already accrued function getExactLiquidationAmounts( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _user, uint256 _maxDebtToCover, uint256 _liquidationFee ) external view returns ( uint256 withdrawAssetsFromCollateral, uint256 withdrawAssetsFromProtected, uint256 repayDebtAssets, bytes4 customError ) { SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({ _collateralConfig: _collateralConfig, _debtConfig: _debtConfig, _borrower: _user, _oracleType: ISilo.OracleType.Solvency, _accrueInMemory: ISilo.AccrueInterestInMemory.No, _debtShareBalanceCached:0 /* no cached balance */ }); uint256 borrowerCollateralToLiquidate; ( borrowerCollateralToLiquidate, repayDebtAssets, customError ) = liquidationPreview( ltvData, PartialLiquidationLib.LiquidationPreviewParams({ collateralLt: _collateralConfig.lt, collateralConfigAsset: _collateralConfig.token, debtConfigAsset: _debtConfig.token, maxDebtToCover: _maxDebtToCover, liquidationTargetLtv: _collateralConfig.liquidationTargetLtv, liquidationFee: _liquidationFee }) ); ( withdrawAssetsFromCollateral, withdrawAssetsFromProtected ) = PartialLiquidationLib.splitReceiveCollateralToLiquidate( borrowerCollateralToLiquidate, ltvData.borrowerProtectedAssets ); } /// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert /// because actual max can be only higher // solhint-disable-next-line function-max-lines function maxLiquidation(ISiloConfig _siloConfig, address _borrower) external view returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired) { ( ISiloConfig.ConfigData memory collateralConfig, ISiloConfig.ConfigData memory debtConfig ) = _siloConfig.getConfigsForSolvency(_borrower); if (debtConfig.silo == address(0)) { return (0, 0, false); } SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations( collateralConfig, debtConfig, _borrower, ISilo.OracleType.Solvency, ISilo.AccrueInterestInMemory.Yes, 0 /* no cached balance */ ); if (ltvData.borrowerDebtAssets == 0) return (0, 0, false); ( uint256 sumOfCollateralValue, uint256 debtValue ) = SiloSolvencyLib.getPositionValues(ltvData, collateralConfig.token, debtConfig.token); uint256 sumOfCollateralAssets = ltvData.borrowerProtectedAssets + ltvData.borrowerCollateralAssets; if (sumOfCollateralValue == 0) return (sumOfCollateralAssets, ltvData.borrowerDebtAssets, false); uint256 ltvInDp = SiloSolvencyLib.ltvMath(debtValue, sumOfCollateralValue); if (ltvInDp <= collateralConfig.lt) return (0, 0, false); // user solvent (collateralToLiquidate, debtToRepay) = PartialLiquidationLib.maxLiquidation( sumOfCollateralAssets, sumOfCollateralValue, ltvData.borrowerDebtAssets, debtValue, collateralConfig.liquidationTargetLtv, collateralConfig.liquidationFee ); // maxLiquidation() can underestimate collateral by `PartialLiquidationLib._UNDERESTIMATION`, // when we do that, actual collateral that we will transfer will match exactly liquidity, // but we will liquidate higher value by 1 or 2, then sTokenRequired will return false, // but we can not withdraw (because we will be short by 2) solution is to include this 2wei here unchecked { // safe to uncheck, because we underestimated this value in a first place by _UNDERESTIMATION uint256 overestimatedCollateral = collateralToLiquidate + PartialLiquidationLib._UNDERESTIMATION; sTokenRequired = overestimatedCollateral > ISilo(collateralConfig.silo).getLiquidity(); } } /// @return receiveCollateralAssets collateral + protected to liquidate, on self liquidation when borrower repay /// all debt, he will receive all collateral back /// @return repayDebtAssets function liquidationPreview( // solhint-disable-line function-max-lines, code-complexity SiloSolvencyLib.LtvData memory _ltvData, PartialLiquidationLib.LiquidationPreviewParams memory _params ) internal view returns (uint256 receiveCollateralAssets, uint256 repayDebtAssets, bytes4 customError) { uint256 sumOfCollateralAssets = _ltvData.borrowerCollateralAssets + _ltvData.borrowerProtectedAssets; if (_ltvData.borrowerDebtAssets == 0 || _params.maxDebtToCover == 0) { return (0, 0, IPartialLiquidation.NoDebtToCover.selector); } if (sumOfCollateralAssets == 0) { return ( 0, _params.maxDebtToCover > _ltvData.borrowerDebtAssets ? _ltvData.borrowerDebtAssets : _params.maxDebtToCover, bytes4(0) // no error ); } ( uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvBefore ) = SiloSolvencyLib.calculateLtv(_ltvData, _params.collateralConfigAsset, _params.debtConfigAsset); if (_params.collateralLt >= ltvBefore) return (0, 0, IPartialLiquidation.UserIsSolvent.selector); uint256 ltvAfter; (receiveCollateralAssets, repayDebtAssets, ltvAfter) = PartialLiquidationLib.liquidationPreview( ltvBefore, sumOfCollateralAssets, sumOfBorrowerCollateralValue, _ltvData.borrowerDebtAssets, totalBorrowerDebtValue, _params ); if (receiveCollateralAssets == 0 || repayDebtAssets == 0) { return (0, 0, IPartialLiquidation.NoRepayAssets.selector); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol"; /// @notice https://eips.ethereum.org/EIPS/eip-3156 interface IERC3156FlashLender { /// @notice Protected deposits are not available for a flash loan. /// During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Initiate a flash loan. /// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data) external returns (bool); /// @dev The amount of currency available to be lent. /// @param _token The loan currency. /// @return The amount of `token` that can be borrowed. function maxFlashLoan(address _token) external view returns (uint256); /// @dev The fee to be charged for a given loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @return