Overview
S Balance
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x0135F52B...D6B1FAbe5 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
x33Adapter
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 333 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {ERC4626} from "@openzeppelin/contracts/token/ERC20/extensions/ERC4626.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import {IVoter} from "../interfaces/IVoter.sol"; import {IXShadow} from "../interfaces/IXShadow.sol"; import {IVoteModule} from "../interfaces/IVoteModule.sol"; import {IX33} from "../interfaces/IX33.sol"; import {Ix33Adapter} from "../interfaces/Ix33Adapter.sol"; import {Errors} from "contracts/libraries/Errors.sol"; /// @title Adapter for x33 to be able to vote on the new Voter /// @dev this will become the new Operator for x33 contract x33Adapter is Ix33Adapter, ReentrancyGuard { IVoter public immutable voter; IX33 public immutable x33; address public operator; modifier onlyOperator() { require(msg.sender == operator, Errors.NOT_AUTHORIZED(msg.sender)); _; } modifier onlyAccessHub() { require(msg.sender == voter.accessHub(), Errors.NOT_ACCESSHUB()); _; } constructor(address _x33, address _voter) { operator = msg.sender; x33 = IX33(_x33); voter = IVoter(_voter); } function accessHub() external view returns (address) { return voter.accessHub(); } /// @inheritdoc Ix33Adapter function submitVotes(address[] calldata _pools, uint256[] calldata _weights) external onlyOperator { /// @dev cast vote on behalf of x33 IX33.AggregatorParams memory _params = IX33.AggregatorParams({ aggregator: address(voter), tokenIn: address(this), amountIn: 0, minAmountOut: 0, callData: abi.encodeWithSelector(IVoter.vote.selector, address(x33), _pools, _weights) }); x33.swapIncentiveViaAggregator(_params); } /// @inheritdoc Ix33Adapter function compound() external onlyOperator { x33.compound(); } /// @inheritdoc Ix33Adapter function claimRebase() external onlyOperator { x33.claimRebase(); } /// @inheritdoc Ix33Adapter function claimIncentives(address[] calldata _feeDistributors, address[][] calldata _tokens) external onlyOperator { x33.claimIncentives(_feeDistributors, _tokens); } /// @inheritdoc Ix33Adapter function swapIncentiveViaAggregator(IX33.AggregatorParams calldata _params) external nonReentrant onlyOperator { x33.swapIncentiveViaAggregator(_params); } /// @inheritdoc Ix33Adapter function unlock() external onlyOperator { x33.unlock(); } /// @inheritdoc Ix33Adapter function transferOperator(address _newOperator) external onlyAccessHub { address currentOperator = operator; /// @dev set the new operator operator = _newOperator; emit NewOperator(currentOperator, operator); } /// @dev does nothing, just so x33 can call approve when voting function approve(address, uint256) external pure returns (bool) { return true; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC4626.sol) pragma solidity ^0.8.20; import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol"; import {SafeERC20} from "../utils/SafeERC20.sol"; import {IERC4626} from "../../../interfaces/IERC4626.sol"; import {Math} from "../../../utils/math/Math.sol"; /** * @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. * * This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends * the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this * contract and not the "assets" token which is an independent contract. * * [CAUTION] * ==== * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by * verifying the amount received is as expected, using a wrapper that performs these checks such as * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router]. * * Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk. * The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals * and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which * itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default * offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result * of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains. * With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the * underlying math can be found xref:erc4626.adoc#inflation-attack[here]. * * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the * `_convertToShares` and `_convertToAssets` functions. * * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide]. * ==== */ abstract contract ERC4626 is ERC20, IERC4626 { using Math for uint256; IERC20 private immutable _asset; uint8 private immutable _underlyingDecimals; /** * @dev Attempted to deposit more assets than the max amount for `receiver`. */ error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max); /** * @dev Attempted to mint more shares than the max amount for `receiver`. */ error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max); /** * @dev Attempted to withdraw more assets than the max amount for `receiver`. */ error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max); /** * @dev Attempted to redeem more shares than the max amount for `receiver`. */ error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max); /** * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777). */ constructor(IERC20 asset_) { (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_); _underlyingDecimals = success ? assetDecimals : 18; _asset = asset_; } /** * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way. */ function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) { (bool success, bytes memory encodedDecimals) = address(asset_).staticcall( abi.encodeCall(IERC20Metadata.decimals, ()) ); if (success && encodedDecimals.length >= 32) { uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256)); if (returnedDecimals <= type(uint8).max) { return (true, uint8(returnedDecimals)); } } return (false, 0); } /** * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals. * * See {IERC20Metadata-decimals}. */ function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) { return _underlyingDecimals + _decimalsOffset(); } /** @dev See {IERC4626-asset}. */ function asset() public view virtual returns (address) { return address(_asset); } /** @dev See {IERC4626-totalAssets}. */ function totalAssets() public view virtual returns (uint256) { return _asset.balanceOf(address(this)); } /** @dev See {IERC4626-convertToShares}. */ function convertToShares(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Floor); } /** @dev See {IERC4626-convertToAssets}. */ function convertToAssets(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Floor); } /** @dev See {IERC4626-maxDeposit}. */ function maxDeposit(address) public view virtual returns (uint256) { return type(uint256).max; } /** @dev See {IERC4626-maxMint}. */ function maxMint(address) public view virtual returns (uint256) { return type(uint256).max; } /** @dev See {IERC4626-maxWithdraw}. */ function maxWithdraw(address owner) public view virtual returns (uint256) { return _convertToAssets(balanceOf(owner), Math.Rounding.Floor); } /** @dev See {IERC4626-maxRedeem}. */ function maxRedeem(address owner) public view virtual returns (uint256) { return balanceOf(owner); } /** @dev See {IERC4626-previewDeposit}. */ function previewDeposit(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Floor); } /** @dev See {IERC4626-previewMint}. */ function previewMint(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Ceil); } /** @dev See {IERC4626-previewWithdraw}. */ function previewWithdraw(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Ceil); } /** @dev See {IERC4626-previewRedeem}. */ function previewRedeem(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Floor); } /** @dev See {IERC4626-deposit}. */ function deposit(uint256 assets, address receiver) public