Source Code
Overview
S Balance
S Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 55824703 | 68 days ago | Contract Creation | 0 S |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
LiquidationLogic
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.10;
import {IERC20} from '../../../dependencies/openzeppelin/contracts//IERC20.sol';
import {GPv2SafeERC20} from '../../../dependencies/gnosis/contracts/GPv2SafeERC20.sol';
import {PercentageMath} from '../../libraries/math/PercentageMath.sol';
import {MathUtils} from '../../libraries/math/MathUtils.sol';
import {TokenMath} from '../../libraries/helpers/TokenMath.sol';
import {DataTypes} from '../../libraries/types/DataTypes.sol';
import {ReserveLogic} from './ReserveLogic.sol';
import {ValidationLogic} from './ValidationLogic.sol';
import {GenericLogic} from './GenericLogic.sol';
import {IsolationModeLogic} from './IsolationModeLogic.sol';
import {UserConfiguration} from '../../libraries/configuration/UserConfiguration.sol';
import {ReserveConfiguration} from '../../libraries/configuration/ReserveConfiguration.sol';
import {EModeConfiguration} from '../../libraries/configuration/EModeConfiguration.sol';
import {IAToken} from '../../../interfaces/IAToken.sol';
import {IPool} from '../../../interfaces/IPool.sol';
import {IVariableDebtToken} from '../../../interfaces/IVariableDebtToken.sol';
import {IPriceOracleGetter} from '../../../interfaces/IPriceOracleGetter.sol';
import {SafeCast} from 'openzeppelin-contracts/contracts/utils/math/SafeCast.sol';
import {Errors} from '../helpers/Errors.sol';
/**
* @title LiquidationLogic library
* @author Aave
* @notice Implements actions involving management of collateral in the protocol, the main one being the liquidations
*/
library LiquidationLogic {
using TokenMath for uint256;
using PercentageMath for uint256;
using ReserveLogic for DataTypes.ReserveCache;
using ReserveLogic for DataTypes.ReserveData;
using UserConfiguration for DataTypes.UserConfigurationMap;
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
using GPv2SafeERC20 for IERC20;
using SafeCast for uint256;
/**
* @dev Default percentage of borrower's debt to be repaid in a liquidation.
* @dev Percentage applied when the users health factor is above `CLOSE_FACTOR_HF_THRESHOLD`
* Expressed in bps, a value of 0.5e4 results in 50.00%
*/
uint256 internal constant DEFAULT_LIQUIDATION_CLOSE_FACTOR = 0.5e4;
/**
* @dev This constant represents the upper bound on the health factor, below(inclusive) which the full amount of debt becomes liquidatable.
* A value of 0.95e18 results in 0.95
*/
uint256 public constant CLOSE_FACTOR_HF_THRESHOLD = 0.95e18;
/**
* @dev This constant represents a base value threshold.
* If the total collateral or debt on a position is below this threshold, the close factor is raised to 100%.
* @notice The default value assumes that the basePrice is usd denominated by 8 decimals and needs to be adjusted in a non USD-denominated pool.
*/
uint256 public constant MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD = 2000e8;
/**
* @dev This constant represents the minimum amount of assets in base currency that need to be leftover after a liquidation, if not clearing a position completely.
* This parameter is inferred from MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD as the logic is dependent.
* Assuming a MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD of `n` a liquidation of `n+1` might result in `n/2` leftover which is assumed to be still economically liquidatable.
* This mechanic was introduced to ensure liquidators don't optimize gas by leaving some wei on the liquidation.
*/
uint256 public constant MIN_LEFTOVER_BASE = MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD / 2;
/**
* @notice Reduces a portion or all of the deficit of a specified reserve by burning the equivalent aToken `amount`
* The caller of this method MUST always be the Umbrella contract and the Umbrella contract is assumed to never have debt.
* @dev Emits the `DeficitCovered() event`.
* @dev If the coverage admin covers its entire balance, `ReserveUsedAsCollateralDisabled()` is emitted.
* @param reservesData The state of all the reserves
* @param userConfig The user configuration mapping that tracks the supplied/borrowed assets
* @param params The additional parameters needed to execute the eliminateDeficit function
* @return The amount of deficit covered
*/
function executeEliminateDeficit(
mapping(address => DataTypes.ReserveData) storage reservesData,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ExecuteEliminateDeficitParams memory params
) external returns (uint256) {
require(params.amount != 0, Errors.InvalidAmount());
DataTypes.ReserveData storage reserve = reservesData[params.asset];
uint256 currentDeficit = reserve.deficit;
require(currentDeficit != 0, Errors.ReserveNotInDeficit());
require(!userConfig.isBorrowingAny(), Errors.UserCannotHaveDebt());
DataTypes.ReserveCache memory reserveCache = reserve.cache();
reserve.updateState(reserveCache);
bool isActive = reserveCache.reserveConfiguration.getActive();
require(isActive, Errors.ReserveInactive());
uint256 balanceWriteOff = params.amount;
if (params.amount > currentDeficit) {
balanceWriteOff = currentDeficit;
}
uint256 userScaledBalance = IAToken(reserveCache.aTokenAddress).scaledBalanceOf(params.user);
uint256 scaledBalanceWriteOff = balanceWriteOff.getATokenBurnScaledAmount(
reserveCache.nextLiquidityIndex
);
require(scaledBalanceWriteOff <= userScaledBalance, Errors.NotEnoughAvailableUserBalance());
bool isCollateral = userConfig.isUsingAsCollateral(reserve.id);
if (isCollateral && scaledBalanceWriteOff == userScaledBalance) {
userConfig.setUsingAsCollateral(reserve.id, params.asset, params.user, false);
}
IAToken(reserveCache.aTokenAddress).burn({
from: params.user,
receiverOfUnderlying: reserveCache.aTokenAddress,
amount: balanceWriteOff,
scaledAmount: scaledBalanceWriteOff,
index: reserveCache.nextLiquidityIndex
});
reserve.deficit -= balanceWriteOff.toUint128();
reserve.updateInterestRatesAndVirtualBalance(
reserveCache,
params.asset,
0,
0,
params.interestRateStrategyAddress
);
emit IPool.DeficitCovered(params.asset, params.user, balanceWriteOff);
return balanceWriteOff;
}
struct LiquidationCallLocalVars {
uint256 borrowerCollateralBalance;
uint256 borrowerReserveDebt;
uint256 actualDebtToLiquidate;
uint256 actualCollateralToLiquidate;
uint256 liquidationBonus;
uint256 healthFactor;
uint256 liquidationProtocolFeeAmount;
uint256 totalCollateralInBaseCurrency;
uint256 totalDebtInBaseCurrency;
uint256 collateralToLiquidateInBaseCurrency;
uint256 borrowerReserveDebtInBaseCurrency;
uint256 borrowerReserveCollateralInBaseCurrency;
uint256 collateralAssetPrice;
uint256 debtAssetPrice;
uint256 collateralAssetUnit;
uint256 debtAssetUnit;
DataTypes.ReserveCache debtReserveCache;
DataTypes.ReserveCache collateralReserveCache;
}
/**
* @notice Function to liquidate a position if its Health Factor drops below 1. The caller (liquidator)
* covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportional amount of the `collateralAsset` plus a bonus to cover market risk
* @dev Emits the `LiquidationCall()` event, and the `DeficitCreated()` event if the liquidation results in bad debt
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param usersConfig The users configuration mapping that track the supplied/borrowed assets
* @param eModeCategories The configuration of all the efficiency mode categories
* @param params The additional parameters needed to execute the liquidation function
*/
function executeLiquidationCall(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(address => DataTypes.UserConfigurationMap) storage usersConfig,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.ExecuteLiquidationCallParams memory params
) external {
LiquidationCallLocalVars memory vars;
DataTypes.ReserveData storage collateralReserve = reservesData[params.collateralAsset];
DataTypes.ReserveData storage debtReserve = reservesData[params.debtAsset];
DataTypes.UserConfigurationMap storage borrowerConfig = usersConfig[params.borrower];
vars.debtReserveCache = debtReserve.cache();
vars.collateralReserveCache = collateralReserve.cache();
debtReserve.updateState(vars.debtReserveCache);
collateralReserve.updateState(vars.collateralReserveCache);
(
vars.totalCollateralInBaseCurrency,
vars.totalDebtInBaseCurrency,
,
,
vars.healthFactor,
) = GenericLogic.calculateUserAccountData(
reservesData,
reservesList,
eModeCategories,
DataTypes.CalculateUserAccountDataParams({
userConfig: borrowerConfig,
user: params.borrower,
oracle: params.priceOracle,
userEModeCategory: params.borrowerEModeCategory
})
);
vars.borrowerCollateralBalance = IAToken(vars.collateralReserveCache.aTokenAddress)
.scaledBalanceOf(params.borrower)
.getATokenBalance(vars.collateralReserveCache.nextLiquidityIndex);
vars.borrowerReserveDebt = IVariableDebtToken(vars.debtReserveCache.variableDebtTokenAddress)
.scaledBalanceOf(params.borrower)
.getVTokenBalance(vars.debtReserveCache.nextVariableBorrowIndex);
ValidationLogic.validateLiquidationCall(
borrowerConfig,
collateralReserve,
debtReserve,
DataTypes.ValidateLiquidationCallParams({
debtReserveCache: vars.debtReserveCache,
totalDebt: vars.borrowerReserveDebt,
healthFactor: vars.healthFactor,
priceOracleSentinel: params.priceOracleSentinel,
borrower: params.borrower,
liquidator: params.liquidator
})
);
if (
params.borrowerEModeCategory != 0 &&
EModeConfiguration.isReserveEnabledOnBitmap(
eModeCategories[params.borrowerEModeCategory].collateralBitmap,
collateralReserve.id
)
) {
vars.liquidationBonus = eModeCategories[params.borrowerEModeCategory].liquidationBonus;
} else {
vars.liquidationBonus = vars
.collateralReserveCache
.reserveConfiguration
.getLiquidationBonus();
}
vars.collateralAssetPrice = IPriceOracleGetter(params.priceOracle).getAssetPrice(
params.collateralAsset
);
vars.debtAssetPrice = IPriceOracleGetter(params.priceOracle).getAssetPrice(params.debtAsset);
vars.collateralAssetUnit = 10 ** vars.collateralReserveCache.reserveConfiguration.getDecimals();
vars.debtAssetUnit = 10 ** vars.debtReserveCache.reserveConfiguration.getDecimals();
vars.borrowerReserveDebtInBaseCurrency = MathUtils.mulDivCeil(
vars.borrowerReserveDebt,
vars.debtAssetPrice,
vars.debtAssetUnit
);
// @note floor rounding
vars.borrowerReserveCollateralInBaseCurrency =
(vars.borrowerCollateralBalance * vars.collateralAssetPrice) /
vars.collateralAssetUnit;
// by default whole debt in the reserve could be liquidated
uint256 maxLiquidatableDebt = vars.borrowerReserveDebt;
// but if debt and collateral is above or equal MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD
// and health factor is above CLOSE_FACTOR_HF_THRESHOLD this amount may be adjusted
if (
vars.borrowerReserveCollateralInBaseCurrency >= MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD &&
vars.borrowerReserveDebtInBaseCurrency >= MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD &&
vars.healthFactor > CLOSE_FACTOR_HF_THRESHOLD
) {
uint256 totalDefaultLiquidatableDebtInBaseCurrency = vars.totalDebtInBaseCurrency.percentMul(
DEFAULT_LIQUIDATION_CLOSE_FACTOR
);
// if the debt is more then DEFAULT_LIQUIDATION_CLOSE_FACTOR % of the whole,
// then we CAN liquidate only up to DEFAULT_LIQUIDATION_CLOSE_FACTOR %
if (vars.borrowerReserveDebtInBaseCurrency > totalDefaultLiquidatableDebtInBaseCurrency) {
maxLiquidatableDebt =
(totalDefaultLiquidatableDebtInBaseCurrency * vars.debtAssetUnit) /
vars.debtAssetPrice;
}
}
vars.actualDebtToLiquidate = params.debtToCover > maxLiquidatableDebt
? maxLiquidatableDebt
: params.debtToCover;
(
vars.actualCollateralToLiquidate,
vars.actualDebtToLiquidate,
vars.liquidationProtocolFeeAmount,
vars.collateralToLiquidateInBaseCurrency
) = _calculateAvailableCollateralToLiquidate(
vars.collateralReserveCache.reserveConfiguration,
vars.collateralAssetPrice,
vars.collateralAssetUnit,
vars.debtAssetPrice,
vars.debtAssetUnit,
vars.actualDebtToLiquidate,
vars.borrowerCollateralBalance,
vars.liquidationBonus
);
// to prevent accumulation of dust on the protocol, it is enforced that you either
// 1. liquidate all debt
// 2. liquidate all collateral
// 3. leave more than MIN_LEFTOVER_BASE of collateral & debt
if (
vars.actualDebtToLiquidate < vars.borrowerReserveDebt &&
vars.actualCollateralToLiquidate + vars.liquidationProtocolFeeAmount <
vars.borrowerCollateralBalance
) {
bool isDebtMoreThanLeftoverThreshold = MathUtils.mulDivCeil(
vars.borrowerReserveDebt - vars.actualDebtToLiquidate,
vars.debtAssetPrice,
vars.debtAssetUnit
) >= MIN_LEFTOVER_BASE;
// @note floor rounding
bool isCollateralMoreThanLeftoverThreshold = ((vars.borrowerCollateralBalance -
vars.actualCollateralToLiquidate -
vars.liquidationProtocolFeeAmount) * vars.collateralAssetPrice) /
vars.collateralAssetUnit >=
MIN_LEFTOVER_BASE;
require(
isDebtMoreThanLeftoverThreshold && isCollateralMoreThanLeftoverThreshold,
Errors.MustNotLeaveDust()
);
}
// If the collateral being liquidated is equal to the user balance,
// we set the currency as not being used as collateral anymore
if (
vars.actualCollateralToLiquidate + vars.liquidationProtocolFeeAmount ==
vars.borrowerCollateralBalance
) {
borrowerConfig.setUsingAsCollateral(
collateralReserve.id,
params.collateralAsset,
params.borrower,
false
);
}
bool hasNoCollateralLeft = vars.totalCollateralInBaseCurrency ==
vars.collateralToLiquidateInBaseCurrency;
_burnDebtTokens(
vars.debtReserveCache,
debtReserve,
borrowerConfig,
params.borrower,
params.debtAsset,
vars.borrowerReserveDebt,
vars.actualDebtToLiquidate,
hasNoCollateralLeft,
params.interestRateStrategyAddress
);
// An asset can only be ceiled if it has no supply or if it was not a collateral previously.
// Therefore we can be sure that no inconsistent state can be reached in which a user has multiple collaterals, with one being ceiled.
// This allows for the implicit assumption that: if the asset was a collateral & the asset was ceiled, the user must have been in isolation.
if (vars.collateralReserveCache.reserveConfiguration.getDebtCeiling() != 0) {
// IsolationModeTotalDebt only discounts `actualDebtToLiquidate`, not the fully burned amount in case of deficit creation.
// This is by design as otherwise the debt ceiling would render ineffective if a collateral asset faces bad debt events.
// The governance can decide the raise the ceiling to discount manifested deficit.
IsolationModeLogic.updateIsolatedDebt(
reservesData,
vars.debtReserveCache,
vars.actualDebtToLiquidate,
params.collateralAsset
);
}
if (params.receiveAToken) {
IAToken(vars.collateralReserveCache.aTokenAddress).transferOnLiquidation(
params.borrower,
params.liquidator,
vars.actualCollateralToLiquidate,
vars.actualCollateralToLiquidate.getATokenTransferScaledAmount(
vars.collateralReserveCache.nextLiquidityIndex
),
vars.collateralReserveCache.nextLiquidityIndex
);
} else {
// @note Manually updating the cache in case the debt and collateral are the same asset.
// This ensures the rates are updated correctly, considering the burning of debt
// in the `_burnDebtTokens` function.
if (params.collateralAsset == params.debtAsset) {
vars.collateralReserveCache.nextScaledVariableDebt = vars
.debtReserveCache
.nextScaledVariableDebt;
}
_burnCollateralATokens(collateralReserve, params, vars);
}
// Transfer fee to treasury if it is non-zero
if (vars.liquidationProtocolFeeAmount != 0) {
// getATokenTransferScaledAmount has been used because under the hood, transferOnLiquidation is calling AToken.transfer
uint256 scaledDownLiquidationProtocolFee = vars
.liquidationProtocolFeeAmount
.getATokenTransferScaledAmount(vars.collateralReserveCache.nextLiquidityIndex);
uint256 scaledDownBorrowerBalance = IAToken(vars.collateralReserveCache.aTokenAddress)
.scaledBalanceOf(params.borrower);
// To avoid trying to send more aTokens than available on balance, due to 1 wei imprecision
if (scaledDownLiquidationProtocolFee > scaledDownBorrowerBalance) {
scaledDownLiquidationProtocolFee = scaledDownBorrowerBalance;
vars.liquidationProtocolFeeAmount = scaledDownBorrowerBalance.getATokenBalance(
vars.collateralReserveCache.nextLiquidityIndex
);
}
IAToken(vars.collateralReserveCache.aTokenAddress).transferOnLiquidation({
from: params.borrower,
to: IAToken(vars.collateralReserveCache.aTokenAddress).RESERVE_TREASURY_ADDRESS(),
amount: vars.liquidationProtocolFeeAmount,
scaledAmount: scaledDownLiquidationProtocolFee,
index: vars.collateralReserveCache.nextLiquidityIndex
});
}
// burn bad debt if necessary
// Each additional debt asset already adds around ~75k gas to the liquidation.
// To keep the liquidation gas under control, 0 usd collateral positions are not touched, as there is no immediate benefit in burning or transferring to treasury.
if (hasNoCollateralLeft && borrowerConfig.isBorrowingAny()) {
_burnBadDebt(reservesData, reservesList, borrowerConfig, params);
}
// Transfers the debt asset being repaid to the aToken, where the liquidity is kept
IERC20(params.debtAsset).safeTransferFrom(
params.liquidator,
vars.debtReserveCache.aTokenAddress,
vars.actualDebtToLiquidate
);
emit IPool.LiquidationCall(
params.collateralAsset,
params.debtAsset,
params.borrower,
vars.actualDebtToLiquidate,
vars.actualCollateralToLiquidate,
params.liquidator,
params.receiveAToken
);
}
/**
* @notice Burns the collateral aTokens and transfers the underlying to the liquidator.
* @dev The function also updates the state and the interest rate of the collateral reserve.
* @param collateralReserve The data of the collateral reserve
* @param params The additional parameters needed to execute the liquidation function
* @param vars The executeLiquidationCall() function local vars
*/
function _burnCollateralATokens(
DataTypes.ReserveData storage collateralReserve,
DataTypes.ExecuteLiquidationCallParams memory params,
LiquidationCallLocalVars memory vars
) internal {
collateralReserve.updateInterestRatesAndVirtualBalance(
vars.collateralReserveCache,
params.collateralAsset,
0,
vars.actualCollateralToLiquidate,
params.interestRateStrategyAddress
);
// Burn the equivalent amount of aToken, sending the underlying to the liquidator
IAToken(vars.collateralReserveCache.aTokenAddress).burn({
from: params.borrower,
receiverOfUnderlying: params.liquidator,
amount: vars.actualCollateralToLiquidate,
scaledAmount: vars.actualCollateralToLiquidate.getATokenBurnScaledAmount(
vars.collateralReserveCache.nextLiquidityIndex
),
index: vars.collateralReserveCache.nextLiquidityIndex
});
}
/**
* @notice Burns the debt tokens of the user up to the amount being repaid by the liquidator
* or the entire debt if the user is in a bad debt scenario.
* @dev The function alters the `debtReserveCache` state in `vars` to update the debt related data.
* @param debtReserveCache The cached debt reserve parameters
* @param debtReserve The storage pointer of the debt reserve parameters
* @param borrowerConfig The pointer of the user configuration
* @param borrower The user address
* @param debtAsset The debt asset address
* @param actualDebtToLiquidate The actual debt to liquidate
* @param hasNoCollateralLeft The flag representing, will user will have no collateral left after liquidation
*/
function _burnDebtTokens(
DataTypes.ReserveCache memory debtReserveCache,
DataTypes.ReserveData storage debtReserve,
DataTypes.UserConfigurationMap storage borrowerConfig,
address borrower,
address debtAsset,
uint256 borrowerReserveDebt,
uint256 actualDebtToLiquidate,
bool hasNoCollateralLeft,
address interestRateStrategyAddress
) internal {
bool noMoreDebt = true;
// Prior v3.1, there were cases where, after liquidation, the `isBorrowing` flag was left on
// even after the user debt was fully repaid, so to avoid this function reverting in the `_burnScaled`
// (see ScaledBalanceTokenBase contract), we check for any debt remaining.
if (borrowerReserveDebt != 0) {
uint256 burnAmount = hasNoCollateralLeft ? borrowerReserveDebt : actualDebtToLiquidate;
// As vDebt.burn rounds down, we ensure an equivalent of <= amount debt is burned.