The amount of `token` to be charged for the loan, on top of the returned principal. function flashFee(address _token, uint256 _amount) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; import {IERC721} from "openzeppelin5/interfaces/IERC721.sol"; import {ISiloConfig} from "./ISiloConfig.sol"; interface ISiloFactory is IERC721 { struct Range { uint128 min; uint128 max; } /// @notice Emitted on the creation of a Silo. /// @param implementation Address of the Silo implementation. /// @param token0 Address of the first Silo token. /// @param token1 Address of the second Silo token. /// @param silo0 Address of the first Silo. /// @param silo1 Address of the second Silo. /// @param siloConfig Address of the SiloConfig. event NewSilo( address indexed implementation, address indexed token0, address indexed token1, address silo0, address silo1, address siloConfig ); event BaseURI(string newBaseURI); /// @notice Emitted on the update of DAO fee. /// @param minDaoFee Value of the new minimal DAO fee. /// @param maxDaoFee Value of the new maximal DAO fee. event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee); /// @notice Emitted on the update of max deployer fee. /// @param maxDeployerFee Value of the new max deployer fee. event MaxDeployerFeeChanged(uint256 maxDeployerFee); /// @notice Emitted on the update of max flashloan fee. /// @param maxFlashloanFee Value of the new max flashloan fee. event MaxFlashloanFeeChanged(uint256 maxFlashloanFee); /// @notice Emitted on the update of max liquidation fee. /// @param maxLiquidationFee Value of the new max liquidation fee. event MaxLiquidationFeeChanged(uint256 maxLiquidationFee); /// @notice Emitted on the change of DAO fee receiver. /// @param daoFeeReceiver Address of the new DAO fee receiver. event DaoFeeReceiverChanged(address daoFeeReceiver); error MissingHookReceiver(); error ZeroAddress(); error DaoFeeReceiverZeroAddress(); error EmptyToken0(); error EmptyToken1(); error MaxFeeExceeded(); error InvalidFeeRange(); error SameAsset(); error SameRange(); error InvalidIrm(); error InvalidMaxLtv(); error InvalidLt(); error InvalidDeployer(); error DaoMinRangeExceeded(); error DaoMaxRangeExceeded(); error MaxDeployerFeeExceeded(); error MaxFlashloanFeeExceeded(); error MaxLiquidationFeeExceeded(); error InvalidCallBeforeQuote(); error OracleMisconfiguration(); error InvalidQuoteToken(); error HookIsZeroAddress(); error LiquidationTargetLtvTooHigh(); /// @notice Create a new Silo. /// @param _initData Silo initialization data. /// @param _siloConfig Silo configuration. /// @param _siloImpl Address of the `Silo` implementation. /// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation. /// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation. function createSilo( ISiloConfig.InitData memory _initData, ISiloConfig _siloConfig, address _siloImpl, address _shareProtectedCollateralTokenImpl, address _shareDebtTokenImpl ) external; /// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning, /// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution. /// @param _siloIdToBurn silo ID to burn. function burn(uint256 _siloIdToBurn) external; /// @notice Update the value of DAO fee. Updated value will be used only for a new Silos. /// Previously deployed SiloConfigs are immutable. /// @param _minFee Value of the new DAO minimal fee. /// @param _maxFee Value of the new DAO maximal fee. function setDaoFee(uint128 _minFee, uint128 _maxFee) external; /// @notice Set the new DAO fee receiver. /// @param _newDaoFeeReceiver Address of the new DAO fee receiver. function setDaoFeeReceiver(address _newDaoFeeReceiver) external; /// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxDeployerFee Value of the new max deployer fee. function setMaxDeployerFee(uint256 _newMaxDeployerFee) external; /// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan /// fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxFlashloanFee Value of the new max flashloan fee. function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external; /// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max /// liquidation fee validation. Previously deployed SiloConfigs are immutable. /// @param _newMaxLiquidationFee Value of the new max liquidation fee. function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external; /// @notice Update the base URI. /// @param _newBaseURI Value of the new base URI. function setBaseURI(string calldata _newBaseURI) external; /// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%. function daoFeeRange() external view returns (Range memory); /// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxDeployerFee() external view returns (uint256); /// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxFlashloanFee() external view returns (uint256); /// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%. function maxLiquidationFee() external view returns (uint256); /// @notice The recipient of DAO fees. function daoFeeReceiver() external view returns (address); /// @notice Get SiloConfig address by Silo id. function idToSiloConfig(uint256 _id) external view returns (address); /// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration /// and implementation. Most critical part of verification would be to check who deployed it. /// @dev True if the address was deployed using SiloFactory. function isSilo(address _silo) external view returns (bool); /// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo /// function call. ID of a first Silo is 1. function getNextSiloId() external view returns (uint256); /// @notice Get the DAO and deployer fee receivers for a particular Silo address. /// @param _silo Silo address. /// @return dao DAO fee receiver. /// @return deployer Deployer fee receiver. function getFeeReceivers(address _silo) external view returns (address dao, address deployer); /// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters. /// @param _initData Silo init data. function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return a == 0 ? 