virtual returns (uint256) { uint256 maxAssets = maxDeposit(receiver); if (assets > maxAssets) { revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets); } uint256 shares = previewDeposit(assets); _deposit(_msgSender(), receiver, assets, shares); return shares; } /** @dev See {IERC4626-mint}. */ function mint(uint256 shares, address receiver) public virtual returns (uint256) { uint256 maxShares = maxMint(receiver); if (shares > maxShares) { revert ERC4626ExceededMaxMint(receiver, shares, maxShares); } uint256 assets = previewMint(shares); _deposit(_msgSender(), receiver, assets, shares); return assets; } /** @dev See {IERC4626-withdraw}. */ function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) { uint256 maxAssets = maxWithdraw(owner); if (assets > maxAssets) { revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets); } uint256 shares = previewWithdraw(assets); _withdraw(_msgSender(), receiver, owner, assets, shares); return shares; } /** @dev See {IERC4626-redeem}. */ function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) { uint256 maxShares = maxRedeem(owner); if (shares > maxShares) { revert ERC4626ExceededMaxRedeem(owner, shares, maxShares); } uint256 assets = previewRedeem(shares); _withdraw(_msgSender(), receiver, owner, assets, shares); return assets; } /** * @dev Internal conversion function (from assets to shares) with support for rounding direction. */ function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) { return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding); } /** * @dev Internal conversion function (from shares to assets) with support for rounding direction. */ function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) { return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding); } /** * @dev Deposit/mint common workflow. */ function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual { // If _asset is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the // assets are transferred and before the shares are minted, which is a valid state. // slither-disable-next-line reentrancy-no-eth SafeERC20.safeTransferFrom(_asset, caller, address(this), assets); _mint(receiver, shares); emit Deposit(caller, receiver, assets, shares); } /** * @dev Withdraw/redeem common workflow. */ function _withdraw( address caller, address receiver, address owner, uint256 assets, uint256 shares ) internal virtual { if (caller != owner) { _spendAllowance(owner, caller, shares); } // If _asset is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the // shares are burned and after the assets are transferred, which is a valid state. _burn(owner, shares); SafeERC20.safeTransfer(_asset, receiver, assets); emit Withdraw(caller, receiver, owner, assets, shares); } function _decimalsOffset() internal view virtual returns (uint8) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; pragma abicoder v2; interface IVoter { event GaugeCreated(address indexed gauge, address creator, address feeDistributor, address indexed pool); event GaugeKilled(address indexed gauge); event GaugeRevived(address indexed gauge); event Voted(address indexed owner, uint256 weight, address indexed pool); event Abstained(address indexed owner, uint256 weight); event Deposit(address indexed lp, address indexed gauge, address indexed owner, uint256 amount); event Withdraw(address indexed lp, address indexed gauge, address indexed owner, uint256 amount); event NotifyReward(address indexed sender, address indexed reward, uint256 amount); event DistributeReward(address indexed sender, address indexed gauge, uint256 amount); event EmissionsRatio(address indexed caller, uint256 oldRatio, uint256 newRatio); event NewGovernor(address indexed sender, address indexed governor); event Whitelisted(address indexed whitelister, address indexed token); event WhitelistRevoked(address indexed forbidder, address indexed token, bool status); event MainTickSpacingChanged(address indexed token0, address indexed token1, int24 indexed newMainTickSpacing); event Poke(address indexed user); event EmissionsRedirected(address indexed sourceGauge, address indexed destinationGauge); struct InitializationParams { address shadow; address legacyFactory; address gauges; address feeDistributorFactory; address minter; address msig; address xShadow; address clFactory; address clGaugeFactory; address nfpManager; address feeRecipientFactory; address voteModule; address launcherPlugin; address poolUpdater; } function initialize(InitializationParams memory inputs) external; /// @notice denominator basis function BASIS() external view returns (uint256); /// @notice ratio of xShadow emissions globally function xRatio() external view returns (uint256); /// @notice xShadow contract address function xShadow() external view returns (address); /// @notice legacy factory address (uni-v2/stableswap) function legacyFactory() external view returns (address); /// @notice concentrated liquidity factory function clFactory() external view returns (address); /// @notice gauge factory for CL function clGaugeFactory() external view returns (address); /// @notice pool updater for CL function poolUpdater() external view returns (address); /// @notice legacy fee recipient factory function feeRecipientFactory() external view returns (address); /// @notice peripheral NFPManager contract function nfpManager() external view returns (address); /// @notice returns the address of the current governor /// @return _governor address of the governor function governor() external view returns (address _governor); /// @notice the address of the vote module /// @return _voteModule the vote module contract address function voteModule() external view returns (address _voteModule); /// @notice address of the central access Hub function accessHub() external view returns (address); /// @notice the address of the shadow launcher plugin to enable third party launchers /// @return _launcherPlugin the address of the plugin function launcherPlugin() external view returns (address _launcherPlugin); /// @notice distributes emissions from the minter to the voter /// @param amount the amount of tokens to notify function notifyRewardAmount(uint256 amount) external; /// @notice distributes the emissions for a specific gauge /// @param _gauge the gauge address function distribute(address _gauge) external; /// @notice returns the address of the gauge factory /// @param _gaugeFactory gauge factory address function gaugeFactory() external view returns (address _gaugeFactory); /// @notice returns the address of the feeDistributor factory /// @return _feeDistributorFactory feeDist factory address function feeDistributorFactory() external view returns (address _feeDistributorFactory); /// @notice returns the address of the minter contract /// @return _minter address of the minter function minter() external view returns (address _minter); /// @notice check if the gauge is active for governance use /// @param _gauge address of the gauge /// @return _trueOrFalse if the gauge is alive function isAlive(address _gauge) external view returns (bool _trueOrFalse); /// @notice allows the token to be paired with other whitelisted assets to participate in governance /// @param _token the address of the token function whitelist(address _token) external; /// @notice effectively disqualifies a token from governance /// @param _token the address of the token function revokeWhitelist(address _token) external; /// @notice returns if the address is a gauge /// @param gauge address of the gauge /// @return _trueOrFalse boolean if the address is a gauge function isGauge(address gauge) external view returns (bool _trueOrFalse); /// @notice disable a gauge from governance /// @param _gauge address of the gauge function killGauge(address _gauge) external; /// @notice re-activate a dead gauge /// @param _gauge address of the gauge function reviveGauge(address _gauge) external; /// @notice re-cast a tokenID's votes /// @param owner address of the owner function poke(address owner) external; /// @notice sets the main destinationGauge of a token pairing /// @param tokenA address of tokenA /// @param tokenB address of tokenB /// @param destinationGauge the main gauge to set to function redirectEmissions(address tokenA, address tokenB, address destinationGauge) external; /// @notice returns if the address is a fee distributor /// @param _feeDistributor address of the feeDist /// @return _trueOrFalse if the address is a fee distributor function isFeeDistributor(address _feeDistributor) external view returns (bool _trueOrFalse); /// @notice returns the address of the emission's token /// @return _shadow emissions token contract address function shadow() external view returns (address _shadow); /// @notice returns the address of the pool's gauge, if any /// @param _pool pool address /// @return _gauge gauge address function gaugeForPool(address _pool) external view returns (address _gauge); /// @notice returns the address of the pool's feeDistributor, if any /// @param _gauge address of the gauge /// @return _feeDistributor address of the pool's feedist function feeDistributorForGauge(address _gauge) external view returns (address _feeDistributor); /// @notice returns the gauge address of a CL pool /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @param tickSpacing tickspacing of the pool /// @return gauge address of the gauge function gaugeForClPool(address tokenA, address tokenB, int24 tickSpacing) external view returns (address gauge); /// @notice returns the array of all tickspacings for the tokenA/tokenB combination /// @param tokenA address of token A in the pair /// @param tokenB address of token B in the pair /// @return _ts array of all the tickspacings function tickSpacingsForPair(address tokenA, address tokenB) external view returns (int24[] memory _ts); /// @notice returns the destination of a gauge redirect /// @param gauge address of gauge function gaugeRedirect(address gauge) external view returns (address); /// @notice returns the block.timestamp divided by 1 week in seconds /// @return period the period used for gauges function getPeriod() external view returns (uint256 period); /// @notice cast a vote to direct emissions to gauges and earn incentives /// @param owner address of the owner /// @param _pools the list of pools to vote on /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs function vote(address owner, address[] calldata _pools, uint256[] calldata _weights) external; /// @notice reset the vote of an address /// @param owner address of the owner function reset(address owner) external; /// @notice set the governor address /// @param _governor the new governor address function setGovernor(address _governor) external; /// @notice recover stuck emissions /// @param _gauge the gauge address /// @param _period the period function stuckEmissionsRecovery(address _gauge, uint256 _period) external; /// @notice creates a legacy gauge for the pool /// @param _pool pool's address /// @return _gauge address of the new gauge function createGauge(address _pool) external returns (address _gauge); /// @notice create a concentrated liquidity gauge /// @param tokenA the address of tokenA /// @param tokenB the address of tokenB /// @param tickSpacing the tickspacing of the pool /// @return _clGauge address of the new gauge function createCLGauge(address tokenA, address tokenB, int24 tickSpacing) external returns (address _clGauge); /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids /// @param _gauges array of gauges /// @param _tokens two dimensional array for the tokens to claim /// @param _nfpTokenIds two dimensional array for the NFPs function claimClGaugeRewards( address[] calldata _gauges, address[][] calldata _tokens, uint256[][] calldata _nfpTokenIds ) external; /// @notice claim arbitrary rewards from specific feeDists /// @param owner address of the owner /// @param _feeDistributors address of the feeDists /// @param _tokens two dimensional array for the tokens to claim function claimIncentives(address owner, address[] calldata _feeDistributors, address[][] calldata _tokens) external; /// @notice claim arbitrary rewards from specific feeDists and break up legacy pairs /// @param owner address of the owner /// @param _feeDistributors address of the feeDists /// @param _tokens two dimensional array for the tokens to claim function claimLegacyIncentives(address owner, address[] calldata _feeDistributors, address[][] calldata _tokens) external; /// @notice claim arbitrary rewards from specific gauges /// @param _gauges address of the gauges /// @param _tokens two dimensional array for the tokens to claim function claimRewards(address[] calldata _gauges, address[][] calldata _tokens) external; /// @notice claim arbitrary rewards from specific legacy gauges, and exit to shadow /// @param _gauges address of the gauges /// @param _tokens two dimensional array for the tokens to claim function claimLegacyRewardsAndExit(address[] calldata _gauges, address[][] calldata _tokens) external; /// @notice claim arbitrary rewards from specific cl gauges, and exit to shadow /// @param _gauges address of the gauges /// @param _tokens two dimensional array for the tokens to claim /// @param _nfpTokenIds two dimensional array for the nfp to claim function claimClGaugeRewardsAndExit( address[] memory _gauges, address[][] memory _tokens, uint256[][] memory _nfpTokenIds ) external; /// @notice distribute emissions to a gauge for a specific period /// @param _gauge address of the gauge /// @param _period value of the period function distributeForPeriod(address _gauge, uint256 _period) external; /// @notice attempt distribution of emissions to all gauges function distributeAll() external; /// @notice distribute emissions to gauges by index /// @param startIndex start of the loop /// @param endIndex end of the loop function batchDistributeByIndex(uint256 startIndex, uint256 endIndex) external; /// @notice lets governance update lastDistro period for a gauge /// @dev should only be used if distribute() is running out of gas /// @dev gaugePeriodDistributed will stop double claiming /// @param _gauge gauge to update /// @param _period period to update to function updateLastDistro(address _gauge, uint256 _period) external; /// @notice returns the votes cast for a tokenID /// @param owner address of the owner /// @return votes an array of votes casted /// @return weights an array of the weights casted per pool function getVotes(address owner, uint256 period) external view returns (address[] memory votes, uint256[] memory weights); /// @notice returns an array of all the pools /// @return _pools the array of pools function getAllPools() external view returns (address[] memory _pools); /// @notice returns the length of pools function getPoolsLength() external view returns (uint256); /// @notice returns the pool at index function getPool(uint256 index) external view returns (address); /// @notice returns an array of all the gauges /// @return _gauges the array of gauges function getAllGauges() external view returns (address[] memory _gauges); /// @notice returns the length of gauges function getGaugesLength() external view returns (uint256); /// @notice returns the gauge at index function getGauge(uint256 index) external view returns (address); /// @notice returns an array of all the feeDists /// @return _feeDistributors the array of feeDists