(noMoreDebt, debtReserveCache.nextScaledVariableDebt) = IVariableDebtToken(
debtReserveCache.variableDebtTokenAddress
).burn({
from: borrower,
scaledAmount: burnAmount.getVTokenBurnScaledAmount(
debtReserveCache.nextVariableBorrowIndex
),
index: debtReserveCache.nextVariableBorrowIndex
});
}
uint256 outstandingDebt = borrowerReserveDebt - actualDebtToLiquidate;
if (hasNoCollateralLeft && outstandingDebt != 0) {
debtReserve.deficit += outstandingDebt.toUint128();
emit IPool.DeficitCreated(borrower, debtAsset, outstandingDebt);
}
if (noMoreDebt) {
borrowerConfig.setBorrowing(debtReserve.id, false);
}
debtReserve.updateInterestRatesAndVirtualBalance(
debtReserveCache,
debtAsset,
actualDebtToLiquidate,
0,
interestRateStrategyAddress
);
}
struct AvailableCollateralToLiquidateLocalVars {
uint256 maxCollateralToLiquidate;
uint256 baseCollateral;
uint256 bonusCollateral;
uint256 collateralAmount;
uint256 debtAmountNeeded;
uint256 liquidationProtocolFeePercentage;
uint256 liquidationProtocolFee;
uint256 collateralToLiquidateInBaseCurrency;
uint256 collateralAssetPrice;
}
/**
* @notice Calculates how much of a specific collateral can be liquidated, given
* a certain amount of debt asset.
* @dev This function needs to be called after all the checks to validate the liquidation have been performed,
* otherwise it might fail.
* @param collateralReserveConfiguration The data of the collateral reserve
* @param collateralAssetPrice The price of the underlying asset used as collateral
* @param collateralAssetUnit The asset units of the collateral
* @param debtAssetPrice The price of the underlying borrowed asset to be repaid with the liquidation
* @param debtAssetUnit The asset units of the debt
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param borrowerCollateralBalance The collateral balance for the specific `collateralAsset` of the user being liquidated
* @param liquidationBonus The collateral bonus percentage to receive as result of the liquidation
* @return The maximum amount that is possible to liquidate given all the liquidation constraints (user balance, close factor)
* @return The amount to repay with the liquidation
* @return The fee taken from the liquidation bonus amount to be paid to the protocol
* @return The collateral amount to liquidate in the base currency used by the price feed
*/
function _calculateAvailableCollateralToLiquidate(
DataTypes.ReserveConfigurationMap memory collateralReserveConfiguration,
uint256 collateralAssetPrice,
uint256 collateralAssetUnit,
uint256 debtAssetPrice,
uint256 debtAssetUnit,
uint256 debtToCover,
uint256 borrowerCollateralBalance,
uint256 liquidationBonus
) internal pure returns (uint256, uint256, uint256, uint256) {
AvailableCollateralToLiquidateLocalVars memory vars;
vars.collateralAssetPrice = collateralAssetPrice;
vars.liquidationProtocolFeePercentage = collateralReserveConfiguration
.getLiquidationProtocolFee();
// This is the base collateral to liquidate based on the given debt to cover
vars.baseCollateral =
(debtAssetPrice * debtToCover * collateralAssetUnit) /
(vars.collateralAssetPrice * debtAssetUnit);
vars.maxCollateralToLiquidate = vars.baseCollateral.percentMul(liquidationBonus);
if (vars.maxCollateralToLiquidate > borrowerCollateralBalance) {
vars.collateralAmount = borrowerCollateralBalance;
vars.debtAmountNeeded = ((vars.collateralAssetPrice * vars.collateralAmount * debtAssetUnit) /
(debtAssetPrice * collateralAssetUnit)).percentDivCeil(liquidationBonus);
} else {
vars.collateralAmount = vars.maxCollateralToLiquidate;
vars.debtAmountNeeded = debtToCover;
}
vars.collateralToLiquidateInBaseCurrency =
(vars.collateralAmount * vars.collateralAssetPrice) /
collateralAssetUnit;
if (vars.liquidationProtocolFeePercentage != 0) {
vars.bonusCollateral =
vars.collateralAmount -
vars.collateralAmount.percentDiv(liquidationBonus);
vars.liquidationProtocolFee = vars.bonusCollateral.percentMul(
vars.liquidationProtocolFeePercentage
);
vars.collateralAmount -= vars.liquidationProtocolFee;
}
return (
vars.collateralAmount,
vars.debtAmountNeeded,
vars.liquidationProtocolFee,
vars.collateralToLiquidateInBaseCurrency
);
}
/**
* @notice Remove a user's bad debt by burning debt tokens.
* @dev This function iterates through all active reserves where the user has a debt position,
* updates their state, and performs the necessary burn.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param borrowerConfig The user configuration
* @param params The txn params
*/
function _burnBadDebt(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
DataTypes.UserConfigurationMap storage borrowerConfig,
DataTypes.ExecuteLiquidationCallParams memory params
) internal {
// the cache is muted inside the iteration and should not be used for other operations
uint256 unsafe_cachedBorrowerConfig = borrowerConfig.data;
uint256 i = 0;
bool isBorrowed = false;
while (unsafe_cachedBorrowerConfig != 0) {
(unsafe_cachedBorrowerConfig, isBorrowed, ) = UserConfiguration.getNextFlags(
unsafe_cachedBorrowerConfig
);
if (isBorrowed) {
address reserveAddress = reservesList[i];
if (reserveAddress != address(0)) {
DataTypes.ReserveCache memory reserveCache = reservesData[reserveAddress].cache();
if (reserveCache.reserveConfiguration.getActive()) {
reservesData[reserveAddress].updateState(reserveCache);
_burnDebtTokens(
reserveCache,
reservesData[reserveAddress],
borrowerConfig,
params.borrower,
reserveAddress,
IVariableDebtToken(reserveCache.variableDebtTokenAddress)
.scaledBalanceOf(params.borrower)
.getVTokenBalance(reserveCache.nextVariableBorrowIndex),
0,
true,
params.interestRateStrategyAddress
);
}
}
}
unchecked {
++i;
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: LGPL-3.0-or-later
pragma solidity ^0.8.10;
import {IERC20} from '../../openzeppelin/contracts/IERC20.sol';
/// @title Gnosis Protocol v2 Safe ERC20 Transfer Library
/// @author Gnosis Developers
/// @dev Gas-efficient version of Openzeppelin's SafeERC20 contract.
library GPv2SafeERC20 {
/// @dev Wrapper around a call to the ERC20 function `transfer` that reverts
/// also when the token returns `false`.
function safeTransfer(IERC20 token, address to, uint256 value) internal {
bytes4 selector_ = token.transfer.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(add(freeMemoryPointer, 36), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTransferResult(token), 'GPv2: failed transfer');
}
/// @dev Wrapper around a call to the ERC20 function `transferFrom` that
/// reverts also when the token returns `false`.
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
bytes4 selector_ = token.transferFrom.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff))
mstore(add(freeMemoryPointer, 68), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
require(getLastTransferResult(token), 'GPv2: failed transferFrom');
}
/// @dev Verifies that the last return was a successful `transfer*` call.
/// This is done by checking that the return data is either empty, or
/// is a valid ABI encoded boolean.
function getLastTransferResult(IERC20 token) private view returns (bool success) {
// NOTE: Inspecting previous return data requires assembly. Note that
// we write the return data to memory 0 in the case where the return
// data size is 32, this is OK since the first 64 bytes of memory are
// reserved by Solidy as a scratch space that can be used within
// assembly blocks.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
/// @dev Revert with an ABI encoded Solidity error with a message
/// that fits into 32-bytes.
///
/// An ABI encoded Solidity error has the following memory layout:
///
/// ------------+----------------------------------
/// byte range | value
/// ------------+----------------------------------
/// 0x00..0x04 | selector("Error(string)")
/// 0x04..0x24 | string offset (always 0x20)
/// 0x24..0x44 | string length
/// 0x44..0x64 | string value, padded to 32-bytes
function revertWithMessage(length, message) {
mstore(0x00, '\x08\xc3\x79\xa0')
mstore(0x04, 0x20)
mstore(0x24, length)
mstore(0x44, message)
revert(0x00, 0x64)
}
switch returndatasize()
// Non-standard ERC20 transfer without return.
case 0 {
// NOTE: When the return data size is 0, verify that there
// is code at the address. This is done in order to maintain
// compatibility with Solidity calling conventions.
// <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls>
if iszero(extcodesize(token)) {
revertWithMessage(20, 'GPv2: not a contract')
}
success := 1
}
// Standard ERC20 transfer returning boolean success value.
case 32 {
returndatacopy(0, 0, returndatasize())
// NOTE: For ABI encoding v1, any non-zero value is accepted
// as `true` for a boolean. In order to stay compatible with
// OpenZeppelin's `SafeERC20` library which is known to work
// with the existing ERC20 implementation we care about,
// make sure we return success for any non-zero return value
// from the `transfer*` call.
success := iszero(iszero(mload(0)))
}
default {
revertWithMessage(31, 'GPv2: malformed transfer result')
}
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
/**
* @title PercentageMath library
* @author Aave
* @notice Provides functions to perform percentage calculations
* @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
* @dev Operations are rounded. If a value is >=.5, will be rounded up, otherwise rounded down.
*/
library PercentageMath {
// Maximum percentage factor (100.00%)
uint256 internal constant PERCENTAGE_FACTOR = 1e4;
// Half percentage factor (50.00%)
uint256 internal constant HALF_PERCENTAGE_FACTOR = 0.5e4;
/**
* @notice Executes a percentage multiplication
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return result value percentmul percentage
*/
function percentMul(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
// to avoid overflow, value <= (type(uint256).max - HALF_PERCENTAGE_FACTOR) / percentage
assembly {
if iszero(
or(
iszero(percentage),
iszero(gt(value, div(sub(not(0), HALF_PERCENTAGE_FACTOR), percentage)))
)
) {
revert(0, 0)
}
result := div(add(mul(value, percentage), HALF_PERCENTAGE_FACTOR), PERCENTAGE_FACTOR)
}
}
function percentMulCeil(
uint256 value,
uint256 percentage
) internal pure returns (uint256 result) {
// to avoid overflow, value <= type(uint256).max / percentage
assembly {
if iszero(or(iszero(percentage), iszero(gt(value, div(not(0), percentage))))) {
revert(0, 0)
}
let product := mul(value, percentage)
result := add(
div(product, PERCENTAGE_FACTOR),
iszero(iszero(mod(product, PERCENTAGE_FACTOR)))
)
}
}
function percentMulFloor(
uint256 value,
uint256 percentage
) internal pure returns (uint256 result) {
// to avoid overflow, value <= type(uint256).max / percentage
assembly {
if iszero(or(iszero(percentage), iszero(gt(value, div(not(0), percentage))))) {
revert(0, 0)
}
result := div(mul(value, percentage), PERCENTAGE_FACTOR)
}
}
/**
* @notice Executes a percentage division
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return result value percentdiv percentage
*/
function percentDiv(uint256 value, uint256 percentage) internal pure returns (uint256 result) {
// to avoid overflow, value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR
assembly {
if or(
iszero(percentage),
iszero(iszero(gt(value, div(sub(not(0), div(percentage, 2)), PERCENTAGE_FACTOR))))
) {
revert(0, 0)
}
result := div(add(mul(value, PERCENTAGE_FACTOR), div(percentage, 2)), percentage)
}
}
function percentDivCeil(
uint256 value,
uint256 percentage
) internal pure returns (uint256 result) {
// to avoid overflow, value <= type(uint256).max / PERCENTAGE_FACTOR
assembly {
if or(iszero(percentage), iszero(iszero(gt(value, div(not(0), PERCENTAGE_FACTOR))))) {
revert(0, 0)
}
let val := mul(value, PERCENTAGE_FACTOR)
result := add(div(val, percentage), iszero(iszero(mod(val, percentage))))
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import {WadRayMath} from './WadRayMath.sol';
/**
* @title MathUtils library
* @author Aave
* @notice Provides functions to perform linear and compounded interest calculations
*/
library MathUtils {
using WadRayMath for uint256;
/// @dev Ignoring leap years
uint256 internal constant SECONDS_PER_YEAR = 365 days;
/**
* @dev Function to calculate the interest accumulated using a linear interest rate formula
* @param rate The interest rate, in ray
* @param lastUpdateTimestamp The timestamp of the last update of the interest
* @return The interest rate linearly accumulated during the timeDelta, in ray
*/
function calculateLinearInterest(
uint256 rate,
uint40 lastUpdateTimestamp
) internal view returns (uint256) {
//solium-disable-next-line
uint256 result = rate * (block.timestamp - uint256(lastUpdateTimestamp));
unchecked {
result = result / SECONDS_PER_YEAR;
}
return WadRayMath.RAY + result;
}
/**
* @dev Function to calculate the interest using a compounded interest rate formula
* To avoid expensive exponentiation, the calculation is performed using a binomial approximation:
*
* (1+x)^n = 1+n*x+[n/2*(n-1)]*x^2+[n/6*(n-1)*(n-2)*x^3...
*
* The approximation slightly underpays liquidity providers and undercharges borrowers, with the advantage of great
* gas cost reductions. The whitepaper contains reference to the approximation and a table showing the margin of
* error per different time periods
*
* @param rate The interest rate, in ray
* @param lastUpdateTimestamp The timestamp of the last update of the interest
* @return The interest rate compounded during the timeDelta, in ray
*/
function calculateCompoundedInterest(
uint256 rate,
uint40 lastUpdateTimestamp,
uint256 currentTimestamp
) internal pure returns (uint256) {
//solium-disable-next-line
uint256 exp = currentTimestamp - uint256(lastUpdateTimestamp);
if (exp == 0) {
return WadRayMath.RAY;
}
// calculations compound interest using the ideal formula - e^(rate per year * number of years)
// 100_000% per year = 1_000 * 100, passed 10_000 years:
// e^(1_000 * 10_000) = 6.5922325346184394895608861310659088446667722661221381641234330770... × 10^4342944
// The current formula in the contract returns:
// 1.66666716666676666667 × 10^20
// This happens because the contract uses a polynomial approximation of the ideal formula
// and on big numbers the ideal formula with exponential function has much more speed.
// Used approximation in contracts is not precise enough on such big numbers.
//
// But we can be sure that the current formula in contracts can't overflow on such big numbers
// and we can use unchecked arithmetics to save gas.
//
// Also, if we take into an account the fact that all timestamps are stored in uint32/40 types
// we can only have 100 years left until we will have overflows in timestamps.
// Because of that realistically we can't overflow in this formula.
unchecked {
// this can't overflow because rate is always fits in 128 bits and exp always fits in 40 bits
uint256 x = (rate * exp) / SECONDS_PER_YEAR;
return WadRayMath.RAY + x + x.rayMul(x / 2 + x.rayMul(x / 6));
}
}
/**
* @dev Calculates the compounded interest between the timestamp of the last update and the current block timestamp
* @param rate The interest rate (in ray)
* @param lastUpdateTimestamp The timestamp from which the interest accumulation needs to be calculated
* @return The interest rate compounded between lastUpdateTimestamp and current block timestamp, in ray
*/
function calculateCompoundedInterest(
uint256 rate,
uint40 lastUpdateTimestamp
) internal view returns (uint256) {
return calculateCompoundedInterest(rate, lastUpdateTimestamp, block.timestamp);
}
function mulDivCeil(uint256 a, uint256 b, uint256 c) internal pure returns (uint256 d) {
assembly {
// Revert if c == 0 to avoid division by zero
if iszero(c) {
revert(0, 0)
}
// Overflow check: Ensure a * b does not exceed uint256 max
if iszero(or(iszero(b), iszero(gt(a, div(not(0), b))))) {
revert(0, 0)
}
let product := mul(a, b)
d := add(div(product, c), iszero(iszero(mod(product, c))))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {WadRayMath} from '../../libraries/math/WadRayMath.sol';
/**
* @title TokenMath
* @author BGD Labs
* @notice Provides utility functions for calculating scaled amounts and balances for aTokens and vTokens,
* applying specific rounding rules (floor/ceil) as per Aave v3.5's rounding improvements.
* The rounding behavior of the operations is in line with the ERC-4626 token standard.
* In practice, this means rounding in favor of the protocol.
*/
library TokenMath {
using WadRayMath for uint256;
/**
* @notice Calculates the scaled amount of aTokens to mint when supplying underlying assets.
* The amount is rounded down to ensure the minted aTokens are less than or equal to the supplied amount.
* @param amount The amount of underlying asset supplied.
* @param liquidityIndex The current aToken liquidityIndex.
* @return The scaled amount of aTokens to mint.
*/
function getATokenMintScaledAmount(
uint256 amount,
uint256 liquidityIndex
) internal pure returns (uint256) {
return amount.rayDivFloor(liquidityIndex);
}
/**
* @notice Calculates the scaled amount of aTokens to burn when withdrawing underlying assets.
* The scaled amount is rounded up to ensure the user's aToken balance is sufficiently reduced.
* @param amount The amount of underlying asset to withdraw.
* @param liquidityIndex The current aToken liquidityIndex.
* @return The scaled amount of aTokens to burn.
*/
function getATokenBurnScaledAmount(
uint256 amount,
uint256 liquidityIndex
) internal pure returns (uint256) {
return amount.rayDivCeil(liquidityIndex);
}
/**
* @notice Calculates the scaled amount of aTokens to transfer.
* The scaled amount is rounded up to ensure the recipient receives at least the requested amount.
* @param amount The amount of aTokens to transfer.
* @param liquidityIndex The current aToken liquidityIndex.
* @return The scaled amount of aTokens for transfer.
*/
function getATokenTransferScaledAmount(
uint256 amount,
uint256 liquidityIndex
) internal pure returns (uint256) {
return amount.rayDivCeil(liquidityIndex);
}
/**
* @notice Calculates the actual aToken balance from a scaled balance and the current liquidityIndex.
* The balance is rounded down to prevent overaccounting.
* @param scaledAmount The scaled aToken balance.
* @param liquidityIndex The current aToken liquidityIndex.
* @return The actual aToken balance.
*/
function getATokenBalance(
uint256 scaledAmount,
uint256 liquidityIndex
) internal pure returns (uint256) {
return scaledAmount.rayMulFloor(liquidityIndex);
}
/**
* @notice Calculates the scaled amount of vTokens to mint when borrowing.
* The amount is rounded up to ensure the protocol never underaccounts the user's debt.
* @param amount The amount of underlying asset borrowed.
* @param variableBorrowIndex The current vToken variableBorrowIndex.
* @return The scaled amount of vTokens to mint.
*/
function getVTokenMintScaledAmount(
uint256 amount,
uint256 variableBorrowIndex
) internal pure returns (uint256) {
return amount.rayDivCeil(variableBorrowIndex);
}
/**
* @notice Calculates the scaled amount of vTokens to burn.
* The scaled amount is rounded down to prevent over-burning of vTokens.
* @param amount The amount of underlying asset corresponding to the vTokens to burn.
* @param variableBorrowIndex The current vToken variableBorrowIndex.
* @return The scaled amount of vTokens to burn.
*/
function getVTokenBurnScaledAmount(
uint256 amount,
uint256 variableBorrowIndex
) internal pure returns (uint256) {
return amount.rayDivFloor(variableBorrowIndex);
}
/**
* @notice Calculates the actual vToken balance (debt) from a scaled balance and the current variableBorrowIndex.
* The balance is rounded up to prevent underaccounting the user's debt.
* @param scaledAmount The scaled vToken balance.
* @param variableBorrowIndex The current vToken variableBorrowIndex.
* @return The actual vToken balance (debt).
*/
function getVTokenBalance(
uint256 scaledAmount,
uint256 variableBorrowIndex
) internal pure returns (uint256) {
return scaledAmount.rayMulCeil(variableBorrowIndex);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
library DataTypes {
/**
* This exists specifically to maintain the `getReserveData()` interface, since the new, internal
* `ReserveData` struct includes the reserve's `virtualUnderlyingBalance`.