0 : (a - 1) / b + 1; } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative. } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface ISiloOracle { /// @notice Hook function to call before `quote` function reads price /// @dev This hook function can be used to change state right before the price is read. For example it can be used /// for curve read only reentrancy protection. In majority of implementations this will be an empty function. /// WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well. /// @param _baseToken Address of priced token function beforeQuote(address _baseToken) external; /// @return quoteAmount Returns quote price for _baseAmount of _baseToken /// @param _baseAmount Amount of priced token /// @param _baseToken Address of priced token function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount); /// @return address of token in which quote (price) is denominated function quoteToken() external view returns (address); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {ISiloOracle} from "../interfaces/ISiloOracle.sol"; import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; import {Rounding} from "./Rounding.sol"; library SiloSolvencyLib { using Math for uint256; struct LtvData { ISiloOracle collateralOracle; ISiloOracle debtOracle; uint256 borrowerProtectedAssets; uint256 borrowerCollateralAssets; uint256 borrowerDebtAssets; } uint256 internal constant _PRECISION_DECIMALS = 1e18; uint256 internal constant _INFINITY = type(uint256).max; /// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower to check solvency for /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return True if the borrower is solvent, false otherwise function isSolvent( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.AccrueInterestInMemory _accrueInMemory ) internal view returns (bool) { if (_debtConfig.silo == address(0)) return true; // no debt, so solvent uint256 ltv = getLtv( _collateralConfig, _debtConfig, _borrower, ISilo.OracleType.Solvency, _accrueInMemory, IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower) ); return ltv <= _collateralConfig.lt; } /// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower to check against max LTV /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return True if the borrower's LTV is below the maximum, false otherwise function isBelowMaxLtv( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.AccrueInterestInMemory _accrueInMemory ) internal view returns (bool) { uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower); if (debtShareBalance == 0) return true; uint256 ltv = getLtv( _collateralConfig, _debtConfig, _borrower, ISilo.OracleType.MaxLtv, _accrueInMemory, debtShareBalance ); return ltv <= _collateralConfig.maxLtv; } /// @notice Retrieves assets data required for LTV calculations /// @param _collateralConfig Configuration data for the collateral /// @param _debtConfig Configuration data for the debt /// @param _borrower Address of the borrower whose LTV data is to be calculated /// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of /// `_borrower` is unknown, simply pass `0`. /// @return ltvData Data structure containing necessary data to compute LTV function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.OracleType _oracleType, ISilo.AccrueInterestInMemory _accrueInMemory, uint256 _debtShareBalanceCached ) internal view returns (LtvData memory ltvData) { if (_collateralConfig.token != _debtConfig.token) { // When calculating maxLtv, use maxLtv oracle. (ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv ? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle)) : (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle)); } uint256 totalShares; uint256 shares; (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _collateralConfig.protectedShareToken, _borrower, 0 /* no cache */ ); ( uint256 totalCollateralAssets, uint256 totalProtectedAssets ) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage(); ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets( shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected ); (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _collateralConfig.collateralShareToken, _borrower, 0 /* no cache */ ); totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes ? SiloStdLib.getTotalCollateralAssetsWithInterest( _collateralConfig.silo, _collateralConfig.interestRateModel, _collateralConfig.daoFee, _collateralConfig.deployerFee ) : totalCollateralAssets; ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets( shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral ); (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply( _debtConfig.debtShareToken, _borrower, _debtShareBalanceCached ); uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes ? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel) : ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt); // BORROW value -> to assets -> UP ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets( shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt ); } /// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower /// @param _collateralConfig Configuration data related to the collateral asset /// @param _debtConfig Configuration data related to the debt asset /// @param _borrower Address of the borrower whose LTV is to be computed /// @param _oracleType Oracle type to use for fetching the asset prices /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations /// @return ltvInDp The computed LTV ratio in 18 decimals precision function getLtv( ISiloConfig.ConfigData memory _collateralConfig, ISiloConfig.ConfigData memory _debtConfig, address _borrower, ISilo.OracleType _oracleType, ISilo.AccrueInterestInMemory _accrueInMemory, uint256 _debtShareBalance ) internal view returns (uint256 ltvInDp) { if (_debtShareBalance == 0) return 0; LtvData memory ltvData = getAssetsDataForLtvCalculations( _collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance ); if (ltvData.borrowerDebtAssets == 0) return 0; (,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token); } /// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data /// @dev calculation never reverts, if there is revert, then it is because of oracle /// @param _ltvData Data structure containing relevant information to calculate LTV /// @param _collateralToken Address of the collateral token /// @param _debtAsset Address of the debt token /// @return sumOfBorrowerCollateralValue Total value of borrower's collateral /// @return totalBorrowerDebtValue Total debt value for the borrower /// @return ltvInDp Calculated LTV in 18 decimal precision function calculateLtv( SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset) internal view returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp) { ( sumOfBorrowerCollateralValue, totalBorrowerDebtValue ) = getPositionValues(_ltvData, _collateralToken, _debtAsset); if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) { return (0, 0, 0); } else if (sumOfBorrowerCollateralValue == 0) { ltvInDp = _INFINITY; } else { ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue); } } /// @notice Computes the value of collateral and debt based on given LTV data and asset addresses /// @param _ltvData Data structure containing the assets data required for LTV calculations /// @param _collateralAsset Address of the collateral asset /// @param _debtAsset Address of the debt asset /// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral /// assets /// @return debtValue Total value of debt assets function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset) internal view returns (uint256 sumOfCollateralValue, uint256 debtValue) { uint256 sumOfCollateralAssets; sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets; if (sumOfCollateralAssets != 0) { // if no oracle is set, assume price 1, we should also not set oracle for quote token sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0) ? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset) : sumOfCollateralAssets; } if (_ltvData.borrowerDebtAssets != 0) { // if no oracle is set, assume price 1, we should also not set oracle for quote token debtValue = address(_ltvData.debtOracle) != address(0) ? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset) : _ltvData.borrowerDebtAssets; } } function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue) internal pure returns (uint256 ltvInDp) { ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.28; import {Math} from "openzeppelin5/utils/math/Math.sol"; import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol"; import {Rounding} from "silo-core/contracts/lib/Rounding.sol"; library PartialLiquidationLib { using Math for uint256; struct LiquidationPreviewParams { uint256 collateralLt; address collateralConfigAsset; address debtConfigAsset; uint256 maxDebtToCover; uint256 liquidationFee; uint256 liquidationTargetLtv; } /// @dev this is basically LTV == 100% uint256 internal constant _BAD_DEBT = 1e18; uint256 internal constant _PRECISION_DECIMALS = 1e18; /// @dev underestimation for collateral that user gets on liquidation /// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets /// this two conversions are rounding down and can create 2 wai difference uint256 internal constant _UNDERESTIMATION = 2; /// @dev If the ratio of the repay value to the total debt value during liquidation exceeds the /// _DEBT_DUST_LEVEL threshold, a full liquidation is triggered. /// For example, if the total debt value is 51 and the dust level is set at 98%, /// then we are unable to liquidate 50, we must proceed to liquidate the entire 51. uint256 internal constant _DEBT_DUST_LEVEL = 0.9e18; // 90% /// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert /// because actual max can be only higher /// @notice This method does not check, if user is solvent and it can return non zero result when user solvent function maxLiquidation( uint256 _sumOfCollateralAssets, uint256 _sumOfCollateralValue, uint256 _borrowerDebtAssets, uint256 _borrowerDebtValue, uint256 _liquidationTargetLTV, uint256 _liquidationFee ) internal pure returns (uint256 collateralToLiquidate, uint256 debtToRepay) { ( uint256 collateralValueToLiquidate, uint256 repayValue ) = maxLiquidationPreview( _sumOfCollateralValue, _borrowerDebtValue, _liquidationTargetLTV, _liquidationFee ); collateralToLiquidate = valueToAssetsByRatio( collateralValueToLiquidate, _sumOfCollateralAssets, _sumOfCollateralValue ); if (collateralToLiquidate > _UNDERESTIMATION) { // -_UNDERESTIMATION here is to underestimate collateral that user gets on liquidation // liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets // this two conversions are rounding down and can create 2 wei