function getAllFeeDistributors() external view returns (address[] memory _feeDistributors); /// @notice sets the xShadowRatio default function setGlobalRatio(uint256 _xRatio) external; /// @notice whether the token is whitelisted in governance function isWhitelisted(address _token) external view returns (bool _tf); /// @notice function for removing malicious or stuffed tokens function removeFeeDistributorReward(address _feeDist, address _token) external; /// @notice returns the total votes for a pool in a specific period /// @param pool the pool address to check /// @param period the period to check /// @return votes the total votes for the pool in that period function poolTotalVotesPerPeriod(address pool, uint256 period) external view returns (uint256 votes); /// @notice returns the pool address for a given gauge /// @param gauge address of the gauge /// @return pool address of the pool function poolForGauge(address gauge) external view returns (address pool); /// @notice returns the pool address for a given feeDistributor /// @param feeDistributor address of the feeDistributor /// @return pool address of the pool function poolForFeeDistributor(address feeDistributor) external view returns (address pool); /// @notice returns the voting power used by a voter for a period /// @param user address of the user /// @param period the period to check function userVotingPowerPerPeriod(address user, uint256 period) external view returns (uint256 votingPower); /// @notice returns the total votes for a specific period /// @param period the period to check /// @return weight the total votes for that period function totalVotesPerPeriod(uint256 period) external view returns (uint256 weight); /// @notice returns the total rewards allocated for a specific period /// @param period the period to check /// @return amount the total rewards for that period function totalRewardPerPeriod(uint256 period) external view returns (uint256 amount); /// @notice returns the last distribution period for a gauge /// @param _gauge address of the gauge /// @return period the last period distributions occurred function lastDistro(address _gauge) external view returns (uint256 period); /// @notice returns if the gauge is a Cl gauge /// @param gauge the gauge to check function isClGauge(address gauge) external view returns (bool); /// @notice returns if the gauge is a legacy gauge /// @param gauge the gauge to check function isLegacyGauge(address gauge) external view returns (bool); /// @notice sets a new NFP manager function setNfpManager(address _nfpManager) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IVoter} from "./IVoter.sol"; import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol"; interface IXShadow is IERC20 { struct VestPosition { /// @dev amount of xShadow uint256 amount; /// @dev start unix timestamp uint256 start; /// @dev start + MAX_VEST (end timestamp) uint256 maxEnd; /// @dev vest identifier (starting from 0) uint256 vestID; } event CancelVesting(address indexed user, uint256 indexed vestId, uint256 amount); event ExitVesting(address indexed user, uint256 indexed vestId, uint256 amount); event InstantExit(address indexed user, uint256); event NewSlashingPenalty(uint256 penalty); event NewVest(address indexed user, uint256 indexed vestId, uint256 indexed amount); event NewVestingTimes(uint256 min, uint256 max); event Converted(address indexed user, uint256); event Exemption(address indexed candidate, bool status, bool success); event XShadowRedeemed(address indexed user, uint256); event NewOperator(address indexed o, address indexed n); event Rebase(address indexed caller, uint256 amount); event NewRebaseThreshold(uint256 threshold); /// @notice returns info on a user's vests function vestInfo(address user, uint256) external view returns (uint256 amount, uint256 start, uint256 maxEnd, uint256 vestID); /// @notice address of the shadow token function SHADOW() external view returns (IERC20); /// @notice address of the voter function VOTER() external view returns (IVoter); function MINTER() external view returns (address); function ACCESS_HUB() external view returns (address); /// @notice address of the operator function operator() external view returns (address); /// @notice address of the VoteModule function VOTE_MODULE() external view returns (address); /// @notice max slashing amount function SLASHING_PENALTY() external view returns (uint256); /// @notice denominator function BASIS() external view returns (uint256); /// @notice the minimum vesting length function MIN_VEST() external view returns (uint256); /// @notice the maximum vesting length function MAX_VEST() external view returns (uint256); function shadow() external view returns (address); /// @notice the last period rebases were distributed function lastDistributedPeriod() external view returns (uint256); /// @notice amount of pvp rebase penalties accumulated pending to be distributed function pendingRebase() external view returns (uint256); /// @notice dust threshold before a rebase can happen function rebaseThreshold() external view returns (uint256); /// @notice pauses the contract function pause() external; /// @notice unpauses the contract function unpause() external; /** * */ // General use functions /** * */ /// @dev mints xShadows for each shadow. function convertEmissionsToken(uint256 _amount) external; /// @notice function called by the minter to send the rebases once a week function rebase() external; /** * @dev exit instantly with a penalty * @param _amount amount of xShadows to exit */ function exit(uint256 _amount) external returns (uint256 _exitedAmount); /// @dev vesting xShadows --> emissionToken functionality function createVest(uint256 _amount) external; /// @dev handles all situations regarding exiting vests function exitVest(uint256 _vestID) external; /** * */ // Permissioned functions, timelock/operator gated /** * */ /// @dev allows the operator to redeem collected xShadows function operatorRedeem(uint256 _amount) external; /// @dev allows rescue of any non-stake token function rescueTrappedTokens(address[] calldata _tokens, uint256[] calldata _amounts) external; /// @notice migrates the operator to another contract function migrateOperator(address _operator) external; /// @notice set exemption status for an address function setExemption(address[] calldata _exemptee, bool[] calldata _exempt) external; function setExemptionTo(address[] calldata _exemptee, bool[] calldata _exempt) external; /// @notice set dust threshold before a rebase can happen function setRebaseThreshold(uint256 _newThreshold) external; /** * */ // Getter functions /** * */ /// @notice returns the amount of SHADOW within the contract function getBalanceResiding() external view returns (uint256); /// @notice returns the total number of individual vests the user has function usersTotalVests(address _who) external view returns (uint256 _numOfVests); /// @notice whether the address is exempt /// @param _who who to check /// @return _exempt whether it's exempt function isExempt(address _who) external view returns (bool _exempt); /// @notice returns the vest info for a user /// @param _who who to check /// @param _vestID vest ID to check /// @return VestPosition vest info function getVestInfo(address _who, uint256 _vestID) external view returns (VestPosition memory); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; interface IVoteModule { /** * Events */ event Deposit(address indexed from, uint256 amount); event Withdraw(address indexed from, uint256 amount); event NotifyReward(address indexed from, uint256 amount); event ClaimRewards(address indexed from, uint256 amount); event ExemptedFromCooldown(address indexed candidate, bool