*/
struct ReserveDataLegacy {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
// DEPRECATED on v3.2.0
uint128 currentStableBorrowRate;
//timestamp of last update
uint40 lastUpdateTimestamp;
//the id of the reserve. Represents the position in the list of the active reserves
uint16 id;
//aToken address
address aTokenAddress;
// DEPRECATED on v3.2.0
address stableDebtTokenAddress;
//variableDebtToken address
address variableDebtTokenAddress;
// DEPRECATED on v3.4.0, should use the `RESERVE_INTEREST_RATE_STRATEGY` variable from the Pool contract
address interestRateStrategyAddress;
//the current treasury balance, scaled
uint128 accruedToTreasury;
// DEPRECATED on v3.4.0
uint128 unbacked;
//the outstanding debt borrowed against this asset in isolation mode
uint128 isolationModeTotalDebt;
}
struct ReserveData {
//stores the reserve configuration
ReserveConfigurationMap configuration;
//the liquidity index. Expressed in ray
uint128 liquidityIndex;
//the current supply rate. Expressed in ray
uint128 currentLiquidityRate;
//variable borrow index. Expressed in ray
uint128 variableBorrowIndex;
//the current variable borrow rate. Expressed in ray
uint128 currentVariableBorrowRate;
/// @notice reused `__deprecatedStableBorrowRate` storage from pre 3.2
// the current accumulate deficit in underlying tokens
uint128 deficit;
//timestamp of last update
uint40 lastUpdateTimestamp;
//the id of the reserve. Represents the position in the list of the active reserves
uint16 id;
//timestamp until when liquidations are not allowed on the reserve, if set to past liquidations will be allowed
uint40 liquidationGracePeriodUntil;
//aToken address
address aTokenAddress;
// DEPRECATED on v3.2.0
address __deprecatedStableDebtTokenAddress;
//variableDebtToken address
address variableDebtTokenAddress;
// DEPRECATED on v3.4.0, should use the `RESERVE_INTEREST_RATE_STRATEGY` variable from the Pool contract
address __deprecatedInterestRateStrategyAddress;
//the current treasury balance, scaled
uint128 accruedToTreasury;
// In aave 3.3.0 this storage slot contained the `unbacked`
uint128 virtualUnderlyingBalance;
//the outstanding debt borrowed against this asset in isolation mode
uint128 isolationModeTotalDebt;
//the amount of underlying accounted for by the protocol
// DEPRECATED on v3.4.0. Moved into the same slot as accruedToTreasury for optimized storage access.
uint128 __deprecatedVirtualUnderlyingBalance;
}
struct ReserveConfigurationMap {
//bit 0-15: LTV
//bit 16-31: Liq. threshold
//bit 32-47: Liq. bonus
//bit 48-55: Decimals
//bit 56: reserve is active
//bit 57: reserve is frozen
//bit 58: borrowing is enabled
//bit 59: DEPRECATED: stable rate borrowing enabled
//bit 60: asset is paused
//bit 61: borrowing in isolation mode is enabled
//bit 62: siloed borrowing enabled
//bit 63: flashloaning enabled
//bit 64-79: reserve factor
//bit 80-115: borrow cap in whole tokens, borrowCap == 0 => no cap
//bit 116-151: supply cap in whole tokens, supplyCap == 0 => no cap
//bit 152-167: liquidation protocol fee
//bit 168-175: DEPRECATED: eMode category
//bit 176-211: DEPRECATED: unbacked mint cap
//bit 212-251: debt ceiling for isolation mode with (ReserveConfiguration::DEBT_CEILING_DECIMALS) decimals
//bit 252: DEPRECATED: virtual accounting is enabled for the reserve
//bit 253-255 unused
uint256 data;
}
struct UserConfigurationMap {
/**
* @dev Bitmap of the users collaterals and borrows. It is divided in pairs of bits, one pair per asset.
* The first bit indicates if an asset is used as collateral by the user, the second whether an
* asset is borrowed by the user.
*/
uint256 data;
}
// DEPRECATED: kept for backwards compatibility, might be removed in a future version
struct EModeCategoryLegacy {
// each eMode category has a custom ltv and liquidation threshold
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
// DEPRECATED
address priceSource;
string label;
}
struct CollateralConfig {
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
}
struct EModeCategoryBaseConfiguration {
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
string label;
}
struct EModeCategory {
// each eMode category has a custom ltv and liquidation threshold
uint16 ltv;
uint16 liquidationThreshold;
uint16 liquidationBonus;
uint128 collateralBitmap;
string label;
uint128 borrowableBitmap;
uint128 ltvzeroBitmap; // if true, the asset will be treated as ltv0 and ltv0 rules apply
}
enum InterestRateMode {
NONE,
__DEPRECATED,
VARIABLE
}
struct ReserveCache {
uint256 currScaledVariableDebt;
uint256 nextScaledVariableDebt;
uint256 currLiquidityIndex;
uint256 nextLiquidityIndex;
uint256 currVariableBorrowIndex;
uint256 nextVariableBorrowIndex;
uint256 currLiquidityRate;
uint256 currVariableBorrowRate;
uint256 reserveFactor;
ReserveConfigurationMap reserveConfiguration;
address aTokenAddress;
address variableDebtTokenAddress;
uint40 reserveLastUpdateTimestamp;
}
struct ExecuteLiquidationCallParams {
address liquidator;
uint256 debtToCover;
address collateralAsset;
address debtAsset;
address borrower;
bool receiveAToken;
address priceOracle;
uint8 borrowerEModeCategory;
address priceOracleSentinel;
address interestRateStrategyAddress;
}
struct ExecuteSupplyParams {
address user;
address asset;
address interestRateStrategyAddress;
uint256 amount;
address onBehalfOf;
uint16 referralCode;
uint8 supplierEModeCategory;
}
struct ExecuteBorrowParams {
address asset;
address user;
address onBehalfOf;
address interestRateStrategyAddress;
uint256 amount;
InterestRateMode interestRateMode;
uint16 referralCode;
bool releaseUnderlying;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ExecuteRepayParams {
address asset;
address user;
address interestRateStrategyAddress;
uint256 amount;
InterestRateMode interestRateMode;
address onBehalfOf;
bool useATokens;
address oracle;
uint8 userEModeCategory;
}
struct ExecuteWithdrawParams {
address user;
address asset;
address interestRateStrategyAddress;
uint256 amount;
address to;
address oracle;
uint8 userEModeCategory;
}
struct ExecuteEliminateDeficitParams {
address user;
address asset;
address interestRateStrategyAddress;
uint256 amount;
}
struct FinalizeTransferParams {
address asset;
address from;
address to;
uint256 scaledAmount;
uint256 scaledBalanceFromBefore;
address oracle;
uint8 fromEModeCategory;
}
struct FlashloanParams {
address user;
address receiverAddress;
address[] assets;
uint256[] amounts;
uint256[] interestRateModes;
address interestRateStrategyAddress;
address onBehalfOf;
bytes params;
uint16 referralCode;
uint256 flashLoanPremium;
address addressesProvider;
address pool;
uint8 userEModeCategory;
bool isAuthorizedFlashBorrower;
}
struct FlashloanSimpleParams {
address user;
address receiverAddress;
address asset;
address interestRateStrategyAddress;
uint256 amount;
bytes params;
uint16 referralCode;
uint256 flashLoanPremium;
}
struct FlashLoanRepaymentParams {
address user;
uint256 amount;
uint256 totalPremium;
address asset;
address interestRateStrategyAddress;
address receiverAddress;
uint16 referralCode;
}
struct CalculateUserAccountDataParams {
UserConfigurationMap userConfig;
address user;
address oracle;
uint8 userEModeCategory;
}
struct ValidateBorrowParams {
ReserveCache reserveCache;
UserConfigurationMap userConfig;
address asset;
address userAddress;
uint256 amountScaled;
InterestRateMode interestRateMode;
address oracle;
uint8 userEModeCategory;
address priceOracleSentinel;
}
struct ValidateLiquidationCallParams {
ReserveCache debtReserveCache;
uint256 totalDebt;
uint256 healthFactor;
address priceOracleSentinel;
address borrower;
address liquidator;
}
struct CalculateInterestRatesParams {
uint256 unbacked;
uint256 liquidityAdded;
uint256 liquidityTaken;
uint256 totalDebt;
uint256 reserveFactor;
address reserve;
// @notice DEPRECATED in 3.4, but kept for backwards compatibility
bool usingVirtualBalance;
uint256 virtualUnderlyingBalance;
}
struct InitReserveParams {
address asset;
address aTokenAddress;
address variableDebtAddress;
uint16 reservesCount;
uint16 maxNumberReserves;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.10;
import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol';
import {GPv2SafeERC20} from '../../../dependencies/gnosis/contracts/GPv2SafeERC20.sol';
import {IVariableDebtToken} from '../../../interfaces/IVariableDebtToken.sol';
import {IReserveInterestRateStrategy} from '../../../interfaces/IReserveInterestRateStrategy.sol';
import {IPool} from '../../../interfaces/IPool.sol';
import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol';
import {MathUtils} from '../math/MathUtils.sol';
import {WadRayMath} from '../math/WadRayMath.sol';
import {PercentageMath} from '../math/PercentageMath.sol';
import {Errors} from '../helpers/Errors.sol';
import {TokenMath} from '../helpers/TokenMath.sol';
import {DataTypes} from '../types/DataTypes.sol';
import {SafeCast} from 'openzeppelin-contracts/contracts/utils/math/SafeCast.sol';
/**
* @title ReserveLogic library
* @author Aave
* @notice Implements the logic to update the reserves state
*/
library ReserveLogic {
using WadRayMath for uint256;
using TokenMath for uint256;
using PercentageMath for uint256;
using SafeCast for uint256;
using GPv2SafeERC20 for IERC20;
using ReserveLogic for DataTypes.ReserveData;
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
/**
* @notice Returns the ongoing normalized income for the reserve.
* @dev A value of 1e27 means there is no income. As time passes, the income is accrued
* @dev A value of 2*1e27 means for each unit of asset one unit of income has been accrued
* @param reserve The reserve object
* @return The normalized income, expressed in ray
*/
function getNormalizedIncome(
DataTypes.ReserveData storage reserve
) internal view returns (uint256) {
uint40 timestamp = reserve.lastUpdateTimestamp;
//solium-disable-next-line
if (timestamp == block.timestamp) {
//if the index was updated in the same block, no need to perform any calculation
return reserve.liquidityIndex;
} else {
return
MathUtils.calculateLinearInterest(reserve.currentLiquidityRate, timestamp).rayMul(
reserve.liquidityIndex
);
}
}
/**
* @notice Returns the ongoing normalized variable debt for the reserve.
* @dev A value of 1e27 means there is no debt. As time passes, the debt is accrued
* @dev A value of 2*1e27 means that for each unit of debt, one unit worth of interest has been accumulated
* @param reserve The reserve object
* @return The normalized variable debt, expressed in ray
*/
function getNormalizedDebt(
DataTypes.ReserveData storage reserve
) internal view returns (uint256) {
uint40 timestamp = reserve.lastUpdateTimestamp;
//solium-disable-next-line
if (timestamp == block.timestamp) {
//if the index was updated in the same block, no need to perform any calculation
return reserve.variableBorrowIndex;
} else {
return
MathUtils.calculateCompoundedInterest(reserve.currentVariableBorrowRate, timestamp).rayMul(
reserve.variableBorrowIndex
);
}
}
/**
* @notice Updates the liquidity cumulative index, the variable borrow index and the timestamp of the update.
* @param reserve The reserve object
* @param reserveCache The caching layer for the reserve data
*/
function updateState(
DataTypes.ReserveData storage reserve,
DataTypes.ReserveCache memory reserveCache
) internal {
// If time didn't pass since last stored timestamp, skip state update
//solium-disable-next-line
if (reserveCache.reserveLastUpdateTimestamp == uint40(block.timestamp)) {
return;
}
_updateIndexes(reserve, reserveCache);
_accrueToTreasury(reserve, reserveCache);
//solium-disable-next-line
reserve.lastUpdateTimestamp = uint40(block.timestamp);
reserveCache.reserveLastUpdateTimestamp = uint40(block.timestamp);
}
/**
* @notice Initializes a reserve.
* @param reserve The reserve object
* @param aTokenAddress The address of the overlying atoken contract
* @param variableDebtTokenAddress The address of the overlying variable debt token contract
*/
function init(
DataTypes.ReserveData storage reserve,
address aTokenAddress,
address variableDebtTokenAddress
) internal {
require(reserve.aTokenAddress == address(0), Errors.ReserveAlreadyInitialized());
reserve.liquidityIndex = uint128(WadRayMath.RAY);
reserve.variableBorrowIndex = uint128(WadRayMath.RAY);
reserve.aTokenAddress = aTokenAddress;
reserve.variableDebtTokenAddress = variableDebtTokenAddress;
}
/**
* @notice Updates the reserve current variable borrow rate and the current liquidity rate.
* @param reserve The reserve reserve to be updated
* @param reserveCache The caching layer for the reserve data
* @param reserveAddress The address of the reserve to be updated
* @param liquidityAdded The amount of liquidity added to the protocol (supply or repay) in the previous action
* @param liquidityTaken The amount of liquidity taken from the protocol (redeem or borrow)
*/
function updateInterestRatesAndVirtualBalance(
DataTypes.ReserveData storage reserve,
DataTypes.ReserveCache memory reserveCache,
address reserveAddress,
uint256 liquidityAdded,
uint256 liquidityTaken,
address interestRateStrategyAddress
) internal {
uint256 totalVariableDebt = reserveCache.nextScaledVariableDebt.getVTokenBalance(
reserveCache.nextVariableBorrowIndex
);
(uint256 nextLiquidityRate, uint256 nextVariableRate) = IReserveInterestRateStrategy(
interestRateStrategyAddress
).calculateInterestRates(
DataTypes.CalculateInterestRatesParams({
unbacked: reserve.deficit,
liquidityAdded: liquidityAdded,
liquidityTaken: liquidityTaken,
totalDebt: totalVariableDebt,
reserveFactor: reserveCache.reserveFactor,
reserve: reserveAddress,
usingVirtualBalance: true,
virtualUnderlyingBalance: reserve.virtualUnderlyingBalance
})
);
reserve.currentLiquidityRate = nextLiquidityRate.toUint128();
reserve.currentVariableBorrowRate = nextVariableRate.toUint128();
if (liquidityAdded > 0) {
reserve.virtualUnderlyingBalance += liquidityAdded.toUint128();
}
if (liquidityTaken > 0) {
reserve.virtualUnderlyingBalance -= liquidityTaken.toUint128();
}
emit IPool.ReserveDataUpdated(
reserveAddress,
nextLiquidityRate,
0,
nextVariableRate,
reserveCache.nextLiquidityIndex,
reserveCache.nextVariableBorrowIndex
);
}
/**
* @notice Mints part of the repaid interest to the reserve treasury as a function of the reserve factor for the
* specific asset.
* @param reserve The reserve to be updated
* @param reserveCache The caching layer for the reserve data
*/
function _accrueToTreasury(
DataTypes.ReserveData storage reserve,
DataTypes.ReserveCache memory reserveCache
) internal {
if (reserveCache.reserveFactor == 0) {
return;
}
// debt accrued is the sum of the current debt minus the sum of the debt at the last update
// Rounding down to undermint to the treasury and keep the invariant healthy.
uint256 totalDebtAccrued = reserveCache.currScaledVariableDebt.rayMulFloor(
reserveCache.nextVariableBorrowIndex - reserveCache.currVariableBorrowIndex
);
uint256 amountToMint = totalDebtAccrued.percentMul(reserveCache.reserveFactor);
if (amountToMint != 0) {
reserve.accruedToTreasury += amountToMint
.getATokenMintScaledAmount(reserveCache.nextLiquidityIndex)
.toUint128();
}
}
/**
* @notice Updates the reserve indexes.
* @param reserve The reserve reserve to be updated
* @param reserveCache The cache layer holding the cached protocol data
*/
function _updateIndexes(
DataTypes.ReserveData storage reserve,
DataTypes.ReserveCache memory reserveCache
) internal {
// Only cumulating on the supply side if there is any income being produced
// The case of Reserve Factor 100% is not a problem (currentLiquidityRate == 0),
// as liquidity index should not be updated
if (reserveCache.currLiquidityRate != 0) {
uint256 cumulatedLiquidityInterest = MathUtils.calculateLinearInterest(
reserveCache.currLiquidityRate,
reserveCache.reserveLastUpdateTimestamp
);
reserveCache.nextLiquidityIndex = cumulatedLiquidityInterest.rayMul(
reserveCache.currLiquidityIndex
);
reserve.liquidityIndex = reserveCache.nextLiquidityIndex.toUint128();
}
// Variable borrow index only gets updated if there is any variable debt.
// reserveCache.currVariableBorrowRate != 0 is not a correct validation,
// because a positive base variable rate can be stored on
// reserveCache.currVariableBorrowRate, but the index should not increase
if (reserveCache.currScaledVariableDebt != 0) {
uint256 cumulatedVariableBorrowInterest = MathUtils.calculateCompoundedInterest(
reserveCache.currVariableBorrowRate,
reserveCache.reserveLastUpdateTimestamp
);
reserveCache.nextVariableBorrowIndex = cumulatedVariableBorrowInterest.rayMul(
reserveCache.currVariableBorrowIndex
);
reserve.variableBorrowIndex = reserveCache.nextVariableBorrowIndex.toUint128();
}
}
/**
* @notice Creates a cache object to avoid repeated storage reads and external contract calls when updating state and
* interest rates.
* @param reserve The reserve object for which the cache will be filled
* @return The cache object
*/
function cache(
DataTypes.ReserveData storage reserve
) internal view returns (DataTypes.ReserveCache memory) {
DataTypes.ReserveCache memory reserveCache;
reserveCache.reserveConfiguration = reserve.configuration;
reserveCache.reserveFactor = reserveCache.reserveConfiguration.getReserveFactor();
reserveCache.currLiquidityIndex = reserveCache.nextLiquidityIndex = reserve.liquidityIndex;
reserveCache.currVariableBorrowIndex = reserveCache.nextVariableBorrowIndex = reserve
.variableBorrowIndex;
reserveCache.currLiquidityRate = reserve.currentLiquidityRate;
reserveCache.currVariableBorrowRate = reserve.currentVariableBorrowRate;
reserveCache.aTokenAddress = reserve.aTokenAddress;
reserveCache.variableDebtTokenAddress = reserve.variableDebtTokenAddress;
reserveCache.reserveLastUpdateTimestamp = reserve.lastUpdateTimestamp;
reserveCache.currScaledVariableDebt = reserveCache.nextScaledVariableDebt = IVariableDebtToken(
reserveCache.variableDebtTokenAddress
).scaledTotalSupply();
return reserveCache;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.10;
import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol';
import {Address} from '../../../dependencies/openzeppelin/contracts/Address.sol';
import {GPv2SafeERC20} from '../../../dependencies/gnosis/contracts/GPv2SafeERC20.sol';
import {IPriceOracleGetter} from '../../../interfaces/IPriceOracleGetter.sol';
import {IAToken} from '../../../interfaces/IAToken.sol';
import {IPriceOracleSentinel} from '../../../interfaces/IPriceOracleSentinel.sol';
import {IPoolAddressesProvider} from '../../../interfaces/IPoolAddressesProvider.sol';
import {IAccessControl} from '../../../dependencies/openzeppelin/contracts/IAccessControl.sol';
import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol';
import {UserConfiguration} from '../configuration/UserConfiguration.sol';
import {EModeConfiguration} from '../configuration/EModeConfiguration.sol';
import {Errors} from '../helpers/Errors.sol';
import {TokenMath} from '../helpers/TokenMath.sol';
import {PercentageMath} from '../math/PercentageMath.sol';
import {DataTypes} from '../types/DataTypes.sol';
import {ReserveLogic} from './ReserveLogic.sol';
import {GenericLogic} from './GenericLogic.sol';
import {SafeCast} from 'openzeppelin-contracts/contracts/utils/math/SafeCast.sol';
import {IncentivizedERC20} from '../../tokenization/base/IncentivizedERC20.sol';
import {MathUtils} from '../math/MathUtils.sol';
/**
* @title ValidationLogic library
* @author Aave
* @notice Implements functions to validate the different actions of the protocol
*/
library ValidationLogic {
using ReserveLogic for DataTypes.ReserveData;
using TokenMath for uint256;
using PercentageMath for uint256;
using SafeCast for uint256;
using GPv2SafeERC20 for IERC20;
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
using UserConfiguration for DataTypes.UserConfigurationMap;
using Address for address;
// Factor to apply to "only-variable-debt" liquidity rate to get threshold for rebalancing, expressed in bps
// A value of 0.9e4 results in 90%
uint256 public constant REBALANCE_UP_LIQUIDITY_RATE_THRESHOLD = 0.9e4;
// Minimum health factor allowed under any circumstance
// A value of 0.95e18 results in 0.95
uint256 public constant MINIMUM_HEALTH_FACTOR_LIQUIDATION_THRESHOLD = 0.95e18;
/**
* @dev Minimum health factor to consider a user position healthy
* A value of 1e18 results in 1
*/
uint256 public constant HEALTH_FACTOR_LIQUIDATION_THRESHOLD = 1e18;
/**
* @notice Validates a supply action.