difference // we will not underflow on -_UNDERESTIMATION because collateralToLiquidate is >= _UNDERESTIMATION unchecked { collateralToLiquidate -= _UNDERESTIMATION; } } else { collateralToLiquidate = 0; } debtToRepay = valueToAssetsByRatio(repayValue, _borrowerDebtAssets, _borrowerDebtValue); } /// @dev in case of bad debt, we do not apply any restrictions. /// @notice might revert when one of this values will be zero: /// `_sumOfCollateralValue`, `_borrowerDebtAssets`, `_borrowerDebtValue` function liquidationPreview( // solhint-disable-line function-max-lines uint256 _ltvBefore, uint256 _sumOfCollateralAssets, uint256 _sumOfCollateralValue, uint256 _borrowerDebtAssets, uint256 _borrowerDebtValue, LiquidationPreviewParams memory _params ) internal pure returns (uint256 collateralToLiquidate, uint256 debtToRepay, uint256 ltvAfter) { uint256 collateralValueToLiquidate; uint256 debtValueToRepay; if (_ltvBefore >= _BAD_DEBT) { // in case of bad debt, we allow for any amount debtToRepay = _params.maxDebtToCover > _borrowerDebtAssets ? _borrowerDebtAssets : _params.maxDebtToCover; debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets); } else { uint256 maxRepayValue = estimateMaxRepayValue( _borrowerDebtValue, _sumOfCollateralValue, _params.liquidationTargetLtv, _params.liquidationFee ); if (maxRepayValue == _borrowerDebtValue) { // forced full liquidation debtToRepay = _borrowerDebtAssets; debtValueToRepay = _borrowerDebtValue; } else { // partial liquidation uint256 maxDebtToRepay = valueToAssetsByRatio(maxRepayValue, _borrowerDebtAssets, _borrowerDebtValue); debtToRepay = _params.maxDebtToCover > maxDebtToRepay ? maxDebtToRepay : _params.maxDebtToCover; debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets); } } collateralValueToLiquidate = calculateCollateralToLiquidate( debtValueToRepay, _sumOfCollateralValue, _params.liquidationFee ); collateralToLiquidate = valueToAssetsByRatio( collateralValueToLiquidate, _sumOfCollateralAssets, _sumOfCollateralValue ); ltvAfter = _calculateLtvAfter( _sumOfCollateralValue, _borrowerDebtValue, collateralValueToLiquidate, debtValueToRepay ); } /// @notice reverts on `_totalValue` == 0 /// @dev calculate assets based on ratio: assets = (value, totalAssets, totalValue) /// to calculate assets => value, use it like: value = (assets, totalValue, totalAssets) function valueToAssetsByRatio(uint256 _value, uint256 _totalAssets, uint256 _totalValue) internal pure returns (uint256 assets) { require(_totalValue != 0, IPartialLiquidation.UnknownRatio()); assets = _value * _totalAssets / _totalValue; } /// @notice this function never reverts /// @dev in case there is not enough collateral to liquidate, whole collateral is returned, no revert /// @param _totalBorrowerCollateralValue can not be 0, otherwise revert function calculateCollateralsToLiquidate( uint256 _debtValueToCover, uint256 _totalBorrowerCollateralValue, uint256 _totalBorrowerCollateralAssets, uint256 _liquidationFee ) internal pure returns (uint256 collateralAssetsToLiquidate, uint256 collateralValueToLiquidate) { collateralValueToLiquidate = calculateCollateralToLiquidate( _debtValueToCover, _totalBorrowerCollateralValue, _liquidationFee ); // this is also true if _totalBorrowerCollateralValue == 0, so div below will not revert if (collateralValueToLiquidate == _totalBorrowerCollateralValue) { return (_totalBorrowerCollateralAssets, _totalBorrowerCollateralValue); } // this will never revert, because of `if collateralValueToLiquidate == _totalBorrowerCollateralValue` collateralAssetsToLiquidate = valueToAssetsByRatio( collateralValueToLiquidate, _totalBorrowerCollateralAssets, _totalBorrowerCollateralValue ); } /// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LT /// where Dv: debt value, Cv: collateral value, LT: expected LT, f: liquidation fee, x: is value we looking for /// @notice in case math fail to calculate repay value, eg when collateral is not enough to cover repay and fee /// function will return full debt value and full collateral value, it will not revert. It is up to liquidator /// to make decision if it will be profitable /// @param _totalBorrowerCollateralValue regular and protected /// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating function maxLiquidationPreview( uint256 _totalBorrowerCollateralValue, uint256 _totalBorrowerDebtValue, uint256 _ltvAfterLiquidation, uint256 _liquidationFee ) internal pure returns (uint256 collateralValueToLiquidate, uint256 repayValue) { repayValue = estimateMaxRepayValue( _totalBorrowerDebtValue, _totalBorrowerCollateralValue, _ltvAfterLiquidation, _liquidationFee ); collateralValueToLiquidate = calculateCollateralToLiquidate( repayValue, _totalBorrowerCollateralValue, _liquidationFee ); } /// @param _maxDebtToCover assets or value, but must be in sync with `_totalCollateral` /// @param _sumOfCollateral assets or value, but must be in sync with `_maxDebtToCover` /// @return toLiquidate depends on inputs, it might be collateral value or collateral assets function calculateCollateralToLiquidate(uint256 _maxDebtToCover, uint256 _sumOfCollateral, uint256 _liquidationFee) internal pure returns (uint256 toLiquidate) { uint256 fee = _maxDebtToCover * _liquidationFee / _PRECISION_DECIMALS; toLiquidate = _maxDebtToCover + fee; if (toLiquidate > _sumOfCollateral) { toLiquidate = _sumOfCollateral; } } /// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LTV /// where /// Dv: debt value, /// Cv: collateral value, /// LTV: expected LTV after liquidation, /// f: liquidation fee, /// x: is value we looking for /// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f) /// result also take into consideration the dust /// @notice protocol does not uses this method, because in protocol our input is debt to cover in assets /// however this is useful to figure out what is max debt to cover. /// @param _totalBorrowerCollateralValue regular and protected /// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating /// @return repayValue max repay value that is allowed for partial liquidation. if this value equals /// `_totalBorrowerDebtValue`, that means dust threshold was triggered and result force to do full liquidation function estimateMaxRepayValue( // solhint-disable-line code-complexity uint256 _totalBorrowerDebtValue, uint256 _totalBorrowerCollateralValue, uint256 _ltvAfterLiquidation, uint256 _liquidationFee ) internal pure returns (uint256 repayValue) { if (_totalBorrowerDebtValue == 0) return 0; if (_liquidationFee >= _PRECISION_DECIMALS) return 0; // this will cover case, when _totalBorrowerCollateralValue == 0 if (_totalBorrowerDebtValue >= _totalBorrowerCollateralValue) return _totalBorrowerDebtValue; if (_ltvAfterLiquidation == 0) return _totalBorrowerDebtValue; // full liquidation // x = (Dv - LTV * Cv) / (DP - LTV - LTV * f) ==> (Dv - LTV * Cv) / (DP - (LTV + LTV * f)) uint256 ltCv = _ltvAfterLiquidation * _totalBorrowerCollateralValue; // to lose as low precision as possible, instead of `ltCv/1e18`, we increase precision of DebtValue _totalBorrowerDebtValue *= _PRECISION_DECIMALS; // negative value means our current LTV is lower than _ltvAfterLiquidation if (ltCv >= _totalBorrowerDebtValue) return 0; uint256 dividerR; // LTV + LTV * f unchecked { // safe because of above `LTCv >= _totalBorrowerDebtValue` repayValue = _totalBorrowerDebtValue - ltCv; // we checked at begin `_liquidationFee >= _PRECISION_DECIMALS` // mul on DP will not overflow on uint256, div is safe dividerR = _ltvAfterLiquidation + _ltvAfterLiquidation * _liquidationFee / _PRECISION_DECIMALS; } // now we can go back to proper precision unchecked { _totalBorrowerDebtValue /= _PRECISION_DECIMALS; } // if dividerR is more than 100%, means it is impossible to go down to _ltvAfterLiquidation, return all if (dividerR >= _PRECISION_DECIMALS) { return _totalBorrowerDebtValue; } unchecked { repayValue /= (_PRECISION_DECIMALS - dividerR); } // early return so we do not have to check for dust if (repayValue > _totalBorrowerDebtValue) return _totalBorrowerDebtValue; // here is weird case, sometimes it is impossible to go down to target LTV, however math can calculate it // eg with negative numerator and denominator and result will be positive, that's why we simply return all // we also cover dust case here return repayValue * _PRECISION_DECIMALS / _totalBorrowerDebtValue > _DEBT_DUST_LEVEL ? _totalBorrowerDebtValue : repayValue; } /// @dev protected collateral is prioritized /// @param _borrowerProtectedAssets available users protected collateral function splitReceiveCollateralToLiquidate(uint256 _collateralToLiquidate, uint256 _borrowerProtectedAssets) internal pure returns (uint256 withdrawAssetsFromCollateral, uint256 withdrawAssetsFromProtected) { if (_collateralToLiquidate == 0) return (0, 0); unchecked { ( withdrawAssetsFromCollateral, withdrawAssetsFromProtected ) = _collateralToLiquidate > _borrowerProtectedAssets // safe to uncheck because of above condition ? (_collateralToLiquidate - _borrowerProtectedAssets, _borrowerProtectedAssets) : (0, _collateralToLiquidate); } } /// @notice must stay private because this is not for general LTV, only for ltv after internally function _calculateLtvAfter( uint256 _sumOfCollateralValue, uint256 _totalDebtValue, uint256 _collateralValueToLiquidate, uint256 _debtValueToCover ) private pure returns (uint256 ltvAfterLiquidation) { if (_sumOfCollateralValue <= _collateralValueToLiquidate || _totalDebtValue <= _debtValueToCover) { return 0; } unchecked { // all subs are safe because these values are chunks of total, so we will not underflow ltvAfterLiquidation = _ltvAfter( _sumOfCollateralValue - _collateralValueToLiquidate, _totalDebtValue - _debtValueToCover ); } } /// @notice must stay private because this is not for general LTV, only for ltv after function _ltvAfter(uint256 _collateral, uint256 _debt) private pure returns (uint256 ltv) { // previous calculation of LTV ltv = _debt * _PRECISION_DECIMALS; ltv = Math.ceilDiv(ltv, _collateral); // Rounding.LTV is up/ceil } }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IERC3156FlashBorrower { /// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact, /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon. /// @dev Receive a flash loan. /// @param _initiator The initiator of the loan. /// @param _token The loan currency. /// @param _amount The amount of tokens lent. /// @param _fee The additional amount of tokens to repay. /// @param _data Arbitrary data structure, intended to contain user-defined parameters. /// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan" function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data) external returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "../token/ERC721/IERC721.