status); event NewDuration(uint256 oldDuration, uint256 newDuration); event NewCooldown(uint256 oldCooldown, uint256 newCooldown); event Delegate(address indexed delegator, address indexed delegatee, bool indexed isAdded); event SetAdmin(address indexed owner, address indexed operator, bool indexed isAdded); /** * Functions */ function delegates(address) external view returns (address); /// @notice mapping for admins for a specific address /// @param owner the owner to check against /// @return operator the address that is designated as an admin/operator function admins(address owner) external view returns (address operator); function accessHub() external view returns (address); /// @notice reward supply for a period function rewardSupply(uint256 period) external view returns (uint256); /// @notice user claimed reward amount for a period /// @dev same mapping order as FeeDistributor so the name is a bit odd function userClaimed(uint256 period, address owner) external view returns (uint256); /// @notice last claimed period for a user function userLastClaimPeriod(address owner) external view returns (uint256); /// @notice returns the current period function getPeriod() external view returns (uint256); /// @notice returns the amount of unclaimed rebase earned by the user function earned(address account) external view returns (uint256 _reward); /// @notice returns the amount of unclaimed rebase earned by the user for a period function periodEarned(uint256 period, address user) external view returns (uint256 amount); /// @notice the time which users can deposit and withdraw function unlockTime() external view returns (uint256 _timestamp); /// @notice claims pending rebase rewards function getReward() external; /// @notice claims pending rebase rewards for a period function getPeriodReward(uint256 period) external; /// @notice allows users to set their own last claimed period in case they haven't claimed in a while /// @param period the new period to start loops from function setUserLastClaimPeriod(uint256 period) external; /// @notice deposits all xShadow in the caller's wallet function depositAll() external; /// @notice deposit a specified amount of xShadow function deposit(uint256 amount) external; /// @notice withdraw all xShadow function withdrawAll() external; /// @notice withdraw a specified amount of xShadow function withdraw(uint256 amount) external; /// @notice check for admin perms /// @param operator the address to check /// @param owner the owner to check against for permissions function isAdminFor(address operator, address owner) external view returns (bool approved); /// @notice check for delegations /// @param delegate the address to check /// @param owner the owner to check against for permissions function isDelegateFor(address delegate, address owner) external view returns (bool approved); /// @notice used by the xShadow contract to notify pending rebases /// @param amount the amount of Shadow to be notified from exit penalties function notifyRewardAmount(uint256 amount) external; /// @notice the address of the xShadow token (staking/voting token) /// @return _xShadow the address function xShadow() external view returns (address _xShadow); /// @notice address of the voter contract /// @return _voter the voter contract address function voter() external view returns (address _voter); /// @notice returns the total voting power (equal to total supply in the VoteModule) /// @return _totalSupply the total voting power function totalSupply() external view returns (uint256 _totalSupply); /// @notice voting power /// @param user the address to check /// @return amount the staked balance function balanceOf(address user) external view returns (uint256 amount); /// @notice delegate voting perms to another address /// @param delegatee who you delegate to /// @dev set address(0) to revoke function delegate(address delegatee) external; /// @notice give admin permissions to a another address /// @param operator the address to give administrative perms to /// @dev set address(0) to revoke function setAdmin(address operator) external; function cooldownExempt(address) external view returns (bool); function setCooldownExemption(address, bool) external; /// @notice lock period after rebase starts accruing function cooldown() external returns (uint256); function setNewCooldown(uint256) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IXShadow} from "contracts/interfaces/IXShadow.sol"; interface IX33 is IERC20 { /// @dev parameters passed to the aggregator swap struct AggregatorParams { address aggregator; // address of the whitelisted aggregator address tokenIn; // token to swap from uint256 amountIn; // amount of tokenIn to swap uint256 minAmountOut; // minimum amount of tokenOut to receive bytes callData; // encoded swap calldata } event Entered(address indexed user, uint256 amount, uint256 ratioAtDeposit); event Exited(address indexed user, uint256 _outAmount, uint256 ratioAtWithdrawal); event NewOperator(address _oldOperator, address _newOperator); event Compounded(uint256 oldRatio, uint256 newRatio, uint256 amount); event SwappedBribe(address indexed operator, address indexed tokenIn, uint256 amountIn, uint256 amountOut); event Rebased(uint256 oldRatio, uint256 newRatio, uint256 amount); /// @notice Event emitted when an aggregator's whitelist status changes event AggregatorWhitelistUpdated(address aggregator, bool status); event Unlocked(uint256 _ts); event UpdatedIndex(uint256 _index); event ClaimedIncentives(address[] feeDistributors, address[][] tokens); /// @notice submits the optimized votes for the epoch function submitVotes(address[] calldata _pools, uint256[] calldata _weights) external; /// @notice swap function using aggregators to process rewards into SHADOW function swapIncentiveViaAggregator(AggregatorParams calldata _params) external; /// @notice claims the rebase accrued to x33 function claimRebase() external; /// @notice compounds any existing SHADOW within the contract function compound() external; /// @notice direct claim function claimIncentives(address[] calldata _feeDistributors, address[][] calldata _tokens) external; /// @notice rescue stuck tokens function rescue(address _token, uint256 _amount) external; /// @notice allows the operator to unlock the contract for the current period function unlock() external; /// @notice add or remove an aggregator from the whitelist (timelocked) /// @param _aggregator address of the aggregator to update /// @param _status new whitelist status function whitelistAggregator(address _aggregator, bool _status) external; /// @notice transfers the operator via accesshub function transferOperator(address _newOperator) external; /// @notice simple getPeriod call function getPeriod() external view returns (uint256 period); /// @notice if the contract is unlocked for deposits function isUnlocked() external view returns (bool); /// @notice determines whether the cooldown is active function isCooldownActive() external view returns (bool); /// @notice address of the current operator function operator() external view returns (address); /// @notice accessHub address function accessHub() external view returns (address); /// @notice returns the ratio of xShadow per X33 token function ratio() external view returns (uint256 _ratio); /// @notice the most recent active period the contract has interacted in function activePeriod() external view returns (uint256); /// @notice whether the periods are unlocked function periodUnlockStatus(uint256 _period) external view returns (bool unlocked); /// @notice the shadow token function shadow() external view returns (IERC20); /// @notice the xShadow token function xShadow() external view