* @param reserveCache The cached data of the reserve
* @param scaledAmount The scaledAmount to be supplied
*/
function validateSupply(
DataTypes.ReserveCache memory reserveCache,
DataTypes.ReserveData storage reserve,
uint256 scaledAmount,
address onBehalfOf
) internal view {
require(scaledAmount != 0, Errors.InvalidAmount());
(bool isActive, bool isFrozen, , bool isPaused) = reserveCache.reserveConfiguration.getFlags();
require(isActive, Errors.ReserveInactive());
require(!isPaused, Errors.ReservePaused());
require(!isFrozen, Errors.ReserveFrozen());
require(onBehalfOf != reserveCache.aTokenAddress, Errors.SupplyToAToken());
uint256 supplyCap = reserveCache.reserveConfiguration.getSupplyCap();
require(
supplyCap == 0 ||
(
(IAToken(reserveCache.aTokenAddress).scaledTotalSupply() +
scaledAmount +
uint256(reserve.accruedToTreasury)).getATokenBalance(reserveCache.nextLiquidityIndex)
) <=
supplyCap * (10 ** reserveCache.reserveConfiguration.getDecimals()),
Errors.SupplyCapExceeded()
);
}
/**
* @notice Validates a withdraw action.
* @param reserveCache The cached data of the reserve
* @param scaledAmount The scaled amount to be withdrawn
* @param scaledUserBalance The scaled balance of the user
*/
function validateWithdraw(
DataTypes.ReserveCache memory reserveCache,
uint256 scaledAmount,
uint256 scaledUserBalance
) internal pure {
require(scaledAmount != 0, Errors.InvalidAmount());
require(scaledAmount <= scaledUserBalance, Errors.NotEnoughAvailableUserBalance());
(bool isActive, , , bool isPaused) = reserveCache.reserveConfiguration.getFlags();
require(isActive, Errors.ReserveInactive());
require(!isPaused, Errors.ReservePaused());
}
struct ValidateBorrowLocalVars {
uint256 amount;
uint256 userDebtInBaseCurrency;
uint256 availableLiquidity;
uint256 totalDebt;
uint256 reserveDecimals;
uint256 borrowCap;
uint256 amountInBaseCurrency;
uint256 assetUnit;
address siloedBorrowingAddress;
bool isActive;
bool isFrozen;
bool isPaused;
bool borrowingEnabled;
bool siloedBorrowingEnabled;
}
/**
* @notice Validates a borrow action.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories The configuration of all the efficiency mode categories
* @param params Additional params needed for the validation
*/
function validateBorrow(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.ValidateBorrowParams memory params
) internal view {
require(params.amountScaled != 0, Errors.InvalidAmount());
ValidateBorrowLocalVars memory vars;
vars.amount = params.amountScaled.getVTokenBalance(params.reserveCache.nextVariableBorrowIndex);
(vars.isActive, vars.isFrozen, vars.borrowingEnabled, vars.isPaused) = params
.reserveCache
.reserveConfiguration
.getFlags();
require(vars.isActive, Errors.ReserveInactive());
require(!vars.isPaused, Errors.ReservePaused());
require(!vars.isFrozen, Errors.ReserveFrozen());
if (params.userEModeCategory != 0) {
require(
EModeConfiguration.isReserveEnabledOnBitmap(
eModeCategories[params.userEModeCategory].borrowableBitmap,
reservesData[params.asset].id
),
Errors.NotBorrowableInEMode()
);
} else {
require(vars.borrowingEnabled, Errors.BorrowingNotEnabled());
}
require(
IERC20(params.reserveCache.aTokenAddress).totalSupply() >= vars.amount,
Errors.InvalidAmount()
);
require(
params.priceOracleSentinel == address(0) ||
IPriceOracleSentinel(params.priceOracleSentinel).isBorrowAllowed(),
Errors.PriceOracleSentinelCheckFailed()
);
//validate interest rate mode
require(
params.interestRateMode == DataTypes.InterestRateMode.VARIABLE,
Errors.InvalidInterestRateModeSelected()
);
vars.reserveDecimals = params.reserveCache.reserveConfiguration.getDecimals();
vars.borrowCap = params.reserveCache.reserveConfiguration.getBorrowCap();
unchecked {
vars.assetUnit = 10 ** vars.reserveDecimals;
}
if (vars.borrowCap != 0) {
vars.totalDebt = (params.reserveCache.currScaledVariableDebt + params.amountScaled)
.getVTokenBalance(params.reserveCache.nextVariableBorrowIndex);
unchecked {
require(vars.totalDebt <= vars.borrowCap * vars.assetUnit, Errors.BorrowCapExceeded());
}
}
if (params.userConfig.isBorrowingAny()) {
(vars.siloedBorrowingEnabled, vars.siloedBorrowingAddress) = params
.userConfig
.getSiloedBorrowingState(reservesData, reservesList);
if (vars.siloedBorrowingEnabled) {
require(vars.siloedBorrowingAddress == params.asset, Errors.SiloedBorrowingViolation());
} else {
require(
!params.reserveCache.reserveConfiguration.getSiloedBorrowing(),
Errors.SiloedBorrowingViolation()
);
}
}
}
/**
* @notice Validates a repay action.
* @param user The user initiating the repayment
* @param reserveCache The cached data of the reserve
* @param amountSent The amount sent for the repayment. Can be an actual value or type(uint256).max
* @param onBehalfOf The address of the user sender is repaying for
* @param debtScaled The borrow scaled balance of the user
*/
function validateRepay(
address user,
DataTypes.ReserveCache memory reserveCache,
uint256 amountSent,
DataTypes.InterestRateMode interestRateMode,
address onBehalfOf,
uint256 debtScaled
) internal pure {
require(amountSent != 0, Errors.InvalidAmount());
require(
interestRateMode == DataTypes.InterestRateMode.VARIABLE,
Errors.InvalidInterestRateModeSelected()
);
require(
amountSent != type(uint256).max || user == onBehalfOf,
Errors.NoExplicitAmountToRepayOnBehalf()
);
(bool isActive, , , bool isPaused) = reserveCache.reserveConfiguration.getFlags();
require(isActive, Errors.ReserveInactive());
require(!isPaused, Errors.ReservePaused());
require(debtScaled != 0, Errors.NoDebtOfSelectedType());
}
/**
* @notice Validates the action of setting an asset as collateral.
* @param reserveConfig The config of the reserve
*/
function validateSetUseReserveAsCollateral(
DataTypes.ReserveConfigurationMap memory reserveConfig
) internal pure {
(bool isActive, , , bool isPaused) = reserveConfig.getFlags();
require(isActive, Errors.ReserveInactive());
require(!isPaused, Errors.ReservePaused());
}
/**
* @notice Validates a flashloan action.
* @param reservesData The state of all the reserves
* @param assets The assets being flash-borrowed
* @param amounts The amounts for each asset being borrowed
*/
function validateFlashloan(
mapping(address => DataTypes.ReserveData) storage reservesData,
address[] memory assets,
uint256[] memory amounts
) internal view {
require(assets.length == amounts.length, Errors.InconsistentFlashloanParams());
for (uint256 i = 0; i < assets.length; i++) {
for (uint256 j = i + 1; j < assets.length; j++) {
require(assets[i] != assets[j], Errors.InconsistentFlashloanParams());
}
validateFlashloanSimple(reservesData[assets[i]], amounts[i]);
}
}
/**
* @notice Validates a flashloan action.
* @param reserve The state of the reserve
*/
function validateFlashloanSimple(
DataTypes.ReserveData storage reserve,
uint256 amount
) internal view {
DataTypes.ReserveConfigurationMap memory configuration = reserve.configuration;
require(!configuration.getPaused(), Errors.ReservePaused());
require(configuration.getActive(), Errors.ReserveInactive());
require(configuration.getFlashLoanEnabled(), Errors.FlashloanDisabled());
require(IERC20(reserve.aTokenAddress).totalSupply() >= amount, Errors.InvalidAmount());
}
struct ValidateLiquidationCallLocalVars {
bool collateralReserveActive;
bool collateralReservePaused;
bool principalReserveActive;
bool principalReservePaused;
}
/**
* @notice Validates the liquidation action.
* @param borrowerConfig The user configuration mapping
* @param collateralReserve The reserve data of the collateral
* @param debtReserve The reserve data of the debt
* @param params Additional parameters needed for the validation
*/
function validateLiquidationCall(
DataTypes.UserConfigurationMap storage borrowerConfig,
DataTypes.ReserveData storage collateralReserve,
DataTypes.ReserveData storage debtReserve,
DataTypes.ValidateLiquidationCallParams memory params
) internal view {
ValidateLiquidationCallLocalVars memory vars;
require(params.borrower != params.liquidator, Errors.SelfLiquidation());
(vars.collateralReserveActive, , , vars.collateralReservePaused) = collateralReserve
.configuration
.getFlags();
(vars.principalReserveActive, , , vars.principalReservePaused) = params
.debtReserveCache
.reserveConfiguration
.getFlags();
require(vars.collateralReserveActive && vars.principalReserveActive, Errors.ReserveInactive());
require(!vars.collateralReservePaused && !vars.principalReservePaused, Errors.ReservePaused());
require(
params.priceOracleSentinel == address(0) ||
params.healthFactor < MINIMUM_HEALTH_FACTOR_LIQUIDATION_THRESHOLD ||
IPriceOracleSentinel(params.priceOracleSentinel).isLiquidationAllowed(),
Errors.PriceOracleSentinelCheckFailed()
);
require(
collateralReserve.liquidationGracePeriodUntil < uint40(block.timestamp) &&
debtReserve.liquidationGracePeriodUntil < uint40(block.timestamp),
Errors.LiquidationGraceSentinelCheckFailed()
);
require(
params.healthFactor < HEALTH_FACTOR_LIQUIDATION_THRESHOLD,
Errors.HealthFactorNotBelowThreshold()
);
//if collateral isn't enabled as collateral by user, it cannot be liquidated
require(
borrowerConfig.isUsingAsCollateral(collateralReserve.id),
Errors.CollateralCannotBeLiquidated()
);
require(params.totalDebt != 0, Errors.SpecifiedCurrencyNotBorrowedByUser());
}
/**
* @notice Validates the health factor of a user.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories The configuration of all the efficiency mode categories
* @param userConfig The state of the user for the specific reserve
* @param user The user to validate health factor of
* @param userEModeCategory The users active efficiency mode category
* @param oracle The price oracle
*/
function validateHealthFactor(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap memory userConfig,
address user,
uint8 userEModeCategory,
address oracle
) internal view returns (uint256, bool) {
(, , , , uint256 healthFactor, bool hasZeroLtvCollateral) = GenericLogic
.calculateUserAccountData(
reservesData,
reservesList,
eModeCategories,
DataTypes.CalculateUserAccountDataParams({
userConfig: userConfig,
user: user,
oracle: oracle,
userEModeCategory: userEModeCategory
})
);
require(
healthFactor >= HEALTH_FACTOR_LIQUIDATION_THRESHOLD,
Errors.HealthFactorLowerThanLiquidationThreshold()
);
return (healthFactor, hasZeroLtvCollateral);
}
/**
* @notice Validates the health factor of a user and the ltv of the asset being borrowed.
* The ltv validation is a measure to prevent accidental borrowing close to liquidations.
* Sophisticated users can work around this validation in various ways.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories The configuration of all the efficiency mode categories
* @param userConfig The state of the user for the specific reserve
* @param user The user from which the aTokens are being transferred
* @param userEModeCategory The users active efficiency mode category
* @param oracle The price oracle
*/
function validateHFAndLtv(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap memory userConfig,
address user,
uint8 userEModeCategory,
address oracle
) internal view {
(
uint256 userCollateralInBaseCurrency,
uint256 userDebtInBaseCurrency,
uint256 currentLtv,
,
uint256 healthFactor,
) = GenericLogic.calculateUserAccountData(
reservesData,
reservesList,
eModeCategories,
DataTypes.CalculateUserAccountDataParams({
userConfig: userConfig,
user: user,
oracle: oracle,
userEModeCategory: userEModeCategory
})
);
require(currentLtv != 0, Errors.LtvValidationFailed());
require(
healthFactor >= HEALTH_FACTOR_LIQUIDATION_THRESHOLD,
Errors.HealthFactorLowerThanLiquidationThreshold()
);
require(
userCollateralInBaseCurrency >= userDebtInBaseCurrency.percentDivCeil(currentLtv),
Errors.CollateralCannotCoverNewBorrow()
);
}
/**
* @notice Validates the health factor of a user and the ltvzero configuration for the asset being withdrawn/transferred or disabled as collateral.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories The configuration of all the efficiency mode categories
* @param userConfig The state of the user for the specific reserve
* @param asset The asset for which the ltv will be validated
* @param from The user from which the aTokens are being transferred
* @param oracle The price oracle
* @param userEModeCategory The users active efficiency mode category
*/
function validateHFAndLtvzero(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap memory userConfig,
address asset,
address from,
address oracle,
uint8 userEModeCategory
) internal view {
(, bool hasZeroLtvCollateral) = validateHealthFactor(
reservesData,
reservesList,
eModeCategories,
userConfig,
from,
userEModeCategory,
oracle
);
// If the user has an ltvzero asset, the selected asset must be the ltv0 asset.
// This mechanism ensures that a multi-collateral position needs to withdraw/transfer the ltv0 asset first.
if (hasZeroLtvCollateral) {
require(
getUserReserveLtv(
reservesData[asset],
eModeCategories[userEModeCategory],
userEModeCategory
) == 0,
Errors.LtvValidationFailed()
);
}
}
/**
* @notice Validates a transfer action.
* @param reserve The reserve object
*/
function validateTransfer(DataTypes.ReserveData storage reserve) internal view {
require(!reserve.configuration.getPaused(), Errors.ReservePaused());
}
/**
* @notice Validates a drop reserve action.
* @param reservesList The addresses of all the active reserves
* @param reserve The reserve object
* @param asset The address of the reserve's underlying asset
*/
function validateDropReserve(
mapping(uint256 => address) storage reservesList,
DataTypes.ReserveData storage reserve,
address asset
) internal view {
require(asset != address(0), Errors.ZeroAddressNotValid());
require(reserve.id != 0 || reservesList[0] == asset, Errors.AssetNotListed());
require(
IERC20(reserve.variableDebtTokenAddress).totalSupply() == 0,
Errors.VariableDebtSupplyNotZero()
);
require(
IERC20(reserve.aTokenAddress).totalSupply() == 0 && reserve.accruedToTreasury == 0,
Errors.UnderlyingClaimableRightsNotZero()
);
}
/**
* @notice Validates the action of setting efficiency mode.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories a mapping storing configurations for all efficiency mode categories
* @param userConfig the user configuration
* @param categoryId The id of the users eMode category
*/
function validateSetUserEMode(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap memory userConfig,
uint8 categoryId
) internal view {
DataTypes.EModeCategory storage eModeCategory = eModeCategories[categoryId];
// category is invalid if the liq threshold is not set
require(
categoryId == 0 || eModeCategory.liquidationThreshold != 0,
Errors.InconsistentEModeCategory()
);
// eMode can always be enabled if the user hasn't supplied anything
if (userConfig.isEmpty()) {
return;
}
uint256 i = 0;
bool isBorrowed = false;
bool isEnabledAsCollateral = false;
// the cache is muted inside the iteration and should not be used for other operations
uint256 unsafe_cachedUserConfig = userConfig.data;
// ensure that in the target eMode (even if it's eMode 0), the assets can still be borrowed and be used as collateral
unchecked {
while (unsafe_cachedUserConfig != 0) {
(unsafe_cachedUserConfig, isBorrowed, isEnabledAsCollateral) = UserConfiguration
.getNextFlags(unsafe_cachedUserConfig);
// ensure a user can only enter or exit an eMode if all his borrowed assets can be borrowed in the target state
if (isBorrowed) {
require(
categoryId != 0
? EModeConfiguration.isReserveEnabledOnBitmap(eModeCategory.borrowableBitmap, i)
: reservesData[reservesList[i]].configuration.getBorrowingEnabled(),
Errors.InvalidDebtInEmode(reservesList[i], categoryId)
);
}
// the asset must either be collateral inside or outside of eMode
if (isEnabledAsCollateral) {
require(
getUserReserveLtv(reservesData[reservesList[i]], eModeCategory, categoryId) != 0,
Errors.InvalidCollateralInEmode(reservesList[i], categoryId)
);
}
++i;
}
}
}
/**
* @notice Validates the action of activating the asset as collateral.
* @dev Only possible if the asset has non-zero LTV and the user is not in isolation mode
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories a mapping storing configurations for all efficiency mode categories
* @param userConfig the user configuration
* @param reserveConfig The reserve configuration
* @param asset Address of the reserve to be enabled as collateral
* @param categoryId The id of the users eMode category
* @return True if the asset can be activated as collateral, false otherwise
*/
function validateUseAsCollateral(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ReserveConfigurationMap memory reserveConfig,
address asset,
uint8 categoryId
) internal view returns (bool) {
// asset must have a non zero ltv to be activated as collateral
if (getUserReserveLtv(reservesData[asset], eModeCategories[categoryId], categoryId) == 0) {
return false;
}
if (!userConfig.isUsingAsCollateralAny()) {
return true;
}
(bool isolationModeActive, , ) = userConfig.getIsolationModeState(reservesData, reservesList);
return (!isolationModeActive && reserveConfig.getDebtCeiling() == 0);
}
/**
* @notice Validates if an asset should be automatically activated as collateral in the following actions: supply, transfer.
* @dev This is used to ensure that isolated assets are not enabled as collateral automatically.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories a mapping storing configurations for all efficiency mode categories
* @param userConfig the user configuration
* @param reserveConfig The reserve configuration
* @param asset Address of the reserve to be enabled as collateral
* @param categoryId The id of the users eMode category
* @return True if the asset can be activated as collateral, false otherwise
*/
function validateAutomaticUseAsCollateral(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ReserveConfigurationMap memory reserveConfig,
address asset,
uint8 categoryId
) internal view returns (bool) {
if (reserveConfig.getDebtCeiling() != 0) {
return false;
}
return
validateUseAsCollateral(
reservesData,
reservesList,
eModeCategories,
userConfig,
reserveConfig,
asset,
categoryId
);
}
/**
* @notice Returns the ltv of the user in the particular reserve
* @param reserveData The reserve configuration
* @param eModeCategoryData The users eMode category configuration
* @param categoryId The id of the users eMode category
**/
function getUserReserveLtv(
DataTypes.ReserveData storage reserveData,
DataTypes.EModeCategory storage eModeCategoryData,
uint8 categoryId
) internal view returns (uint256) {
if (
categoryId != 0 &&
EModeConfiguration.isReserveEnabledOnBitmap(
eModeCategoryData.collateralBitmap,
reserveData.id
)
) {
if (
EModeConfiguration.isReserveEnabledOnBitmap(eModeCategoryData.ltvzeroBitmap, reserveData.id)
) {
return 0;
} else {
return eModeCategoryData.ltv;
}
}
return reserveData.configuration.getLtv();
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.10;
import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol';
import {IScaledBalanceToken} from '../../../interfaces/IScaledBalanceToken.sol';
import {IPriceOracleGetter} from '../../../interfaces/IPriceOracleGetter.sol';
import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol';
import {UserConfiguration} from '../configuration/UserConfiguration.sol';
import {EModeConfiguration} from '../configuration/EModeConfiguration.sol';
import {PercentageMath} from '../math/PercentageMath.sol';
import {WadRayMath} from '../math/WadRayMath.sol';
import {TokenMath} from '../helpers/TokenMath.sol';
import {MathUtils} from '../math/MathUtils.sol';
import {DataTypes} from '../types/DataTypes.sol';
import {ReserveLogic} from './ReserveLogic.sol';
import {ValidationLogic} from './ValidationLogic.sol';
/**
* @title GenericLogic library
* @author Aave
* @notice Implements protocol-level logic to calculate and validate the state of a user
*/
library GenericLogic {
using ReserveLogic for DataTypes.ReserveData;
using TokenMath for uint256;
using WadRayMath for uint256;
using PercentageMath for uint256;
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
using UserConfiguration for DataTypes.UserConfigurationMap;
struct CalculateUserAccountDataVars {
uint256 assetPrice;
uint256 assetUnit;
uint256 userBalanceInBaseCurrency;
uint256 unsafe_cachedUserConfig;
DataTypes.ReserveConfigurationMap configurationCache;
uint256 ltv;
uint256 liquidationThreshold;
uint256 i;
uint256 healthFactor;
uint256 totalCollateralInBaseCurrency;
uint256 totalDebtInBaseCurrency;
uint256 avgLtv;
uint256 avgLiquidationThreshold;
uint256 eModeLiqThreshold;
uint128 eModeCollateralBitmap;
address currentReserveAddress;
bool hasZeroLtvCollateral;
}
/**
* @notice Calculates the user data across the reserves.