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.28; import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol"; import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol"; import {ISiloConfig} from "../interfaces/ISiloConfig.sol"; import {ISilo} from "../interfaces/ISilo.sol"; import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol"; import {IShareToken} from "../interfaces/IShareToken.sol"; import {SiloMathLib} from "./SiloMathLib.sol"; library SiloStdLib { using SafeERC20 for IERC20; uint256 internal constant _PRECISION_DECIMALS = 1e18; /// @notice Returns flash fee amount /// @param _config address of config contract for Silo /// @param _token for which fee is calculated /// @param _amount for which fee is calculated /// @return fee flash fee amount function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) { if (_amount == 0) return 0; // all user set fees are in 18 decimals points (,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this)); require(_token == asset, ISilo.Unsupported()); if (flashloanFee == 0) return 0; fee = _amount * flashloanFee / _PRECISION_DECIMALS; // round up if (fee == 0) return 1; } /// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares) /// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on /// updated numbers, interest should be added on the fly. /// @param _configData for a single token for which to do calculations /// @param _assetType used to read proper storage data /// @return totalAssets total assets in Silo with interest for given asset type /// @return totalShares total shares in Silo for given asset type function getTotalAssetsAndTotalSharesWithInterest( ISiloConfig.ConfigData memory _configData, ISilo.AssetType _assetType ) internal view returns (uint256 totalAssets, uint256 totalShares) { if (_assetType == ISilo.AssetType.Protected) { totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected); totalShares = IShareToken(_configData.protectedShareToken).totalSupply(); } else if (_assetType == ISilo.AssetType.Collateral) { totalAssets = getTotalCollateralAssetsWithInterest( _configData.silo, _configData.interestRateModel, _configData.daoFee, _configData.deployerFee ); totalShares = IShareToken(_configData.collateralShareToken).totalSupply(); } else { // ISilo.AssetType.Debt totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel); totalShares = IShareToken(_configData.debtShareToken).totalSupply(); } } /// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset /// @param _silo Silo address /// @return daoFeeReceiver Address of the DAO fee receiver /// @return deployerFeeReceiver Address of the deployer fee receiver /// @return daoFee DAO fee amount in 18 decimals points /// @return deployerFee Deployer fee amount in 18 decimals points /// @return asset Address of the associated asset function getFeesAndFeeReceiversWithAsset(ISilo _silo) internal view returns ( address daoFeeReceiver, address deployerFeeReceiver, uint256 daoFee, uint256 deployerFee, address asset ) { (daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo)); (daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo)); } /// @notice Calculates the total collateral assets with accrued interest /// @dev Do not use this method when accrueInterest were executed already, in that case total does not change /// @param _silo Address of the silo contract /// @param _interestRateModel Interest rate model to fetch compound interest rates /// @param _daoFee DAO fee in 18 decimals points /// @param _deployerFee Deployer fee in 18 decimals points /// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest function getTotalCollateralAssetsWithInterest( address _silo, address _interestRateModel, uint256 _daoFee, uint256 _deployerFee ) internal view returns (uint256 totalCollateralAssetsWithInterest) { uint256 rcomp; try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) { rcomp = r; } catch { // do not lock silo } (uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage(); (totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest( collateralAssets, debtAssets, rcomp, _daoFee, _deployerFee ); } /// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0` function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached) internal view returns (uint256 shares, uint256 totalSupply) { if (_balanceCached == 0) { (shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner); } else { shares = _balanceCached; totalSupply = IShareToken(_shareToken).totalSupply(); } } /// @notice Calculates the total debt assets with accrued interest /// @param _silo Address of the silo contract /// @param _interestRateModel Interest rate model to fetch compound interest rates /// @return totalDebtAssetsWithInterest Accumulated debt amount with interest function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel) internal view returns (uint256 totalDebtAssetsWithInterest) { uint256 rcomp; try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) { rcomp = r; } catch { // do not lock silo } ( totalDebtAssetsWithInterest, ) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.5.0; interface IInterestRateModel { event InterestRateModelError(); /// @dev Sets config address for all Silos that will use this model /// @param _irmConfig address of IRM config contract function initialize(address _irmConfig) external; /// @dev get compound interest rate and update model storage for current block.timestamp /// @param _collateralAssets total silo collateral assets /// @param _debtAssets total silo debt assets /// @param _interestRateTimestamp last IRM timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRateAndUpdate( uint256 _collateralAssets, uint256 _debtAssets, uint256 _interestRateTimestamp ) external returns (uint256 rcomp); /// @dev get compound interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcomp compounded interest rate from last update until now (1e18 == 100%) function getCompoundInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcomp); /// @dev get current annual interest rate /// @param _silo address of Silo for which interest rate should be calculated /// @param _blockTimestamp current block timestamp /// @return rcur current annual interest rate (1e18 == 100%) function getCurrentInterestRate(address _silo, uint256 _blockTimestamp) external view returns (uint256 rcur); /// @dev returns decimal points used by model function decimals() external view returns (uint256); }