returns (IXShadow); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IXShadow} from "contracts/interfaces/IXShadow.sol"; import {IX33} from "contracts/interfaces/IX33.sol"; interface Ix33Adapter { event NewOperator(address _oldOperator, address _newOperator); /// @notice submits the optimized votes for the epoch function submitVotes(address[] calldata _pools, uint256[] calldata _weights) external; /// @notice swap function using aggregators to process rewards into SHADOW function swapIncentiveViaAggregator(IX33.AggregatorParams calldata _params) external; /// @notice claims the rebase accrued to x33 function claimRebase() external; /// @notice compounds any existing SHADOW within the contract function compound() external; /// @notice direct claim function claimIncentives(address[] calldata _feeDistributors, address[][] calldata _tokens) external; /// @notice allows the operator to unlock the contract for the current period function unlock() external; /// @notice transfers the operator via accesshub function transferOperator(address _newOperator) external; /// @notice address of the current operator function operator() external view returns (address); /// @notice accessHub address function accessHub() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Central Errors Library /// @notice Contains all custom errors used across the protocol /// @dev Centralized error definitions to prevent redundancy library Errors { /*////////////////////////////////////////////////////////////// VOTER ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when attempting to interact with an already active gauge /// @param gauge The address of the gauge error ACTIVE_GAUGE(address gauge); /// @notice Thrown when attempting to interact with an inactive gauge /// @param gauge The address of the gauge error GAUGE_INACTIVE(address gauge); /// @notice Thrown when attempting to whitelist an already whitelisted token /// @param token The address of the token error ALREADY_WHITELISTED(address token); /// @notice Thrown when caller is not authorized to perform an action /// @param caller The address of the unauthorized caller error NOT_AUTHORIZED(address caller); /// @notice Thrown when token is not whitelisted /// @param token The address of the non-whitelisted token error NOT_WHITELISTED(address token); /// @notice Thrown when both tokens in a pair are not whitelisted error BOTH_NOT_WHITELISTED(); /// @notice Thrown when address is not a valid pool /// @param pool The invalid pool address error NOT_POOL(address pool); /// @notice Thrown when pool is not seeded in PoolUpdater /// @param pool The invalid pool address error NOT_SEEDED(address pool); /// @notice Thrown when contract is not initialized error NOT_INIT(); /// @notice Thrown when array lengths don't match error LENGTH_MISMATCH(); /// @notice Thrown when pool doesn't have an associated gauge /// @param pool The address of the pool error NO_GAUGE(address pool); /// @notice Thrown when rewards are already distributed for a period /// @param gauge The gauge address /// @param period The distribution period error ALREADY_DISTRIBUTED(address gauge, uint256 period); /// @notice Thrown when attempting to vote with zero amount /// @param pool The pool address error ZERO_VOTE(address pool); /// @notice Thrown when ratio exceeds maximum allowed /// @param _xRatio The excessive ratio value error RATIO_TOO_HIGH(uint256 _xRatio); /// @notice Thrown when vote operation fails error VOTE_UNSUCCESSFUL(); /*////////////////////////////////////////////////////////////// GAUGE V3 ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when the pool already has a gauge /// @param pool The address of the pool error GAUGE_EXISTS(address pool); /// @notice Thrown when caller is not the voter /// @param caller The address of the invalid caller error NOT_VOTER(address caller); /// @notice Thrown when amount is not greater than zero /// @param amt The invalid amount error NOT_GT_ZERO(uint256 amt); /// @notice Thrown when attempting to claim future rewards error CANT_CLAIM_FUTURE(); /// @notice Throw when gauge can't determine if using secondsInRange from the pool is safe error NEED_TEAM_TO_UPDATE(); /*////////////////////////////////////////////////////////////// GAUGE ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when amount is zero error ZERO_AMOUNT(); /// @notice Thrown when stake notification fails error CANT_NOTIFY_STAKE(); /// @notice Thrown when reward amount is too high error REWARD_TOO_HIGH(); /// @notice Thrown when amount exceeds remaining balance /// @param amount The requested amount /// @param remaining The remaining balance error NOT_GREATER_THAN_REMAINING(uint256 amount, uint256 remaining); /// @notice Thrown when token operation fails /// @param token The address of the problematic token error TOKEN_ERROR(address token); /// @notice Thrown when an address is not an NfpManager error NOT_NFP_MANAGER(address nfpManager); /*////////////////////////////////////////////////////////////// FEE DISTRIBUTOR ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when period is not finalized /// @param period The unfinalized period error NOT_FINALIZED(uint256 period); /// @notice Thrown when the destination of a redirect is not a feeDistributor /// @param destination Destination of the redirect error NOT_FEE_DISTRIBUTOR(address destination); /// @notice Thrown when the destination of a redirect's pool/pair has completely different tokens error DIFFERENT_DESTINATION_TOKENS(); /*////////////////////////////////////////////////////////////// PAIR ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when ratio is unstable error UNSTABLE_RATIO(); /// @notice Thrown when safe transfer fails error SAFE_TRANSFER_FAILED(); /// @notice Thrown on arithmetic overflow error OVERFLOW(); /// @notice Thrown when skim operation is disabled error SKIM_DISABLED(); /// @notice Thrown when insufficient liquidity is minted error INSUFFICIENT_LIQUIDITY_MINTED(); /// @notice Thrown when insufficient liquidity is burned error INSUFFICIENT_LIQUIDITY_BURNED(); /// @notice Thrown when output amount is insufficient error INSUFFICIENT_OUTPUT_AMOUNT(); /// @notice Thrown when input amount is insufficient error INSUFFICIENT_INPUT_AMOUNT(); /// @notice Generic insufficient liquidity error error INSUFFICIENT_LIQUIDITY(); /// @notice Invalid transfer error error INVALID_TRANSFER(); /// @notice K value error in AMM error K(); /*////////////////////////////////////////////////////////////// PAIR FACTORY ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when fee is too high error FEE_TOO_HIGH(); /// @notice Thrown when fee is zero error ZERO_FEE(); /// @notice Thrown when token assortment is invalid error INVALID_ASSORTMENT(); /// @notice Thrown when address is zero error ZERO_ADDRESS(); /// @notice Thrown when pair already exists error PAIR_EXISTS(); /// @notice Thrown when fee split is invalid error INVALID_FEE_SPLIT(); /*////////////////////////////////////////////////////////////// FEE RECIPIENT FACTORY ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when treasury fee is invalid error INVALID_TREASURY_FEE(); /*////////////////////////////////////////////////////////////// ROUTER ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when deadline has expired error EXPIRED(); /// @notice Thrown when tokens are identical error IDENTICAL(); /// @notice Thrown when amount is insufficient error INSUFFICIENT_AMOUNT(); /// @notice Thrown when path is invalid error INVALID_PATH(); /// @notice Thrown when token B amount is insufficient error INSUFFICIENT_B_AMOUNT(); /// @notice Thrown when token A amount is insufficient error INSUFFICIENT_A_AMOUNT(); /// @notice Thrown when input amount