* @dev It includes the total liquidity/collateral/borrow balances in the base currency used by the price feed,
* the average Loan To Value, the average Liquidation Ratio, and the Health factor.
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param eModeCategories The configuration of all the efficiency mode categories
* @param params Additional parameters needed for the calculation
* @return The total collateral of the user in the base currency used by the price feed
* @return The total debt of the user in the base currency used by the price feed
* @return The average ltv of the user
* @return The average liquidation threshold of the user
* @return The health factor of the user
* @return True if the ltv is zero, false otherwise
*/
function calculateUserAccountData(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
mapping(uint8 => DataTypes.EModeCategory) storage eModeCategories,
DataTypes.CalculateUserAccountDataParams memory params
) internal view returns (uint256, uint256, uint256, uint256, uint256, bool) {
if (params.userConfig.isEmpty()) {
return (0, 0, 0, 0, type(uint256).max, false);
}
CalculateUserAccountDataVars memory vars;
if (params.userEModeCategory != 0) {
vars.eModeLiqThreshold = eModeCategories[params.userEModeCategory].liquidationThreshold;
vars.eModeCollateralBitmap = eModeCategories[params.userEModeCategory].collateralBitmap;
}
vars.unsafe_cachedUserConfig = params.userConfig.data;
bool isBorrowed = false;
bool isEnabledAsCollateral = false;
while (vars.unsafe_cachedUserConfig != 0) {
(vars.unsafe_cachedUserConfig, isBorrowed, isEnabledAsCollateral) = UserConfiguration
.getNextFlags(vars.unsafe_cachedUserConfig);
if (isEnabledAsCollateral || isBorrowed) {
vars.currentReserveAddress = reservesList[vars.i];
if (vars.currentReserveAddress != address(0)) {
DataTypes.ReserveData storage currentReserve = reservesData[vars.currentReserveAddress];
vars.configurationCache = currentReserve.configuration;
unchecked {
vars.assetUnit = 10 ** vars.configurationCache.getDecimals();
}
vars.assetPrice = IPriceOracleGetter(params.oracle).getAssetPrice(
vars.currentReserveAddress
);
if (isEnabledAsCollateral) {
vars.userBalanceInBaseCurrency = _getUserBalanceInBaseCurrency(
params.user,
currentReserve,
vars.assetPrice,
vars.assetUnit
);
vars.totalCollateralInBaseCurrency += vars.userBalanceInBaseCurrency;
vars.ltv = ValidationLogic.getUserReserveLtv(
currentReserve,
eModeCategories[params.userEModeCategory],
params.userEModeCategory
);
if (vars.ltv == 0) {
vars.hasZeroLtvCollateral = true;
} else {
vars.avgLtv += vars.userBalanceInBaseCurrency * vars.ltv;
}
if (
params.userEModeCategory != 0 &&
EModeConfiguration.isReserveEnabledOnBitmap(vars.eModeCollateralBitmap, vars.i)
) {
vars.liquidationThreshold = vars.eModeLiqThreshold;
} else {
vars.liquidationThreshold = vars.configurationCache.getLiquidationThreshold();
}
vars.avgLiquidationThreshold +=
vars.userBalanceInBaseCurrency *
vars.liquidationThreshold;
}
if (isBorrowed) {
vars.totalDebtInBaseCurrency += _getUserDebtInBaseCurrency(
params.user,
currentReserve,
vars.assetPrice,
vars.assetUnit
);
}
}
}
unchecked {
++vars.i;
}
}
// @note At this point, `avgLiquidationThreshold` represents
// `SUM(collateral_base_value_i * liquidation_threshold_i)` for all collateral assets.
// It has 8 decimals (base currency) + 2 decimals (percentage) = 10 decimals.
// healthFactor has 18 decimals
// healthFactor = (avgLiquidationThreshold * WAD / totalDebtInBaseCurrency) / 100_00
// 18 decimals = (10 decimals * 18 decimals / 8 decimals) / 2 decimals = 18 decimals
vars.healthFactor = (vars.totalDebtInBaseCurrency == 0)
? type(uint256).max
: vars.avgLiquidationThreshold.wadDiv(vars.totalDebtInBaseCurrency) / 100_00;
unchecked {
vars.avgLtv = vars.totalCollateralInBaseCurrency != 0
? vars.avgLtv / vars.totalCollateralInBaseCurrency
: 0;
vars.avgLiquidationThreshold = vars.totalCollateralInBaseCurrency != 0
? vars.avgLiquidationThreshold / vars.totalCollateralInBaseCurrency
: 0;
}
return (
vars.totalCollateralInBaseCurrency,
vars.totalDebtInBaseCurrency,
vars.avgLtv,
vars.avgLiquidationThreshold,
vars.healthFactor,
vars.hasZeroLtvCollateral
);
}
/**
* @notice Calculates the maximum amount that can be borrowed depending on the available collateral, the total debt
* and the average Loan To Value
* @param totalCollateralInBaseCurrency The total collateral in the base currency used by the price feed
* @param totalDebtInBaseCurrency The total borrow balance in the base currency used by the price feed
* @param ltv The average loan to value
* @return The amount available to borrow in the base currency of the used by the price feed
*/
function calculateAvailableBorrows(
uint256 totalCollateralInBaseCurrency,
uint256 totalDebtInBaseCurrency,
uint256 ltv
) internal pure returns (uint256) {
uint256 availableBorrowsInBaseCurrency = totalCollateralInBaseCurrency.percentMulFloor(ltv);
if (availableBorrowsInBaseCurrency <= totalDebtInBaseCurrency) {
return 0;
}
availableBorrowsInBaseCurrency = availableBorrowsInBaseCurrency - totalDebtInBaseCurrency;
return availableBorrowsInBaseCurrency;
}
/**
* @notice Calculates total debt of the user in the based currency used to normalize the values of the assets
* @dev This fetches the `balanceOf` of the variable debt token for the user. For gas reasons, the
* variable debt balance is calculated by fetching `scaledBalancesOf` normalized debt, which is cheaper than
* fetching `balanceOf`
* @param user The address of the user
* @param reserve The data of the reserve for which the total debt of the user is being calculated
* @param assetPrice The price of the asset for which the total debt of the user is being calculated
* @param assetUnit The value representing one full unit of the asset (10^decimals)
* @return The total debt of the user normalized to the base currency
*/
function _getUserDebtInBaseCurrency(
address user,
DataTypes.ReserveData storage reserve,
uint256 assetPrice,
uint256 assetUnit
) private view returns (uint256) {
uint256 userTotalDebt = IScaledBalanceToken(reserve.variableDebtTokenAddress)
.scaledBalanceOf(user)
.getVTokenBalance(reserve.getNormalizedDebt());
return MathUtils.mulDivCeil(userTotalDebt, assetPrice, assetUnit);
}
/**
* @notice Calculates total aToken balance of the user in the based currency used by the price oracle
* @dev For gas reasons, the aToken balance is calculated by fetching `scaledBalancesOf` normalized debt, which
* is cheaper than fetching `balanceOf`
* @param user The address of the user
* @param reserve The data of the reserve for which the total aToken balance of the user is being calculated
* @param assetPrice The price of the asset for which the total aToken balance of the user is being calculated
* @param assetUnit The value representing one full unit of the asset (10^decimals)
* @return The total aToken balance of the user normalized to the base currency of the price oracle
*/
function _getUserBalanceInBaseCurrency(
address user,
DataTypes.ReserveData storage reserve,
uint256 assetPrice,
uint256 assetUnit
) private view returns (uint256) {
uint256 balance = (
IScaledBalanceToken(reserve.aTokenAddress).scaledBalanceOf(user).getATokenBalance(
reserve.getNormalizedIncome()
)
) * assetPrice;
unchecked {
return balance / assetUnit;
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.10;
import {Errors} from '../helpers/Errors.sol';
import {IPool} from '../../../interfaces/IPool.sol';
import {DataTypes} from '../types/DataTypes.sol';
import {ReserveConfiguration} from '../configuration/ReserveConfiguration.sol';
import {UserConfiguration} from '../configuration/UserConfiguration.sol';
import {SafeCast} from 'openzeppelin-contracts/contracts/utils/math/SafeCast.sol';
/**
* @title IsolationModeLogic library
* @author Aave
* @notice Implements the base logic for handling repayments for assets borrowed in isolation mode
*/
library IsolationModeLogic {
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
using UserConfiguration for DataTypes.UserConfigurationMap;
using SafeCast for uint256;
/**
* @notice increases the isolated debt whenever user borrows against isolated collateral asset
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param userConfig The user configuration mapping
* @param reserveCache The cached data of the reserve
* @param borrowAmount The amount being borrowed
*/
function increaseIsolatedDebtIfIsolated(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ReserveCache memory reserveCache,
uint256 borrowAmount
) internal {
(
bool isolationModeActive,
address isolationModeCollateralAddress,
uint256 isolationModeDebtCeiling
) = userConfig.getIsolationModeState(reservesData, reservesList);
if (isolationModeActive) {
// check that the asset being borrowed is borrowable in isolation mode AND
// the total exposure is no bigger than the collateral debt ceiling
require(
reserveCache.reserveConfiguration.getBorrowableInIsolation(),
Errors.AssetNotBorrowableInIsolation()
);
uint128 nextIsolationModeTotalDebt = reservesData[isolationModeCollateralAddress]
.isolationModeTotalDebt + convertToIsolatedDebtUnits(reserveCache, borrowAmount);
require(nextIsolationModeTotalDebt <= isolationModeDebtCeiling, Errors.DebtCeilingExceeded());
setIsolationModeTotalDebt(
reservesData[isolationModeCollateralAddress],
isolationModeCollateralAddress,
nextIsolationModeTotalDebt
);
}
}
/**
* @notice updated the isolated debt whenever a position collateralized by an isolated asset is repaid
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @param userConfig The user configuration mapping
* @param reserveCache The cached data of the reserve
* @param repayAmount The amount being repaid
*/
function reduceIsolatedDebtIfIsolated(
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList,
DataTypes.UserConfigurationMap storage userConfig,
DataTypes.ReserveCache memory reserveCache,
uint256 repayAmount
) internal {
(bool isolationModeActive, address isolationModeCollateralAddress, ) = userConfig
.getIsolationModeState(reservesData, reservesList);
if (isolationModeActive) {
updateIsolatedDebt(reservesData, reserveCache, repayAmount, isolationModeCollateralAddress);
}
}
/**
* @notice updated the isolated debt whenever a position collateralized by an isolated asset is liquidated
* @param reservesData The state of all the reserves
* @param reserveCache The cached data of the reserve
* @param repayAmount The amount being repaid
* @param isolationModeCollateralAddress The address of the isolated collateral
*/
function updateIsolatedDebt(
mapping(address => DataTypes.ReserveData) storage reservesData,
DataTypes.ReserveCache memory reserveCache,
uint256 repayAmount,
address isolationModeCollateralAddress
) internal {
uint128 isolationModeTotalDebt = reservesData[isolationModeCollateralAddress]
.isolationModeTotalDebt;
uint128 isolatedDebtRepaid = convertToIsolatedDebtUnits(reserveCache, repayAmount);
// since the debt ceiling does not take into account the interest accrued, it might happen that amount
// repaid > debt in isolation mode
uint128 newIsolationModeTotalDebt = isolationModeTotalDebt > isolatedDebtRepaid
? isolationModeTotalDebt - isolatedDebtRepaid
: 0;
setIsolationModeTotalDebt(
reservesData[isolationModeCollateralAddress],
isolationModeCollateralAddress,
newIsolationModeTotalDebt
);
}
/**
* @notice Sets the isolation mode total debt of the given asset to a certain value
* @param reserveData The state of the reserve
* @param isolationModeCollateralAddress The address of the isolation mode collateral
* @param newIsolationModeTotalDebt The new isolation mode total debt
*/
function setIsolationModeTotalDebt(
DataTypes.ReserveData storage reserveData,
address isolationModeCollateralAddress,
uint128 newIsolationModeTotalDebt
) internal {
reserveData.isolationModeTotalDebt = newIsolationModeTotalDebt;
emit IPool.IsolationModeTotalDebtUpdated(
isolationModeCollateralAddress,
newIsolationModeTotalDebt
);
}
/**
* @notice utility function to convert an amount into the isolated debt units, which usually has less decimals
* @param reserveCache The cached data of the reserve
* @param amount The amount being added or removed from isolated debt
*/
function convertToIsolatedDebtUnits(
DataTypes.ReserveCache memory reserveCache,
uint256 amount
) private pure returns (uint128) {
return
(amount /
10 **
(reserveCache.reserveConfiguration.getDecimals() -
ReserveConfiguration.DEBT_CEILING_DECIMALS)).toUint128();
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IPool} from '../../../interfaces/IPool.sol';
import {Errors} from '../helpers/Errors.sol';
import {DataTypes} from '../types/DataTypes.sol';
import {ReserveConfiguration} from './ReserveConfiguration.sol';
/**
* @title UserConfiguration library
* @author Aave
* @notice Implements the bitmap logic to handle the user configuration
*/
library UserConfiguration {
using ReserveConfiguration for DataTypes.ReserveConfigurationMap;
uint256 internal constant BORROWING_MASK =
0x5555555555555555555555555555555555555555555555555555555555555555;
uint256 internal constant COLLATERAL_MASK =
0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA;
/**
* @notice Sets if the user is borrowing the reserve identified by reserveIndex
* @param self The configuration object
* @param reserveIndex The index of the reserve in the bitmap
* @param borrowing True if the user is borrowing the reserve, false otherwise
*/
function setBorrowing(
DataTypes.UserConfigurationMap storage self,
uint256 reserveIndex,
bool borrowing
) internal {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
uint256 bit = 1 << (reserveIndex << 1);
if (borrowing) {
self.data |= bit;
} else {
self.data &= ~bit;
}
}
}
/**
* @notice Sets if the user is using as collateral the reserve identified by reserveIndex
* @param self The configuration object
* @param reserveIndex The index of the reserve in the bitmap
* @param asset The address of the reserve
* @param user The address of the user
* @param usingAsCollateral True if the user is using the reserve as collateral, false otherwise
*/
function setUsingAsCollateral(
DataTypes.UserConfigurationMap storage self,
uint256 reserveIndex,
address asset,
address user,
bool usingAsCollateral
) internal {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
uint256 bit = 1 << ((reserveIndex << 1) + 1);
if (usingAsCollateral) {
self.data |= bit;
emit IPool.ReserveUsedAsCollateralEnabled(asset, user);
} else {
self.data &= ~bit;
emit IPool.ReserveUsedAsCollateralDisabled(asset, user);
}
}
}
/**
* @notice Returns if a user has been using the reserve for borrowing or as collateral
* @param self The configuration object
* @param reserveIndex The index of the reserve in the bitmap
* @return True if the user has been using a reserve for borrowing or as collateral, false otherwise
*/
function isUsingAsCollateralOrBorrowing(
DataTypes.UserConfigurationMap memory self,
uint256 reserveIndex
) internal pure returns (bool) {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
return (self.data >> (reserveIndex << 1)) & 3 != 0;
}
}
/**
* @notice Validate a user has been using the reserve for borrowing
* @param self The configuration object
* @param reserveIndex The index of the reserve in the bitmap
* @return True if the user has been using a reserve for borrowing, false otherwise
*/
function isBorrowing(
DataTypes.UserConfigurationMap memory self,
uint256 reserveIndex
) internal pure returns (bool) {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
return (self.data >> (reserveIndex << 1)) & 1 != 0;
}
}
/**
* @notice Validate a user has been using the reserve as collateral
* @param self The configuration object
* @param reserveIndex The index of the reserve in the bitmap
* @return True if the user has been using a reserve as collateral, false otherwise
*/
function isUsingAsCollateral(
DataTypes.UserConfigurationMap memory self,
uint256 reserveIndex
) internal pure returns (bool) {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
return (self.data >> ((reserveIndex << 1) + 1)) & 1 != 0;
}
}
/**
* @notice Checks if a user has been supplying only one reserve as collateral
* @dev this uses a simple trick - if a number is a power of two (only one bit set) then n & (n - 1) == 0
* @param self The configuration object
* @return True if the user has been supplying as collateral one reserve, false otherwise
*/
function isUsingAsCollateralOne(
DataTypes.UserConfigurationMap memory self
) internal pure returns (bool) {
uint256 collateralData = self.data & COLLATERAL_MASK;
return collateralData != 0 && (collateralData & (collateralData - 1) == 0);
}
/**
* @notice Checks if a user has been supplying any reserve as collateral
* @param self The configuration object
* @return True if the user has been supplying as collateral any reserve, false otherwise
*/
function isUsingAsCollateralAny(
DataTypes.UserConfigurationMap memory self
) internal pure returns (bool) {
return self.data & COLLATERAL_MASK != 0;
}
/**
* @notice Checks if a user has been borrowing only one asset
* @dev this uses a simple trick - if a number is a power of two (only one bit set) then n & (n - 1) == 0
* @param self The configuration object
* @return True if the user has been supplying as collateral one reserve, false otherwise
*/
function isBorrowingOne(DataTypes.UserConfigurationMap memory self) internal pure returns (bool) {
uint256 borrowingData = self.data & BORROWING_MASK;
return borrowingData != 0 && (borrowingData & (borrowingData - 1) == 0);
}
/**
* @notice Checks if a user has been borrowing from any reserve
* @param self The configuration object
* @return True if the user has been borrowing any reserve, false otherwise
*/
function isBorrowingAny(DataTypes.UserConfigurationMap memory self) internal pure returns (bool) {
return self.data & BORROWING_MASK != 0;
}
/**
* @notice Checks if a user has not been using any reserve for borrowing, or as collateral
* @param self The configuration object
* @return True if the user has not been borrowing, or using as collateral any reserve, false otherwise
*/
function isEmpty(DataTypes.UserConfigurationMap memory self) internal pure returns (bool) {
return self.data == 0;
}
/**
* @notice Returns the Isolation Mode state of the user
* @param self The configuration object
* @param reservesData The state of all the reserves
* @param reservesList The addresses of all the active reserves
* @return True if the user is in isolation mode, false otherwise
* @return The address of the only asset used as collateral
* @return The debt ceiling of the reserve
*/
function getIsolationModeState(
DataTypes.UserConfigurationMap memory self,
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList
) internal view returns (bool, address, uint256) {
if (isUsingAsCollateralOne(self)) {
uint256 assetId = _getFirstAssetIdByMask(self, COLLATERAL_MASK);
address assetAddress = reservesList[assetId];
uint256 ceiling = reservesData[assetAddress].configuration.getDebtCeiling();
if (ceiling != 0) {
return (true, assetAddress, ceiling);
}
}
return (false, address(0), 0);
}
/**
* @notice Returns the siloed borrowing state for the user
* @param self The configuration object
* @param reservesData The data of all the reserves
* @param reservesList The reserve list
* @return True if the user has borrowed a siloed asset, false otherwise
* @return The address of the only borrowed asset
*/
function getSiloedBorrowingState(
DataTypes.UserConfigurationMap memory self,
mapping(address => DataTypes.ReserveData) storage reservesData,
mapping(uint256 => address) storage reservesList
) internal view returns (bool, address) {
if (isBorrowingOne(self)) {
uint256 assetId = _getFirstAssetIdByMask(self, BORROWING_MASK);
address assetAddress = reservesList[assetId];
if (reservesData[assetAddress].configuration.getSiloedBorrowing()) {
return (true, assetAddress);
}
}
return (false, address(0));
}
/**
* @notice Returns the borrowed and collateral flags for the first asset on the bitmap and the bitmap shifted by two.