{ "remappings": [ "forge-std/=gitmodules/forge-std/src/", "silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/", "properties/=gitmodules/crytic/properties/contracts/", "silo-core/=silo-core/", "silo-oracles/=silo-oracles/", "silo-vaults/=silo-vaults/", "ve-silo/=ve-silo/", "@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/", "morpho-blue/=gitmodules/morpho-blue/src/", "openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/", "openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "chainlink/=gitmodules/chainlink/contracts/src/", "chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/", "uniswap/=gitmodules/uniswap/", "@uniswap/v3-core/=gitmodules/uniswap/v3-core/", "balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/", "balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/", "balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/", "@balancer-labs/=node_modules/@balancer-labs/", "@ensdomains/=node_modules/@ensdomains/", "@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/", "@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/", "@solidity-parser/=node_modules/@solidity-parser/", "ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/", "crytic/=gitmodules/crytic/", "ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/", "halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/", "hardhat/=node_modules/hardhat/", "openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/", "openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/", "openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/", "prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/", "proposals/=node_modules/proposals/", "solmate/=gitmodules/crytic/properties/lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": { "silo-core/contracts/utils/hook-receivers/liquidation/lib/PartialLiquidationExecLib.sol": { "PartialLiquidationExecLib": "0x83A1C52083F4D3408096b2D4CBE97905E5c6DA45" } } }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AlreadyConfigured","type":"error"},{"inputs":[],"name":"CantRemoveActiveGauge","type":"error"},{"inputs":[],"name":"EmptyGaugeAddress","type":"error"},{"inputs":[],"name":"EmptySiloConfig","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FullLiquidationRequired","type":"error"},{"inputs":[],"name":"GaugeAlreadyConfigured","type":"error"},{"inputs":[],"name":"GaugeIsNotConfigured","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidShareToken","type":"error"},{"inputs":[],"name":"NoDebtToCover","type":"error"},{"inputs":[],"name":"NoRepayAssets","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"RequestNotSupported","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UnexpectedCollateralToken","type":"error"},{"inputs":[],"name":"UnexpectedDebtToken","type":"error"},{"inputs":[],"name":"UnknownRatio","type":"error"},{"inputs":[],"name":"UserIsSolvent","type":"error"},{"inputs":[],"name":"WrongGaugeShareToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"gauge","type":"address"},{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"silo","type":"address"},{"indexed":false,"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"indexed":false,"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"name":"HookConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"liquidator","type":"address"},{"indexed":true,"internalType":"address","name":"silo","type":"address"},{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"repayDebtAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"indexed":false,"internalType":"bool","name":"receiveSToken","type":"bool"}],"name":"LiquidationCall","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_action","type":"uint256"},{"internalType":"bytes","name":"_inputAndOutput","type":"bytes"}],"name":"afterAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"beforeAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"name":"configuredGauges","outputs":[{"internalType":"contract IGaugeLike","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"}],"name":"hookReceiverConfig","outputs":[{"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ISiloConfig","name":"_siloConfig","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralAsset","type":"address"},{"internalType":"address","name":"_debtAsset","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxDebtToCover","type":"uint256"},{"internalType":"bool","name":"_receiveSToken","type":"bool"}],"name":"liquidationCall","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxLiquidation","outputs":[{"internalType":"uint256","name":"collateralToLiquidate","type":"uint256"},{"internalType":"uint256","name":"debtToRepay","type":"uint256"},{"internalType":"bool","name":"sTokenRequired","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"removeGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IGaugeLike","name":"_gauge","type":"address"},{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"setGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"shareToken","outputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"siloConfig","outputs":[{"internalType":"contract ISiloConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.