is excessive error EXCESSIVE_INPUT_AMOUNT(); /// @notice Thrown when ETH transfer fails error ETH_TRANSFER_FAILED(); /// @notice Thrown when reserves are invalid error INVALID_RESERVES(); /*////////////////////////////////////////////////////////////// MINTER ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when epoch 0 has already started error STARTED(); /// @notice Thrown when emissions haven't started error EMISSIONS_NOT_STARTED(); /// @notice Thrown when deviation is too high error TOO_HIGH(); /// @notice Thrown when no value change detected error NO_CHANGE(); /// @notice Thrown when updating emissions in same period error SAME_PERIOD(); /// @notice Thrown when contract setup is invalid error INVALID_CONTRACT(); /// @notice Thrown when legacy factory doesn't have feeSplitWhenNoGauge on error FEE_SPLIT_WHEN_NO_GAUGE_IS_OFF(); /*////////////////////////////////////////////////////////////// ACCESS HUB ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when addresses are identical error SAME_ADDRESS(); /// @notice Thrown when caller is not timelock /// @param caller The invalid caller address error NOT_TIMELOCK(address caller); /// @notice Thrown when manual execution fails /// @param reason The failure reason error MANUAL_EXECUTION_FAILURE(bytes reason); /// @notice Thrown when kick operation is forbidden /// @param target The target address error KICK_FORBIDDEN(address target); /*////////////////////////////////////////////////////////////// VOTE MODULE ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when caller is not xShadow error NOT_XSHADOW(); /// @notice Thrown when cooldown period is still active error COOLDOWN_ACTIVE(); /// @notice Thrown when caller is not vote module error NOT_VOTEMODULE(); /// @notice Thrown when caller is unauthorized error UNAUTHORIZED(); /// @notice Thrown when caller is not access hub error NOT_ACCESSHUB(); /// @notice Thrown when address is invalid error INVALID_ADDRESS(); /*////////////////////////////////////////////////////////////// LAUNCHER PLUGIN ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when caller is not authority error NOT_AUTHORITY(); /// @notice Thrown when already an authority error ALREADY_AUTHORITY(); /// @notice Thrown when caller is not operator error NOT_OPERATOR(); /// @notice Thrown when already an operator error ALREADY_OPERATOR(); /// @notice Thrown when pool is not enabled /// @param pool The disabled pool address error NOT_ENABLED(address pool); /// @notice Thrown when fee distributor is missing error NO_FEEDIST(); /// @notice Thrown when already enabled error ENABLED(); /// @notice Thrown when take value is invalid error INVALID_TAKE(); /*////////////////////////////////////////////////////////////// X33 ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when value is zero error ZERO(); /// @notice Thrown when amount is insufficient error NOT_ENOUGH(); /// @notice Thrown when value doesn't conform to scale /// @param value The non-conforming value error NOT_CONFORMED_TO_SCALE(uint256 value); /// @notice Thrown when contract is locked error LOCKED(); /// @notice Thrown when rebase is in progress error REBASE_IN_PROGRESS(); /// @notice Thrown when aggregator reverts /// @param reason The revert reason error AGGREGATOR_REVERTED(bytes reason); /// @notice Thrown when output amount is too low /// @param amount The insufficient amount error AMOUNT_OUT_TOO_LOW(uint256 amount); /// @notice Thrown when aggregator is not whitelisted /// @param aggregator The non-whitelisted aggregator address error AGGREGATOR_NOT_WHITELISTED(address aggregator); /// @notice Thrown when token is forbidden /// @param token The forbidden token address error FORBIDDEN_TOKEN(address token); /*////////////////////////////////////////////////////////////// XSHADOW ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when caller is not minter error NOT_MINTER(); /// @notice Thrown when no vest exists error NO_VEST(); /// @notice Thrown when already exempt error ALREADY_EXEMPT(); /// @notice Thrown when not exempt error NOT_EXEMPT(); /// @notice Thrown when rescue operation is not allowed error CANT_RESCUE(); /// @notice Thrown when array lengths mismatch error ARRAY_LENGTHS(); /// @notice Thrown when vesting periods overlap error VEST_OVERLAP(); /*////////////////////////////////////////////////////////////// V3 FACTORY ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when tokens are identical error IDENTICAL_TOKENS(); /// @notice Thrown when fee is too large error FEE_TOO_LARGE(); /// @notice Address zero error error ADDRESS_ZERO(); /// @notice Fee zero error error F0(); /// @notice Thrown when value is out of bounds /// @param value The out of bounds value error OOB(uint8 value); /*////////////////////////////////////////////////////////////// POOL UPDATER ERRORS //////////////////////////////////////////////////////////////*/ /// @notice Thrown when seeding for a pool fails error TRANSFER_FROM_FOR_SEEDING_FAILED(address token, uint256 amount); /// @notice Thrown when seeding for a pool fails error SEEDING_FAILED(); /// @notice Thrown when updatePools is called too early error TOO_EARLY(); /// @notice Thrown when a callback is called when an update isn't running error NOT_RUNNING(); /// @notice Thrown when updatePools didn't perform any updates error NO_UPDATES(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert Errors.FailedCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract Pausable is Context { bool private _paused; /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ constructor() { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "@layerzerolabs/=node_modules/@layerzerolabs/", "@layerzerolabs/lz-evm-protocol-v2/=node_modules/@layerzerolabs/lz-evm-protocol-v2/", "@openzeppelin-contracts-upgradeable/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/", "@openzeppelin-contracts/contracts/=dependencies/@openzeppelin-contracts-5.1.0/", "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/", "erc4626-tests/=dependencies/erc4626-property-tests-1.0/", "forge-std/=dependencies/forge-std-1.9.4/src/", "permit2/=lib/permit2/", "@axelar-network/=node_modules/@axelar-network/", "@chainlink/=node_modules/@chainlink/", "@eth-optimism/=node_modules/@eth-optimism/", "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/", "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/", "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/", "@uniswap/=node_modules/@uniswap/", "base64-sol/=node_modules/base64-sol/", "erc4626-property-tests-1.0/=dependencies/erc4626-property-tests-1.0/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/", "hardhat-deploy/=node_modules/hardhat-deploy/", "hardhat/=node_modules/hardhat/", "solidity-bytes-utils/=node_modules/solidity-bytes-utils/", "solmate/=node_modules/solmate/" ], "optimizer": { "enabled": true, "runs": 333 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": { "contracts/libraries/VoterGovernanceActions.sol": { "VoterGovernanceActions": "0x07A1539155758C975a6099aBc15d1B66a227dBDB" }, "contracts/libraries/VoterRewardClaimers.sol": { "VoterRewardClaimers": "0x6D1E0D075A013bD5080Be66A717A322F39eACC87" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_x33","type":"address"},{"internalType":"address","name":"_voter","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"NOT_ACCESSHUB","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"NOT_AUTHORIZED","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"_oldOperator","type":"address"},{"indexed":false,"internalType":"address","name":"_newOperator","type":"address"}],"name":"NewOperator","type":"event"},{"inputs":[],"name":"accessHub","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address[]","name":"_feeDistributors","type":"address[]"},{"internalType":"address[][]","name":"_tokens","type":"address[][]"}],"name":"claimIncentives","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimRebase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"compound","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"operator","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_pools","type":"address[]"},{"internalType":"uint256[]","name":"_weights","type":"uint256[]"}],"name":"submitVotes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"aggregator","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct IX33.AggregatorParams","name":"_params","type":"tuple"}],"name":"swapIncentiveViaAggregator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_newOperator","type":"address"}],"name":"transferOperator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unlock","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"voter","outputs":[{"internalType":"contract IVoter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"x33","outputs":[{"internalType":"contract IX33","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106100cf575f3560e01c8063b4cd143a1161007d578063ed1224e511610058578063ed1224e5146101b7578063ee0b5af7146101ca578063f69e2046146101dd575f5ffd5b8063b4cd143a14610180578063c5f720e414610188578063e7589b39146101af575f5ffd5b806346c96aac116100ad57806346c96aac14610126578063570ca73514610165578063a69df4b514610178575f5ffd5b8063095ea7b3146100d35780631fe834a2146100fe57806329605e7714610113575b5f5ffd5b6100e96100e13660046108be565b600192915050565b60405190151581526020015b60405180910390f35b61011161010c3660046108e8565b6101e5565b005b610111610121366004610926565b6102b1565b61014d7f0000000000000000000000005d7e87faae386778cad7de9421ef3b53af4af3ad81565b6040516001600160a01b0390911681526020016100f5565b60015461014d906001600160a01b031681565b6101116103d0565b61011161047a565b61014d7f0000000000000000000000003333111a391cc08fa51353e9195526a70b33333381565b61014d61050c565b6101116101c5366004610989565b610592565b6101116101d8366004610989565b610731565b6101116107f0565b6101ed610882565b60015433906001600160a01b0316811461022b57604051632bc10c3360e01b81526001600160a01b0390911660048201526024015b60405180910390fd5b50604051630ff41a5160e11b81526001600160a01b037f0000000000000000000000003333111a391cc08fa51353e9195526a70b3333331690631fe834a290610278908490600401610a1d565b5f604051808303815f87803b15801561028f575f5ffd5b505af11580156102a1573d5f5f3e3d5ffd5b505050506102ae60015f55565b50565b7f0000000000000000000000005d7e87faae386778cad7de9421ef3b53af4af3ad6001600160a01b031663e7589b396040518163ffffffff1660e01b8152600401602060405180830381865afa15801561030d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103319190610ad1565b6001600160a01b0316336001600160a01b0316146103625760405163eb41813b60e01b815260040160405180910390fd5b600180546001600160a01b0383811673ffffffffffffffffffffffffffffffffffffffff1983168117909355604080519190921680825260208201939093527ff1e04d73c4304b5ff164f9d10c7473e2a1593b740674a6107975e2a7001c1e5c910160405180910390a15050565b60015433906001600160a01b0316811461040957604051632bc10c3360e01b81526001600160a01b039091166004820152602401610222565b507f0000000000000000000000003333111a391cc08fa51353e9195526a70b3333336001600160a01b031663a69df4b56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610462575f5ffd5b505af1158015610474573d5f5f3e3d5ffd5b50505050565b60015433906001600160a01b031681146104b357604051632bc10c3360e01b81526001600160a01b039091166004820152602401610222565b507f0000000000000000000000003333111a391cc08fa51353e9195526a70b3333336001600160a01b031663b4cd143a6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610462575f5ffd5b5f7f0000000000000000000000005d7e87faae386778cad7de9421ef3b53af4af3ad6001600160a01b031663e7589b396040518163ffffffff1660e01b8152600401602060405180830381865afa158015610569573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061058d9190610ad1565b905090565b60015433906001600160a01b031681146105cb57604051632bc10c3360e01b81526001600160a01b039091166004820152602401610222565b505f6040518060a001604052807f0000000000000000000000005d7e87faae386778cad7de9421ef3b53af4af3ad6001600160a01b03168152602001306001600160a01b031681526020015f81526020015f815260200163e4ff5c2f60e01b7f0000000000000000000000003333111a391cc08fa51353e9195526a70b33333388888888604051602401610663959493929190610b34565b60408051601f198184030181529181526020820180516001600160e01b03167fffffffff000000000000000000000000000000000000000000000000000000009094169390931790925290915251630ff41a5160e11b81529091506001600160a01b037f0000000000000000000000003333111a391cc08fa51353e9195526a70b3333331690631fe834a2906106fd908490600401610b8e565b5f604051808303815f87803b158015610714575f5ffd5b505af1158015610726573d5f5f3e3d5ffd5b505050505050505050565b60015433906001600160a01b0316811461076a57604051632bc10c3360e01b81526001600160a01b039091166004820152602401610222565b5060405163ee0b5af760e01b81526001600160a01b037f0000000000000000000000003333111a391cc08fa51353e9195526a70b333333169063ee0b5af7906107bd908790879087908790600401610c06565b5f604051808303815f87803b1580156107d4575f5ffd5b505af11580156107e6573d5f5f3e3d5ffd5b5050505050505050565b60015433906001600160a01b0316811461082957604051632bc10c3360e01b81526001600160a01b039091166004820152602401610222565b507f0000000000000000000000003333111a391cc08fa51353e9195526a70b3333336001600160a01b031663f69e20466040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610462575f5ffd5b60025f54036108a457604051633ee5aeb560e01b815260040160405180910390fd5b60025f55565b6001600160a01b03811681146102ae575f5ffd5b5f5f604083850312156108cf575f5ffd5b82356108da816108aa565b946020939093013593505050565b5f602082840312156108f8575f5ffd5b813567ffffffffffffffff81111561090e575f5ffd5b820160a0818503121561091f575f5ffd5b9392505050565b5f60208284031215610936575f5ffd5b813561091f816108aa565b5f5f83601f840112610951575f5ffd5b50813567ffffffffffffffff811115610968575f5ffd5b6020830191508360208260051b8501011115610982575f5ffd5b9250929050565b5f5f5f5f6040858703121561099c575f5ffd5b843567ffffffffffffffff8111156109b2575f5ffd5b6109be87828801610941565b909550935050602085013567ffffffffffffffff8111156109dd575f5ffd5b6109e987828801610941565b95989497509550505050565b81835281816020850137505f828201602090810191909152601f909101601f19169091010190565b602081525f8235610a2d816108aa565b6001600160a01b0381166020840152506020830135610a4b816108aa565b6001600160a01b031660408381019190915283013560608084019190915283013560808084019190915283013536849003601e19018112610a8a575f5ffd5b830160208101903567ffffffffffffffff811115610aa6575f5ffd5b803603821315610ab4575f5ffd5b60a080850152610ac860c0850182846109f5565b95945050505050565b5f60208284031215610ae1575f5ffd5b815161091f816108aa565b8183526020830192505f815f5b84811015610b2a578135610b0c816108aa565b6001600160a01b031686526020958601959190910190600101610af9565b5093949350505050565b6001600160a01b0386168152606060208201525f610b56606083018688610aec565b82810360408401528381526001600160fb1b03841115610b74575f5ffd5b8360051b8086602084013701602001979650505050505050565b602081526001600160a01b0382511660208201526001600160a01b03602083015116604082015260408201516060820152606082015160808201525f608083015160a08084015280518060c0850152806020830160e086015e5f60e0828601015260e0601f19601f8301168501019250505092915050565b604081525f610c19604083018688610aec565b82810360208401528084825260208201905060208560051b830101865f601e19893603015b88821015610caf57858403601f190185528235818112610c5c575f5ffd5b8a0160208101903567ffffffffffffffff811115610c78575f5ffd5b8060051b3603821315610c89575f5ffd5b610c94868284610aec565b95505050602083019250602085019450600182019150610c3e565b50919a995050505050505050505056fea2646970667358221220f3bbfab349477bb4b80642ccd02c4c3dd44ff6cf71a5dee03ffa1912b411fafb64736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.