* @dev This function mutates the input and the 2 bit slots in the bitmap will no longer correspond to the reserve index.
* This is useful in situations where we want to iterate the bitmap as it allows for early exit once the bitmap turns zero.
* @param data The configuration uint256
* @return The bitmap shifted by 2 bits, so that the first asset points to the *next* asset.
* @return True if the first asset in the bitmap is borrowed.
* @return True if the first asset in the bitmap is a collateral.
*/
function getNextFlags(uint256 data) internal pure returns (uint256, bool, bool) {
bool isBorrowed = data & 1 == 1;
bool isEnabledAsCollateral = data & 2 == 2;
return (data >> 2, isBorrowed, isEnabledAsCollateral);
}
/**
* @notice Returns the address of the first asset flagged in the bitmap given the corresponding bitmask
* @param self The configuration object
* @return The index of the first asset flagged in the bitmap once the corresponding mask is applied
*/
function _getFirstAssetIdByMask(
DataTypes.UserConfigurationMap memory self,
uint256 mask
) internal pure returns (uint256) {
unchecked {
uint256 bitmapData = self.data & mask;
uint256 firstAssetPosition = bitmapData & ~(bitmapData - 1);
uint256 id;
while ((firstAssetPosition >>= 2) != 0) {
id += 1;
}
return id;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Errors} from '../helpers/Errors.sol';
import {DataTypes} from '../types/DataTypes.sol';
/**
* @title ReserveConfiguration library
* @author Aave
* @notice Implements the bitmap logic to handle the reserve configuration
*/
library ReserveConfiguration {
uint256 internal constant LTV_MASK = 0x000000000000000000000000000000000000000000000000000000000000FFFF; // prettier-ignore
uint256 internal constant LIQUIDATION_THRESHOLD_MASK = 0x00000000000000000000000000000000000000000000000000000000FFFF0000; // prettier-ignore
uint256 internal constant LIQUIDATION_BONUS_MASK = 0x0000000000000000000000000000000000000000000000000000FFFF00000000; // prettier-ignore
uint256 internal constant DECIMALS_MASK = 0x00000000000000000000000000000000000000000000000000FF000000000000; // prettier-ignore
uint256 internal constant ACTIVE_MASK = 0x0000000000000000000000000000000000000000000000000100000000000000; // prettier-ignore
uint256 internal constant FROZEN_MASK = 0x0000000000000000000000000000000000000000000000000200000000000000; // prettier-ignore
uint256 internal constant BORROWING_MASK = 0x0000000000000000000000000000000000000000000000000400000000000000; // prettier-ignore
// @notice there is an unoccupied hole of 1 bit at position 59 from pre 3.2 stableBorrowRateEnabled
uint256 internal constant PAUSED_MASK = 0x0000000000000000000000000000000000000000000000001000000000000000; // prettier-ignore
uint256 internal constant BORROWABLE_IN_ISOLATION_MASK = 0x0000000000000000000000000000000000000000000000002000000000000000; // prettier-ignore
uint256 internal constant SILOED_BORROWING_MASK = 0x0000000000000000000000000000000000000000000000004000000000000000; // prettier-ignore
uint256 internal constant FLASHLOAN_ENABLED_MASK = 0x0000000000000000000000000000000000000000000000008000000000000000; // prettier-ignore
uint256 internal constant RESERVE_FACTOR_MASK = 0x00000000000000000000000000000000000000000000FFFF0000000000000000; // prettier-ignore
uint256 internal constant BORROW_CAP_MASK = 0x00000000000000000000000000000000000FFFFFFFFF00000000000000000000; // prettier-ignore
uint256 internal constant SUPPLY_CAP_MASK = 0x00000000000000000000000000FFFFFFFFF00000000000000000000000000000; // prettier-ignore
uint256 internal constant LIQUIDATION_PROTOCOL_FEE_MASK = 0x0000000000000000000000FFFF00000000000000000000000000000000000000; // prettier-ignore
//@notice there is an unoccupied hole of 8 bits from 168 to 175 left from pre 3.2 eModeCategory
//@notice there is an unoccupied hole of 34 bits from 176 to 211 left from pre 3.4 unbackedMintCap
uint256 internal constant DEBT_CEILING_MASK = 0x0FFFFFFFFFF00000000000000000000000000000000000000000000000000000; // prettier-ignore
//@notice DEPRECATED: in v3.4 all reserves have virtual accounting enabled
uint256 internal constant VIRTUAL_ACC_ACTIVE_MASK = 0x1000000000000000000000000000000000000000000000000000000000000000; // prettier-ignore
/// @dev For the LTV, the start bit is 0 (up to 15), hence no bitshifting is needed
uint256 internal constant LIQUIDATION_THRESHOLD_START_BIT_POSITION = 16;
uint256 internal constant LIQUIDATION_BONUS_START_BIT_POSITION = 32;
uint256 internal constant RESERVE_DECIMALS_START_BIT_POSITION = 48;
uint256 internal constant IS_ACTIVE_START_BIT_POSITION = 56;
uint256 internal constant IS_FROZEN_START_BIT_POSITION = 57;
uint256 internal constant BORROWING_ENABLED_START_BIT_POSITION = 58;
uint256 internal constant IS_PAUSED_START_BIT_POSITION = 60;
uint256 internal constant BORROWABLE_IN_ISOLATION_START_BIT_POSITION = 61;
uint256 internal constant SILOED_BORROWING_START_BIT_POSITION = 62;
uint256 internal constant FLASHLOAN_ENABLED_START_BIT_POSITION = 63;
uint256 internal constant RESERVE_FACTOR_START_BIT_POSITION = 64;
uint256 internal constant BORROW_CAP_START_BIT_POSITION = 80;
uint256 internal constant SUPPLY_CAP_START_BIT_POSITION = 116;
uint256 internal constant LIQUIDATION_PROTOCOL_FEE_START_BIT_POSITION = 152;
//@notice there is an unoccupied hole of 8 bits from 168 to 175 left from pre 3.2 eModeCategory
//@notice there is an unoccupied hole of 34 bits from 176 to 211 left from pre 3.4 unbackedMintCap
uint256 internal constant DEBT_CEILING_START_BIT_POSITION = 212;
//@notice DEPRECATED: in v3.4 all reserves have virtual accounting enabled
uint256 internal constant VIRTUAL_ACC_START_BIT_POSITION = 252;
uint256 internal constant MAX_VALID_LTV = 65535;
uint256 internal constant MAX_VALID_LIQUIDATION_THRESHOLD = 65535;
uint256 internal constant MAX_VALID_LIQUIDATION_BONUS = 65535;
uint256 internal constant MAX_VALID_DECIMALS = 255;
uint256 internal constant MAX_VALID_RESERVE_FACTOR = 65535;
uint256 internal constant MAX_VALID_BORROW_CAP = 68719476735;
uint256 internal constant MAX_VALID_SUPPLY_CAP = 68719476735;
uint256 internal constant MAX_VALID_LIQUIDATION_PROTOCOL_FEE = 65535;
uint256 internal constant MAX_VALID_DEBT_CEILING = 1099511627775;
uint256 public constant DEBT_CEILING_DECIMALS = 2;
uint16 public constant MAX_RESERVES_COUNT = 128;
/**
* @notice Sets the Loan to Value of the reserve
* @param self The reserve configuration
* @param ltv The new ltv
*/
function setLtv(DataTypes.ReserveConfigurationMap memory self, uint256 ltv) internal pure {
require(ltv <= MAX_VALID_LTV, Errors.InvalidLtv());
self.data = (self.data & ~LTV_MASK) | ltv;
}
/**
* @notice Gets the Loan to Value of the reserve
* @param self The reserve configuration
* @return The loan to value
*/
function getLtv(DataTypes.ReserveConfigurationMap memory self) internal pure returns (uint256) {
return self.data & LTV_MASK;
}
/**
* @notice Sets the liquidation threshold of the reserve
* @param self The reserve configuration
* @param threshold The new liquidation threshold
*/
function setLiquidationThreshold(
DataTypes.ReserveConfigurationMap memory self,
uint256 threshold
) internal pure {
require(threshold <= MAX_VALID_LIQUIDATION_THRESHOLD, Errors.InvalidLiquidationThreshold());
self.data =
(self.data & ~LIQUIDATION_THRESHOLD_MASK) |
(threshold << LIQUIDATION_THRESHOLD_START_BIT_POSITION);
}
/**
* @notice Gets the liquidation threshold of the reserve
* @param self The reserve configuration
* @return The liquidation threshold
*/
function getLiquidationThreshold(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION;
}
/**
* @notice Sets the liquidation bonus of the reserve
* @param self The reserve configuration
* @param bonus The new liquidation bonus
*/
function setLiquidationBonus(
DataTypes.ReserveConfigurationMap memory self,
uint256 bonus
) internal pure {
require(bonus <= MAX_VALID_LIQUIDATION_BONUS, Errors.InvalidLiquidationBonus());
self.data =
(self.data & ~LIQUIDATION_BONUS_MASK) |
(bonus << LIQUIDATION_BONUS_START_BIT_POSITION);
}
/**
* @notice Gets the liquidation bonus of the reserve
* @param self The reserve configuration
* @return The liquidation bonus
*/
function getLiquidationBonus(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION;
}
/**
* @notice Sets the decimals of the underlying asset of the reserve
* @param self The reserve configuration
* @param decimals The decimals
*/
function setDecimals(
DataTypes.ReserveConfigurationMap memory self,
uint256 decimals
) internal pure {
require(decimals <= MAX_VALID_DECIMALS, Errors.InvalidDecimals());
self.data = (self.data & ~DECIMALS_MASK) | (decimals << RESERVE_DECIMALS_START_BIT_POSITION);
}
/**
* @notice Gets the decimals of the underlying asset of the reserve
* @param self The reserve configuration
* @return The decimals of the asset
*/
function getDecimals(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION;
}
/**
* @notice Sets the active state of the reserve
* @param self The reserve configuration
* @param active The active state
*/
function setActive(DataTypes.ReserveConfigurationMap memory self, bool active) internal pure {
self.data =
(self.data & ~ACTIVE_MASK) |
(uint256(active ? 1 : 0) << IS_ACTIVE_START_BIT_POSITION);
}
/**
* @notice Gets the active state of the reserve
* @param self The reserve configuration
* @return The active state
*/
function getActive(DataTypes.ReserveConfigurationMap memory self) internal pure returns (bool) {
return (self.data & ACTIVE_MASK) != 0;
}
/**
* @notice Sets the frozen state of the reserve
* @param self The reserve configuration
* @param frozen The frozen state
*/
function setFrozen(DataTypes.ReserveConfigurationMap memory self, bool frozen) internal pure {
self.data =
(self.data & ~FROZEN_MASK) |
(uint256(frozen ? 1 : 0) << IS_FROZEN_START_BIT_POSITION);
}
/**
* @notice Gets the frozen state of the reserve
* @param self The reserve configuration
* @return The frozen state
*/
function getFrozen(DataTypes.ReserveConfigurationMap memory self) internal pure returns (bool) {
return (self.data & FROZEN_MASK) != 0;
}
/**
* @notice Sets the paused state of the reserve
* @param self The reserve configuration
* @param paused The paused state
*/
function setPaused(DataTypes.ReserveConfigurationMap memory self, bool paused) internal pure {
self.data =
(self.data & ~PAUSED_MASK) |
(uint256(paused ? 1 : 0) << IS_PAUSED_START_BIT_POSITION);
}
/**
* @notice Gets the paused state of the reserve
* @param self The reserve configuration
* @return The paused state
*/
function getPaused(DataTypes.ReserveConfigurationMap memory self) internal pure returns (bool) {
return (self.data & PAUSED_MASK) != 0;
}
/**
* @notice Sets the borrowable in isolation flag for the reserve.
* @dev When this flag is set to true, the asset will be borrowable against isolated collaterals and the borrowed
* amount will be accumulated in the isolated collateral's total debt exposure.
* @dev Only assets of the same family (eg USD stablecoins) should be borrowable in isolation mode to keep
* consistency in the debt ceiling calculations.
* @param self The reserve configuration
* @param borrowable True if the asset is borrowable
*/
function setBorrowableInIsolation(
DataTypes.ReserveConfigurationMap memory self,
bool borrowable
) internal pure {
self.data =
(self.data & ~BORROWABLE_IN_ISOLATION_MASK) |
(uint256(borrowable ? 1 : 0) << BORROWABLE_IN_ISOLATION_START_BIT_POSITION);
}
/**
* @notice Gets the borrowable in isolation flag for the reserve.
* @dev If the returned flag is true, the asset is borrowable against isolated collateral. Assets borrowed with
* isolated collateral is accounted for in the isolated collateral's total debt exposure.
* @dev Only assets of the same family (eg USD stablecoins) should be borrowable in isolation mode to keep
* consistency in the debt ceiling calculations.
* @param self The reserve configuration
* @return The borrowable in isolation flag
*/
function getBorrowableInIsolation(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (bool) {
return (self.data & BORROWABLE_IN_ISOLATION_MASK) != 0;
}
/**
* @notice Sets the siloed borrowing flag for the reserve.
* @dev When this flag is set to true, users borrowing this asset will not be allowed to borrow any other asset.
* @param self The reserve configuration
* @param siloed True if the asset is siloed
*/
function setSiloedBorrowing(
DataTypes.ReserveConfigurationMap memory self,
bool siloed
) internal pure {
self.data =
(self.data & ~SILOED_BORROWING_MASK) |
(uint256(siloed ? 1 : 0) << SILOED_BORROWING_START_BIT_POSITION);
}
/**
* @notice Gets the siloed borrowing flag for the reserve.
* @dev When this flag is set to true, users borrowing this asset will not be allowed to borrow any other asset.
* @param self The reserve configuration
* @return The siloed borrowing flag
*/
function getSiloedBorrowing(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (bool) {
return (self.data & SILOED_BORROWING_MASK) != 0;
}
/**
* @notice Enables or disables borrowing on the reserve
* @param self The reserve configuration
* @param enabled True if the borrowing needs to be enabled, false otherwise
*/
function setBorrowingEnabled(
DataTypes.ReserveConfigurationMap memory self,
bool enabled
) internal pure {
self.data =
(self.data & ~BORROWING_MASK) |
(uint256(enabled ? 1 : 0) << BORROWING_ENABLED_START_BIT_POSITION);
}
/**
* @notice Gets the borrowing state of the reserve
* @param self The reserve configuration
* @return The borrowing state
*/
function getBorrowingEnabled(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (bool) {
return (self.data & BORROWING_MASK) != 0;
}
/**
* @notice Sets the reserve factor of the reserve
* @param self The reserve configuration
* @param reserveFactor The reserve factor
*/
function setReserveFactor(
DataTypes.ReserveConfigurationMap memory self,
uint256 reserveFactor
) internal pure {
require(reserveFactor <= MAX_VALID_RESERVE_FACTOR, Errors.InvalidReserveFactor());
self.data =
(self.data & ~RESERVE_FACTOR_MASK) |
(reserveFactor << RESERVE_FACTOR_START_BIT_POSITION);
}
/**
* @notice Gets the reserve factor of the reserve
* @param self The reserve configuration
* @return The reserve factor
*/
function getReserveFactor(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION;
}
/**
* @notice Sets the borrow cap of the reserve
* @param self The reserve configuration
* @param borrowCap The borrow cap
*/
function setBorrowCap(
DataTypes.ReserveConfigurationMap memory self,
uint256 borrowCap
) internal pure {
require(borrowCap <= MAX_VALID_BORROW_CAP, Errors.InvalidBorrowCap());
self.data = (self.data & ~BORROW_CAP_MASK) | (borrowCap << BORROW_CAP_START_BIT_POSITION);
}
/**
* @notice Gets the borrow cap of the reserve
* @param self The reserve configuration
* @return The borrow cap
*/
function getBorrowCap(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & BORROW_CAP_MASK) >> BORROW_CAP_START_BIT_POSITION;
}
/**
* @notice Sets the supply cap of the reserve
* @param self The reserve configuration
* @param supplyCap The supply cap
*/
function setSupplyCap(
DataTypes.ReserveConfigurationMap memory self,
uint256 supplyCap
) internal pure {
require(supplyCap <= MAX_VALID_SUPPLY_CAP, Errors.InvalidSupplyCap());
self.data = (self.data & ~SUPPLY_CAP_MASK) | (supplyCap << SUPPLY_CAP_START_BIT_POSITION);
}
/**
* @notice Gets the supply cap of the reserve
* @param self The reserve configuration
* @return The supply cap
*/
function getSupplyCap(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & SUPPLY_CAP_MASK) >> SUPPLY_CAP_START_BIT_POSITION;
}
/**
* @notice Sets the debt ceiling in isolation mode for the asset
* @param self The reserve configuration
* @param ceiling The maximum debt ceiling for the asset
*/
function setDebtCeiling(
DataTypes.ReserveConfigurationMap memory self,
uint256 ceiling
) internal pure {
require(ceiling <= MAX_VALID_DEBT_CEILING, Errors.InvalidDebtCeiling());
self.data = (self.data & ~DEBT_CEILING_MASK) | (ceiling << DEBT_CEILING_START_BIT_POSITION);
}
/**
* @notice Gets the debt ceiling for the asset if the asset is in isolation mode
* @param self The reserve configuration
* @return The debt ceiling (0 = isolation mode disabled)
*/
function getDebtCeiling(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return (self.data & DEBT_CEILING_MASK) >> DEBT_CEILING_START_BIT_POSITION;
}
/**
* @notice Sets the liquidation protocol fee of the reserve
* @param self The reserve configuration
* @param liquidationProtocolFee The liquidation protocol fee
*/
function setLiquidationProtocolFee(
DataTypes.ReserveConfigurationMap memory self,
uint256 liquidationProtocolFee
) internal pure {
require(
liquidationProtocolFee <= MAX_VALID_LIQUIDATION_PROTOCOL_FEE,
Errors.InvalidLiquidationProtocolFee()
);
self.data =
(self.data & ~LIQUIDATION_PROTOCOL_FEE_MASK) |
(liquidationProtocolFee << LIQUIDATION_PROTOCOL_FEE_START_BIT_POSITION);
}
/**
* @dev Gets the liquidation protocol fee
* @param self The reserve configuration
* @return The liquidation protocol fee
*/
function getLiquidationProtocolFee(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256) {
return
(self.data & LIQUIDATION_PROTOCOL_FEE_MASK) >> LIQUIDATION_PROTOCOL_FEE_START_BIT_POSITION;
}
/**
* @notice Sets the flashloanable flag for the reserve
* @param self The reserve configuration
* @param flashLoanEnabled True if the asset is flashloanable, false otherwise
*/
function setFlashLoanEnabled(
DataTypes.ReserveConfigurationMap memory self,
bool flashLoanEnabled
) internal pure {
self.data =
(self.data & ~FLASHLOAN_ENABLED_MASK) |
(uint256(flashLoanEnabled ? 1 : 0) << FLASHLOAN_ENABLED_START_BIT_POSITION);
}
/**
* @notice Gets the flashloanable flag for the reserve
* @param self The reserve configuration
* @return The flashloanable flag
*/
function getFlashLoanEnabled(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (bool) {
return (self.data & FLASHLOAN_ENABLED_MASK) != 0;
}
/**
* @notice Forcefully set the virtual account active state of the reserve to `true`
* @dev DEPRECATED: in v3.4 all reserves have virtual accounting enabled.
* The flag is carried along for backward compatibility with integrations directly querying the configuration.
* @param self The reserve configuration
*/
function setVirtualAccActive(DataTypes.ReserveConfigurationMap memory self) internal pure {
self.data =
(self.data & ~VIRTUAL_ACC_ACTIVE_MASK) |
(uint256(1) << VIRTUAL_ACC_START_BIT_POSITION);
}
/**
* @notice Gets the configuration flags of the reserve
* @param self The reserve configuration
* @return The state flag representing active
* @return The state flag representing frozen
* @return The state flag representing borrowing enabled
* @return The state flag representing paused
*/
function getFlags(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (bool, bool, bool, bool) {
uint256 dataLocal = self.data;
return (
(dataLocal & ACTIVE_MASK) != 0,
(dataLocal & FROZEN_MASK) != 0,
(dataLocal & BORROWING_MASK) != 0,
(dataLocal & PAUSED_MASK) != 0
);
}
/**
* @notice Gets the configuration parameters of the reserve from storage
* @param self The reserve configuration
* @return The state param representing ltv
* @return The state param representing liquidation threshold
* @return The state param representing liquidation bonus
* @return The state param representing reserve decimals
* @return The state param representing reserve factor
*/
function getParams(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256, uint256, uint256, uint256, uint256) {
uint256 dataLocal = self.data;
return (
dataLocal & LTV_MASK,
(dataLocal & LIQUIDATION_THRESHOLD_MASK) >> LIQUIDATION_THRESHOLD_START_BIT_POSITION,
(dataLocal & LIQUIDATION_BONUS_MASK) >> LIQUIDATION_BONUS_START_BIT_POSITION,
(dataLocal & DECIMALS_MASK) >> RESERVE_DECIMALS_START_BIT_POSITION,
(dataLocal & RESERVE_FACTOR_MASK) >> RESERVE_FACTOR_START_BIT_POSITION
);
}
/**
* @notice Gets the caps parameters of the reserve from storage
* @param self The reserve configuration
* @return The state param representing borrow cap
* @return The state param representing supply cap.
*/
function getCaps(
DataTypes.ReserveConfigurationMap memory self
) internal pure returns (uint256, uint256) {
uint256 dataLocal = self.data;
return (
(dataLocal & BORROW_CAP_MASK) >> BORROW_CAP_START_BIT_POSITION,
(dataLocal & SUPPLY_CAP_MASK) >> SUPPLY_CAP_START_BIT_POSITION
);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {Errors} from '../helpers/Errors.sol';
import {ReserveConfiguration} from './ReserveConfiguration.sol';
/**
* @title EModeConfiguration library
* @author BGD Labs
* @notice Implements the bitmap logic to handle the eMode configuration
*/
library EModeConfiguration {
/**
* @notice Sets a bit in a given bitmap that represents the reserve index range
* @dev The supplied bitmap is supposed to be a uint128 in which each bit represents a reserve
* @param bitmap The bitmap
* @param reserveIndex The index of the reserve in the bitmap
* @param enabled True if the reserveIndex should be enabled on the bitmap, false otherwise
* @return The altered bitmap
*/
function setReserveBitmapBit(
uint128 bitmap,
uint256 reserveIndex,
bool enabled
) internal pure returns (uint128) {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
uint128 bit = uint128(1 << reserveIndex);
if (enabled) {
return bitmap | bit;
} else {
return bitmap & ~bit;
}
}
}
/**
* @notice Validates if a reserveIndex is flagged as enabled on a given bitmap
* @param bitmap The bitmap
* @param reserveIndex The index of the reserve in the bitmap
* @return True if the reserveindex is flagged true
*/
function isReserveEnabledOnBitmap(
uint128 bitmap,
uint256 reserveIndex
) internal pure returns (bool) {
unchecked {
require(reserveIndex < ReserveConfiguration.MAX_RESERVES_COUNT, Errors.InvalidReserveIndex());
return (bitmap >> reserveIndex) & 1 != 0;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IERC20} from '../dependencies/openzeppelin/contracts/IERC20.sol';
import {IScaledBalanceToken} from './IScaledBalanceToken.sol';
import {IInitializableAToken} from './IInitializableAToken.sol';
/**
* @title IAToken
* @author Aave
* @notice Defines the basic interface for an AToken.
*/
interface IAToken is IERC20, IScaledBalanceToken, IInitializableAToken {
/**
* @dev Emitted during the transfer action
* @param from The user whose tokens are being transferred
* @param to The recipient
* @param value The scaled amount being transferred
* @param index The next liquidity index of the reserve
*/
event BalanceTransfer(address indexed from, address indexed to, uint256 value, uint256 index);
/**
* @notice Mints `amount` aTokens to `user`
* @param caller The address performing the mint
* @param onBehalfOf The address of the user that will receive the minted aTokens
* @param scaledAmount The scaled amount of tokens getting minted
* @param index The next liquidity index of the reserve
* @return `true` if the the previous balance of the user was 0
*/
function mint(
address caller,
address onBehalfOf,
uint256 scaledAmount,
uint256 index
) external returns (bool);
/**
* @notice Burns aTokens from `user` and sends the equivalent amount of underlying to `receiverOfUnderlying`.
* @dev Passing both the unscaled and scaled amounts enhances precision. The `scaledAmount` is used for precise balance updates,
* while the `amount` is used for the underlying asset transfer, preventing cumulative rounding errors.
* @dev In some instances, a mint event may be emitted from a burn transaction if the amount to burn is less than the interest that the user accrued.
* @param from The address from which the aTokens will be burned
* @param receiverOfUnderlying The address that will receive the underlying
* @param amount The amount of underlying to be burned (non scaled)
* @param scaledAmount The scaled amount of aTokens to be burned (scaled)
* @param index The next liquidity index of the reserve
* @return `true` if the the new balance of the user is 0
*/
function burn(
address from,
address receiverOfUnderlying,
uint256 amount,
uint256 scaledAmount,
uint256 index
) external returns (bool);
/**
* @notice Mints aTokens to the reserve treasury
* @param scaledAmount The scaled amount of tokens getting minted
* @param index The next liquidity index of the reserve
*/
function mintToTreasury(uint256 scaledAmount, uint256 index) external;
/**
* @notice Transfers aTokens in the event of a borrow being liquidated, in case the liquidator reclaims the aToken.
* @dev Passing both the unscaled and scaled amounts enhances precision. The `scaledAmount` is used for precise balance updates,
* while the `amount` is used for logging and consistency, preventing cumulative rounding errors.
* @param from The address getting liquidated, current owner of the aTokens
* @param to The recipient
* @param amount The amount of tokens getting transferred (non-scaled)
* @param scaledAmount The scaled amount of tokens getting transferred (scaled)
* @param index The next liquidity index of the reserve
*/
function transferOnLiquidation(
address from,
address to,
uint256 amount,
uint256 scaledAmount,
uint256 index
) external;
/**
* @notice Transfers the underlying asset to `target`.
* @dev Used by the Pool to transfer assets in borrow(), withdraw() and flashLoan()
* @param target The recipient of the underlying
* @param amount The amount getting transferred
*/
function transferUnderlyingTo(address target, uint256 amount) external;
/**
* @notice Allow passing a signed message to approve spending
* @dev implements the permit function as for
* https://github.com/ethereum/EIPs/blob/8a34d644aacf0f9f8f00815307fd7dd5da07655f/EIPS/eip-2612.md
* @param owner The owner of the funds
* @param spender The spender
* @param value The amount
* @param deadline The deadline timestamp, type(uint256).max for max deadline
* @param v Signature param
* @param s Signature param
* @param r Signature param
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @notice Returns the address of the underlying asset of this aToken (E.g. WETH for aWETH)
* @return The address of the underlying asset
*/
function UNDERLYING_ASSET_ADDRESS() external view returns (address);
/**
* @notice Returns the address of the Aave treasury, receiving the fees on this aToken.
* @return Address of the Aave treasury
*/
function RESERVE_TREASURY_ADDRESS() external view returns (address);
/**
* @notice Get the domain separator for the token
* @dev Return cached value if chainId matches cache, otherwise recomputes separator
* @return The domain separator of the token at current chain
*/
function DOMAIN_SEPARATOR() external view returns (bytes32);
/**
* @notice Returns the nonce for owner.
* @param owner The address of the owner
* @return The nonce of the owner
*/
function nonces(address owner) external view returns (uint256);
/**
* @notice Rescue and transfer tokens locked in this contract
* @param token The address of the token
* @param to The address of the recipient
* @param amount The amount of token to transfer
*/
function rescueTokens(address token, address to, uint256 amount) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol';
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
/**
* @title IPool
* @author Aave
* @notice Defines the basic interface for an Aave Pool.
*/
interface IPool {
/**
* @dev Emitted on supply()
* @param reserve The address of the underlying asset of the reserve
* @param user The address initiating the supply
* @param onBehalfOf The beneficiary of the supply, receiving the aTokens
* @param amount The amount supplied
* @param referralCode The referral code used
*/
event Supply(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
uint16 indexed referralCode
);
/**
* @dev Emitted on withdraw()
* @param reserve The address of the underlying asset being withdrawn
* @param user The address initiating the withdrawal, owner of aTokens
* @param to The address that will receive the underlying
* @param amount The amount to be withdrawn
*/
event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount);
/**
* @dev Emitted on borrow() and flashLoan() when debt needs to be opened
* @param reserve The address of the underlying asset being borrowed
* @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just
* initiator of the transaction on flashLoan()
* @param onBehalfOf The address that will be getting the debt
* @param amount The amount borrowed out
* @param interestRateMode The rate mode: 2 for Variable, 1 is deprecated (changed on v3.2.0)
* @param borrowRate The numeric rate at which the user has borrowed, expressed in ray
* @param referralCode The referral code used
*/
event Borrow(
address indexed reserve,
address user,
address indexed onBehalfOf,
uint256 amount,
DataTypes.InterestRateMode interestRateMode,
uint256 borrowRate,
uint16 indexed referralCode
);
/**
* @dev Emitted on repay()
* @param reserve The address of the underlying asset of the reserve
* @param user The beneficiary of the repayment, getting his debt reduced
* @param repayer The address of the user initiating the repay(), providing the funds
* @param amount The amount repaid
* @param useATokens True if the repayment is done using aTokens, `false` if done with underlying asset directly
*/
event Repay(
address indexed reserve,
address indexed user,
address indexed repayer,
uint256 amount,
bool useATokens
);
/**
* @dev Emitted on borrow(), repay() and liquidationCall() when using isolated assets
* @param asset The address of the underlying asset of the reserve
* @param totalDebt The total isolation mode debt for the reserve
*/
event IsolationModeTotalDebtUpdated(address indexed asset, uint256 totalDebt);
/**
* @dev Emitted when the user selects a certain asset category for eMode
* @param user The address of the user
* @param categoryId The category id
*/
event UserEModeSet(address indexed user, uint8 categoryId);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
*/
event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on setUserUseReserveAsCollateral()
* @param reserve The address of the underlying asset of the reserve
* @param user The address of the user enabling the usage as collateral
*/
event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user);
/**
* @dev Emitted on flashLoan()
* @param target The address of the flash loan receiver contract
* @param initiator The address initiating the flash loan
* @param asset The address of the asset being flash borrowed
* @param amount The amount flash borrowed
* @param interestRateMode The flashloan mode: 0 for regular flashloan,
* 1 for Stable (Deprecated on v3.2.0), 2 for Variable
* @param premium The fee flash borrowed
* @param referralCode The referral code used
*/
event FlashLoan(
address indexed target,
address initiator,
address indexed asset,
uint256 amount,
DataTypes.InterestRateMode interestRateMode,
uint256 premium,
uint16 indexed referralCode
);
/**
* @dev Emitted when a borrower is liquidated.
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param user The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param liquidatedCollateralAmount The amount of collateral received by the liquidator
* @param liquidator The address of the liquidator
* @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
*/
event LiquidationCall(
address indexed collateralAsset,
address indexed debtAsset,
address indexed user,
uint256 debtToCover,
uint256 liquidatedCollateralAmount,
address liquidator,
bool receiveAToken
);
/**
* @dev Emitted when the state of a reserve is updated.
* @param reserve The address of the underlying asset of the reserve
* @param liquidityRate The next liquidity rate
* @param stableBorrowRate The next stable borrow rate @note deprecated on v3.2.0
* @param variableBorrowRate The next variable borrow rate
* @param liquidityIndex The next liquidity index
* @param variableBorrowIndex The next variable borrow index
*/
event ReserveDataUpdated(
address indexed reserve,
uint256 liquidityRate,
uint256 stableBorrowRate,
uint256 variableBorrowRate,
uint256 liquidityIndex,
uint256 variableBorrowIndex
);
/**
* @dev Emitted when the deficit of a reserve is covered.
* @param reserve The address of the underlying asset of the reserve
* @param caller The caller that triggered the DeficitCovered event
* @param amountCovered The amount of deficit covered
*/
event DeficitCovered(address indexed reserve, address caller, uint256 amountCovered);
/**
* @dev Emitted when the protocol treasury receives minted aTokens from the accrued interest.
* @param reserve The address of the reserve
* @param amountMinted The amount minted to the treasury
*/
event MintedToTreasury(address indexed reserve, uint256 amountMinted);
/**
* @dev Emitted when deficit is realized on a liquidation.
* @param user The user address where the bad debt will be burned
* @param debtAsset The address of the underlying borrowed asset to be burned
* @param amountCreated The amount of deficit created
*/
event DeficitCreated(address indexed user, address indexed debtAsset, uint256 amountCreated);
/**
* @dev Emitted when a position manager is approved by the user.
* @param user The user address
* @param positionManager The address of the position manager
*/
event PositionManagerApproved(address indexed user, address indexed positionManager);
/**
* @dev Emitted when a position manager is revoked by the user.
* @param user The user address
* @param positionManager The address of the position manager
*/
event PositionManagerRevoked(address indexed user, address indexed positionManager);
/**
* @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User supplies 100 USDC and gets in return 100 aUSDC
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function supply(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
/**
* @notice Supply with transfer approval of asset to be supplied done via permit function
* see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param deadline The deadline timestamp that the permit is valid
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param permitV The V parameter of ERC712 permit sig
* @param permitR The R parameter of ERC712 permit sig
* @param permitS The S parameter of ERC712 permit sig
*/
function supplyWithPermit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode,
uint256 deadline,
uint8 permitV,
bytes32 permitR,
bytes32 permitS
) external;
/**
* @notice Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned
* E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC
* @param asset The address of the underlying asset to withdraw
* @param amount The underlying amount to be withdrawn
* - Send the value type(uint256).max in order to withdraw the whole aToken balance
* @param to The address that will receive the underlying, same as msg.sender if the user
* wants to receive it on his own wallet, or a different address if the beneficiary is a
* different wallet
* @return The final amount withdrawn
*/
function withdraw(address asset, uint256 amount, address to) external returns (uint256);
/**
* @notice Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower
* already supplied enough collateral, or he was given enough allowance by a credit delegator on the VariableDebtToken
* - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet
* and 100 variable debt tokens
* @param asset The address of the underlying asset to borrow
* @param amount The amount to be borrowed
* @param interestRateMode 2 for Variable, 1 is deprecated on v3.2.0
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
* @param onBehalfOf The address of the user who will receive the debt. Should be the address of the borrower itself
* calling the function if he wants to borrow against his own collateral, or the address of the credit delegator
* if he has been given credit delegation allowance
*/
function borrow(
address asset,
uint256 amount,
uint256 interestRateMode,
uint16 referralCode,
address onBehalfOf
) external;
/**
* @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned
* - E.g. User repays 100 USDC, burning 100 variable debt tokens of the `onBehalfOf` address
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode 2 for Variable, 1 is deprecated on v3.2.0
* @param onBehalfOf The address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @return The final amount repaid
*/
function repay(
address asset,
uint256 amount,
uint256 interestRateMode,
address onBehalfOf
) external returns (uint256);
/**
* @notice Repay with transfer approval of asset to be repaid done via permit function
* see: https://eips.ethereum.org/EIPS/eip-2612 and https://eips.ethereum.org/EIPS/eip-713
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode 2 for Variable, 1 is deprecated on v3.2.0
* @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the
* user calling the function if he wants to reduce/remove his own debt, or the address of any other
* other borrower whose debt should be removed
* @param deadline The deadline timestamp that the permit is valid
* @param permitV The V parameter of ERC712 permit sig
* @param permitR The R parameter of ERC712 permit sig
* @param permitS The S parameter of ERC712 permit sig
* @return The final amount repaid
*/
function repayWithPermit(
address asset,
uint256 amount,
uint256 interestRateMode,
address onBehalfOf,
uint256 deadline,
uint8 permitV,
bytes32 permitR,
bytes32 permitS
) external returns (uint256);
/**
* @notice Repays a borrowed `amount` on a specific reserve using the reserve aTokens, burning the
* equivalent debt tokens
* - E.g. User repays 100 USDC using 100 aUSDC, burning 100 variable debt tokens
* @dev Passing uint256.max as amount will clean up any residual aToken dust balance, if the user aToken
* balance is not enough to cover the whole debt
* @param asset The address of the borrowed underlying asset previously borrowed
* @param amount The amount to repay
* - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode`
* @param interestRateMode DEPRECATED in v3.2.0
* @return The final amount repaid
*/
function repayWithATokens(
address asset,
uint256 amount,
uint256 interestRateMode
) external returns (uint256);
/**
* @notice Allows suppliers to enable/disable a specific supplied asset as collateral
* @param asset The address of the underlying asset supplied
* @param useAsCollateral True if the user wants to use the supply as collateral, false otherwise
*/
function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external;
/**
* @notice Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1
* - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
* a proportionally amount of the `collateralAsset` plus a bonus to cover market risk
* @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation
* @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
* @param borrower The address of the borrower getting liquidated
* @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover
* @param receiveAToken True if the liquidators wants to receive the collateral aTokens, `false` if he wants
* to receive the underlying collateral asset directly
*/
function liquidationCall(
address collateralAsset,
address debtAsset,
address borrower,
uint256 debtToCover,
bool receiveAToken
) external;
/**
* @notice Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept
* into consideration. For further details please visit https://docs.aave.com/developers/
* @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanReceiver interface
* @param assets The addresses of the assets being flash-borrowed
* @param amounts The amounts of the assets being flash-borrowed
* @param interestRateModes Types of the debt to open if the flash loan is not returned:
* 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver
* 1 -> Deprecated on v3.2.0
* 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address
* @param onBehalfOf The address that will receive the debt in the case of using 2 on `modes`
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function flashLoan(
address receiverAddress,
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata interestRateModes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode
) external;
/**
* @notice Allows smartcontracts to access the liquidity of the pool within one transaction,
* as long as the amount taken plus a fee is returned.
* @dev IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept
* into consideration. For further details please visit https://docs.aave.com/developers/
* @param receiverAddress The address of the contract receiving the funds, implementing IFlashLoanSimpleReceiver interface
* @param asset The address of the asset being flash-borrowed
* @param amount The amount of the asset being flash-borrowed
* @param params Variadic packed params to pass to the receiver as extra information
* @param referralCode The code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function flashLoanSimple(
address receiverAddress,
address asset,
uint256 amount,
bytes calldata params,
uint16 referralCode
) external;
/**
* @notice Returns the user account data across all the reserves
* @param user The address of the user
* @return totalCollateralBase The total collateral of the user in the base currency used by the price feed
* @return totalDebtBase The total debt of the user in the base currency used by the price feed
* @return availableBorrowsBase The borrowing power left of the user in the base currency used by the price feed
* @return currentLiquidationThreshold The liquidation threshold of the user
* @return ltv The loan to value of The user
* @return healthFactor The current health factor of the user
*/
function getUserAccountData(
address user
)
external
view
returns (
uint256 totalCollateralBase,
uint256 totalDebtBase,
uint256 availableBorrowsBase,
uint256 currentLiquidationThreshold,
uint256 ltv,
uint256 healthFactor
);
/**
* @notice Initializes a reserve, activating it, assigning an aToken and debt tokens
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
* @param aTokenAddress The address of the aToken that will be assigned to the reserve
* @param variableDebtAddress The address of the VariableDebtToken that will be assigned to the reserve
*/
function initReserve(address asset, address aTokenAddress, address variableDebtAddress) external;
/**
* @notice Drop a reserve
* @dev Only callable by the PoolConfigurator contract
* @dev Does not reset eMode flags, which must be considered when reusing the same reserve id for a different reserve.
* @param asset The address of the underlying asset of the reserve
*/
function dropReserve(address asset) external;
/**
* @notice Accumulates interest to all indexes of the reserve
* @dev Only callable by the PoolConfigurator contract
* @dev To be used when required by the configurator, for example when updating interest rates strategy data
* @param asset The address of the underlying asset of the reserve
*/
function syncIndexesState(address asset) external;
/**
* @notice Updates interest rates on the reserve data
* @dev Only callable by the PoolConfigurator contract
* @dev To be used when required by the configurator, for example when updating interest rates strategy data
* @param asset The address of the underlying asset of the reserve
*/
function syncRatesState(address asset) external;
/**
* @notice Sets the configuration bitmap of the reserve as a whole
* @dev Only callable by the PoolConfigurator contract
* @param asset The address of the underlying asset of the reserve
* @param configuration The new configuration bitmap
*/
function setConfiguration(
address asset,
DataTypes.ReserveConfigurationMap calldata configuration
) external;
/**
* @notice Returns the configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The configuration of the reserve
*/
function getConfiguration(
address asset
) external view returns (DataTypes.ReserveConfigurationMap memory);
/**
* @notice Returns the configuration of the user across all the reserves
* @param user The user address
* @return The configuration of the user
*/
function getUserConfiguration(
address user
) external view returns (DataTypes.UserConfigurationMap memory);
/**
* @notice Returns the normalized income of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve's normalized income
*/
function getReserveNormalizedIncome(address asset) external view returns (uint256);
/**
* @notice Returns the normalized variable debt per unit of asset
* @dev WARNING: This function is intended to be used primarily by the protocol itself to get a
* "dynamic" variable index based on time, current stored index and virtual rate at the current
* moment (approx. a borrower would get if opening a position). This means that is always used in
* combination with variable debt supply/balances.
* If using this function externally, consider that is possible to have an increasing normalized
* variable debt that is not equivalent to how the variable debt index would be updated in storage
* (e.g. only updates with non-zero variable debt supply)
* @param asset The address of the underlying asset of the reserve
* @return The reserve normalized variable debt
*/
function getReserveNormalizedVariableDebt(address asset) external view returns (uint256);
/**
* @notice Returns the state and configuration of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The state and configuration data of the reserve
*/
function getReserveData(address asset) external view returns (DataTypes.ReserveDataLegacy memory);
/**
* @notice Returns the virtual underlying balance of the reserve
* @param asset The address of the underlying asset of the reserve
* @return The reserve virtual underlying balance
*/
function getVirtualUnderlyingBalance(address asset) external view returns (uint128);
/**
* @notice Validates and finalizes an aToken transfer
* @dev Only callable by the overlying aToken of the `asset`
* @param asset The address of the underlying asset of the aToken
* @param from The user from which the aTokens are transferred
* @param to The user receiving the aTokens
* @param scaledAmount The scaled amount being transferred/withdrawn
* @param scaledBalanceFromBefore The aToken scaled balance of the `from` user before the transfer
*/
function finalizeTransfer(
address asset,
address from,
address to,
uint256 scaledAmount,
uint256 scaledBalanceFromBefore
) external;
/**
* @notice Returns the list of the underlying assets of all the initialized reserves
* @dev It does not include dropped reserves
* @return The addresses of the underlying assets of the initialized reserves
*/
function getReservesList() external view returns (address[] memory);
/**
* @notice Returns the number of initialized reserves
* @dev It includes dropped reserves
* @return The count
*/
function getReservesCount() external view returns (uint256);
/**
* @notice Returns the address of the underlying asset of a reserve by the reserve id as stored in the DataTypes.ReserveData struct
* @param id The id of the reserve as stored in the DataTypes.ReserveData struct
* @return The address of the reserve associated with id
*/
function getReserveAddressById(uint16 id) external view returns (address);
/**
* @notice Returns the PoolAddressesProvider connected to this contract
* @return The address of the PoolAddressesProvider
*/
function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider);
/**
* @notice Returns the ReserveInterestRateStrategy connected to all the reserves
* @return The address of the ReserveInterestRateStrategy contract
*/
function RESERVE_INTEREST_RATE_STRATEGY() external view returns (address);
/**
* @notice Updates flash loan premium. All this premium is collected by the protocol treasury.
* @dev The premium is calculated on the total borrowed amount
* @dev Only callable by the PoolConfigurator contract
* @param flashLoanPremium The flash loan premium, expressed in bps
*/
function updateFlashloanPremium(uint128 flashLoanPremium) external;
/**
* @notice Configures a new or alters an existing collateral configuration of an eMode.
* @dev In eMode, the protocol allows very high borrowing power to borrow assets of the same category.
* The category 0 is reserved as it's the default for volatile assets
* @param id The id of the category
* @param config The configuration of the category
*/
function configureEModeCategory(
uint8 id,
DataTypes.EModeCategoryBaseConfiguration memory config
) external;
/**
* @notice Replaces the current eMode collateralBitmap.
* @param id The id of the category
* @param collateralBitmap The collateralBitmap of the category
*/
function configureEModeCategoryCollateralBitmap(uint8 id, uint128 collateralBitmap) external;
/**
* @notice Replaces the current eMode borrowableBitmap.
* @param id The id of the category
* @param borrowableBitmap The borrowableBitmap of the category
*/
function configureEModeCategoryBorrowableBitmap(uint8 id, uint128 borrowableBitmap) external;
/**
* @notice Replaces the current eMode ltvzeroBitmap.
* @param id The id of the category
* @param ltvzeroBitmap The ltvzeroBitmap of the category
*/
function configureEModeCategoryLtvzeroBitmap(uint8 id, uint128 ltvzeroBitmap) external;
/**
* @notice Returns the data of an eMode category
* @dev DEPRECATED use independent getters instead
* @param id The id of the category
* @return The configuration data of the category
*/
function getEModeCategoryData(
uint8 id
) external view returns (DataTypes.EModeCategoryLegacy memory);
/**
* @notice Returns the label of an eMode category
* @dev This function is deprecated and will be removed in a future version.
* @custom:deprecated
* @param id The id of the category
* @return The label of the category
*/
function getEModeCategoryLabel(uint8 id) external view returns (string memory);
/**
* @notice Returns the collateral config of an eMode category
* @param id The id of the category
* @return The ltv,lt,lb of the category
*/
function getEModeCategoryCollateralConfig(
uint8 id
) external view returns (DataTypes.CollateralConfig memory);
/**
* @notice Returns the collateralBitmap of an eMode category
* @param id The id of the category
* @return The collateralBitmap of the category
*/
function getEModeCategoryCollateralBitmap(uint8 id) external view returns (uint128);
/**
* @notice Returns the borrowableBitmap of an eMode category
* @param id The id of the category
* @return The borrowableBitmap of the category
*/
function getEModeCategoryBorrowableBitmap(uint8 id) external view returns (uint128);
/**
* @notice Returns the ltvzero of an eMode category
* @param id The id of the category
* @return The ltvzeroBitmap of the category
*/
function getEModeCategoryLtvzeroBitmap(uint8 id) external view returns (uint128);
/**
* @notice Allows a user to use the protocol in eMode
* @param categoryId The id of the category
*/
function setUserEMode(uint8 categoryId) external;
/**
* @notice Returns the eMode the user is using
* @param user The address of the user
* @return The eMode id
*/
function getUserEMode(address user) external view returns (uint256);
/**
* @notice Resets the isolation mode total debt of the given asset to zero
* @dev It requires the given asset has zero debt ceiling
* @param asset The address of the underlying asset to reset the isolationModeTotalDebt
*/
function resetIsolationModeTotalDebt(address asset) external;
/**
* @notice Sets the liquidation grace period of the given asset
* @dev To enable a liquidation grace period, a timestamp in the future should be set,
* To disable a liquidation grace period, any timestamp in the past works, like 0
* @param asset The address of the underlying asset to set the liquidationGracePeriod
* @param until Timestamp when the liquidation grace period will end
**/
function setLiquidationGracePeriod(address asset, uint40 until) external;
/**
* @notice Returns the liquidation grace period of the given asset
* @param asset The address of the underlying asset
* @return Timestamp when the liquidation grace period will end
**/
function getLiquidationGracePeriod(address asset) external view returns (uint40);
/**
* @notice Returns the total fee on flash loans.
* @dev From v3.4 all flashloan fees will be send to the treasury.
* @return The total fee on flashloans
*/
function FLASHLOAN_PREMIUM_TOTAL() external view returns (uint128);
/**
* @notice Returns the part of the flashloan fees sent to protocol
* @dev From v3.4 all flashloan fees will be send to the treasury and this value
* is always 100_00.
* @return The flashloan fee sent to the protocol treasury
*/
function FLASHLOAN_PREMIUM_TO_PROTOCOL() external view returns (uint128);
/**
* @notice Returns the maximum number of reserves supported to be listed in this Pool
* @return The maximum number of reserves supported
*/
function MAX_NUMBER_RESERVES() external view returns (uint16);
/**
* @notice Mints the assets accrued through the reserve factor to the treasury in the form of aTokens
* @param assets The list of reserves for which the minting needs to be executed
*/
function mintToTreasury(address[] calldata assets) external;
/**
* @notice Rescue and transfer tokens locked in this contract
* @param token The address of the token
* @param to The address of the recipient
* @param amount The amount of token to transfer
*/
function rescueTokens(address token, address to, uint256 amount) external;
/**
* @notice Supplies an `amount` of underlying asset into the reserve, receiving in return overlying aTokens.
* - E.g. User supplies 100 USDC and gets in return 100 aUSDC
* @dev Deprecated: Use the `supply` function instead
* @param asset The address of the underlying asset to supply
* @param amount The amount to be supplied
* @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user
* wants to receive them on his own wallet, or a different address if the beneficiary of aTokens
* is a different wallet
* @param referralCode Code used to register the integrator originating the operation, for potential rewards.
* 0 if the action is executed directly by the user, without any middle-man
*/
function deposit(address asset, uint256 amount, address onBehalfOf, uint16 referralCode) external;
/**
* @notice It covers the deficit of a specified reserve by burning the equivalent aToken `amount` for assets
* @dev The deficit of a reserve can occur due to situations where borrowed assets are not repaid, leading to bad debt.
* @param asset The address of the underlying asset to cover the deficit.
* @param amount The amount to be covered, in aToken
* @return The amount of tokens burned
*/
function eliminateReserveDeficit(address asset, uint256 amount) external returns (uint256);
/**
* @notice Approves or disapproves a position manager. This position manager will be able
* to call the `setUserUseReserveAsCollateralOnBehalfOf` and the
* `setUserEModeOnBehalfOf` function on behalf of the user.
* @param positionManager The address of the position manager
* @param approve True if the position manager should be approved, false otherwise
*/
function approvePositionManager(address positionManager, bool approve) external;
/**
* @notice Renounces a position manager role for a given user.
* @param user The address of the user
*/
function renouncePositionManagerRole(address user) external;
/**
* @notice Sets the use as collateral flag for the user on the specific reserve on behalf of the user.
* @param asset The address of the underlying asset of the reserve
* @param useAsCollateral True if the user wants to use the reserve as collateral, false otherwise
* @param onBehalfOf The address of the user
*/
function setUserUseReserveAsCollateralOnBehalfOf(
address asset,
bool useAsCollateral,
address onBehalfOf
) external;
/**
* @notice Sets the eMode category for the user on the specific reserve on behalf of the user.
* @param categoryId The id of the category
* @param onBehalfOf The address of the user
*/
function setUserEModeOnBehalfOf(uint8 categoryId, address onBehalfOf) external;
/*
* @notice Returns true if the `positionManager` address is approved to use the position manager role on behalf of the user.
* @param user The address of the user
* @param positionManager The address of the position manager
* @return True if the user is approved to use the position manager, false otherwise
*/
function isApprovedPositionManager(
address user,
address positionManager
) external view returns (bool);
/**
* @notice Returns the current deficit of a reserve.
* @param asset The address of the underlying asset of the reserve
* @return The current deficit of the reserve
*/
function getReserveDeficit(address asset) external view returns (uint256);
/**
* @notice Returns the aToken address of a reserve.
* @param asset The address of the underlying asset of the reserve
* @return The address of the aToken
*/
function getReserveAToken(address asset) external view returns (address);
/**
* @notice Returns the variableDebtToken address of a reserve.
* @param asset The address of the underlying asset of the reserve
* @return The address of the variableDebtToken
*/
function getReserveVariableDebtToken(address asset) external view returns (address);
/**
* @notice Gets the address of the external FlashLoanLogic
*/
function getFlashLoanLogic() external view returns (address);
/**
* @notice Gets the address of the external BorrowLogic
*/
function getBorrowLogic() external view returns (address);
/**
* @notice Gets the address of the external LiquidationLogic
*/
function getLiquidationLogic() external view returns (address);
/**
* @notice Gets the address of the external PoolLogic
*/
function getPoolLogic() external view returns (address);
/**
* @notice Gets the address of the external SupplyLogic
*/
function getSupplyLogic() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IScaledBalanceToken} from './IScaledBalanceToken.sol';
import {IInitializableDebtToken} from './IInitializableDebtToken.sol';
/**
* @title IVariableDebtToken
* @author Aave
* @notice Defines the basic interface for a variable debt token.
*/
interface IVariableDebtToken is IScaledBalanceToken, IInitializableDebtToken {
/**
* @notice Mints debt token to the `onBehalfOf` address.
* @dev Passing both the unscaled and scaled amounts enhances precision. The `scaledAmount` is used for precise balance updates,
* while the `amount` is used for allowance checks, preventing cumulative rounding errors.
* @param user The address receiving the borrowed underlying, being the delegatee in case
* of credit delegate, or same as `onBehalfOf` otherwise
* @param onBehalfOf The address receiving the debt tokens
* @param amount The unscaled amount of debt to be accounted for allowance
* @param scaledAmount The scaled amount of debt tokens to mint
* @param index The variable debt index of the reserve
* @return The scaled total debt of the reserve
*/
function mint(
address user,
address onBehalfOf,
uint256 amount,
uint256 scaledAmount,
uint256 index
) external returns (uint256);
/**
* @notice Burns user variable debt.
* @dev Passing the scaled amount allows for more precise calculations and avoids cumulative errors from repeated conversions.
* @dev In some instances, a burn transaction will emit a mint event if the amount to burn is less than the interest that the user accrued.
* @param from The address from which the debt will be burned
* @param scaledAmount The scaled amount of debt getting burned
* @param index The variable debt index of the reserve
* @return True if the new balance is zero
* @return The scaled total debt of the reserve
*/
function burn(address from, uint256 scaledAmount, uint256 index) external returns (bool, uint256);
/**
* @notice Returns the address of the underlying asset of this debtToken (E.g. WETH for variableDebtWETH)
* @return The address of the underlying asset
*/
function UNDERLYING_ASSET_ADDRESS() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IPriceOracleGetter
* @author Aave
* @notice Interface for the Aave price oracle.
*/
interface IPriceOracleGetter {
/**
* @notice Returns the base currency address
* @dev Address 0x0 is reserved for USD as base currency.
* @return Returns the base currency address.
*/
function BASE_CURRENCY() external view returns (address);
/**
* @notice Returns the base currency unit
* @dev 1 ether for ETH, 1e8 for USD.
* @return Returns the base currency unit.
*/
function BASE_CURRENCY_UNIT() external view returns (uint256);
/**
* @notice Returns the asset price in the base currency
* @param asset The address of the asset
* @return The price of the asset
*/
function getAssetPrice(address asset) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Errors library
* @author Aave
* @notice Defines the error messages emitted by the different contracts of the Aave protocol
*/
library Errors {
error CallerNotPoolAdmin(); // 'The caller of the function is not a pool admin'
error CallerNotPoolOrEmergencyAdmin(); // 'The caller of the function is not a pool or emergency admin'
error CallerNotRiskOrPoolAdmin(); // 'The caller of the function is not a risk or pool admin'
error CallerNotAssetListingOrPoolAdmin(); // 'The caller of the function is not an asset listing or pool admin'
error AddressesProviderNotRegistered(); // 'Pool addresses provider is not registered'
error InvalidAddressesProviderId(); // 'Invalid id for the pool addresses provider'
error NotContract(); // 'Address is not a contract'
error CallerNotPoolConfigurator(); // 'The caller of the function is not the pool configurator'
error CallerNotAToken(); // 'The caller of the function is not an AToken'
error InvalidAddressesProvider(); // 'The address of the pool addresses provider is invalid'
error InvalidFlashloanExecutorReturn(); // 'Invalid return value of the flashloan executor function'
error ReserveAlreadyAdded(); // 'Reserve has already been added to reserve list'
error NoMoreReservesAllowed(); // 'Maximum amount of reserves in the pool reached'
error EModeCategoryReserved(); // 'Zero eMode category is reserved for volatile heterogeneous assets'
error ReserveLiquidityNotZero(); // 'The liquidity of the reserve needs to be 0'
error FlashloanPremiumInvalid(); // 'Invalid flashloan premium'
error InvalidReserveParams(); // 'Invalid risk parameters for the reserve'
error InvalidEmodeCategoryParams(); // 'Invalid risk parameters for the eMode category'
error CallerMustBePool(); // 'The caller of this function must be a pool'
error InvalidMintAmount(); // 'Invalid amount to mint'
error InvalidBurnAmount(); // 'Invalid amount to burn'
error InvalidAmount(); // 'Amount must be greater than 0'
error ReserveInactive(); // 'Action requires an active reserve'
error ReserveFrozen(); // 'Action cannot be performed because the reserve is frozen'
error ReservePaused(); // 'Action cannot be performed because the reserve is paused'
error BorrowingNotEnabled(); // 'Borrowing is not enabled'
error NotEnoughAvailableUserBalance(); // 'User cannot withdraw more than the available balance'
error InvalidInterestRateModeSelected(); // 'Invalid interest rate mode selected'
error HealthFactorLowerThanLiquidationThreshold(); // 'Health factor is below the liquidation threshold'
error CollateralCannotCoverNewBorrow(); // 'There is not enough collateral to cover a new borrow'
error NoDebtOfSelectedType(); // 'For repayment of a specific type of debt, the user needs to have debt that type'
error NoExplicitAmountToRepayOnBehalf(); // 'To repay on behalf of a user an explicit amount to repay is needed'
error UnderlyingBalanceZero(); // 'The underlying balance needs to be greater than 0'
error HealthFactorNotBelowThreshold(); // 'Health factor is not below the threshold'
error CollateralCannotBeLiquidated(); // 'The collateral chosen cannot be liquidated'
error SpecifiedCurrencyNotBorrowedByUser(); // 'User did not borrow the specified currency'
error InconsistentFlashloanParams(); // 'Inconsistent flashloan parameters'
error BorrowCapExceeded(); // 'Borrow cap is exceeded'
error SupplyCapExceeded(); // 'Supply cap is exceeded'
error DebtCeilingExceeded(); // 'Debt ceiling is exceeded'
error UnderlyingClaimableRightsNotZero(); // 'Claimable rights over underlying not zero (aToken supply or accruedToTreasury)'
error VariableDebtSupplyNotZero(); // 'Variable debt supply is not zero'
error LtvValidationFailed(); // 'Ltv validation failed'
error InconsistentEModeCategory(); // 'Inconsistent eMode category'
error PriceOracleSentinelCheckFailed(); // 'Price oracle sentinel validation failed'
error AssetNotBorrowableInIsolation(); // 'Asset is not borrowable in isolation mode'
error ReserveAlreadyInitialized(); // 'Reserve has already been initialized'
error UserInIsolationModeOrLtvZero(); // 'User is in isolation mode or ltv is zero'
error InvalidLtv(); // 'Invalid ltv parameter for the reserve'
error InvalidLiquidationThreshold(); // 'Invalid liquidity threshold parameter for the reserve'
error InvalidLiquidationBonus(); // 'Invalid liquidity bonus parameter for the reserve'
error InvalidDecimals(); // 'Invalid decimals parameter of the underlying asset of the reserve'
error InvalidReserveFactor(); // 'Invalid reserve factor parameter for the reserve'
error InvalidBorrowCap(); // 'Invalid borrow cap for the reserve'
error InvalidSupplyCap(); // 'Invalid supply cap for the reserve'
error InvalidLiquidationProtocolFee(); // 'Invalid liquidation protocol fee for the reserve'
error InvalidDebtCeiling(); // 'Invalid debt ceiling for the reserve'
error InvalidReserveIndex(); // 'Invalid reserve index'
error AclAdminCannotBeZero(); // 'ACL admin cannot be set to the zero address'
error InconsistentParamsLength(); // 'Array parameters that should be equal length are not'
error ZeroAddressNotValid(); // 'Zero address not valid'
error InvalidExpiration(); // 'Invalid expiration'
error InvalidSignature(); // 'Invalid signature'
error OperationNotSupported(); // 'Operation not supported'
error DebtCeilingNotZero(); // 'Debt ceiling is not zero'
error AssetNotListed(); // 'Asset is not listed'
error InvalidOptimalUsageRatio(); // 'Invalid optimal usage ratio'
error UnderlyingCannotBeRescued(); // 'The underlying asset cannot be rescued'
error AddressesProviderAlreadyAdded(); // 'Reserve has already been added to reserve list'
error PoolAddressesDoNotMatch(); // 'The token implementation pool address and the pool address provided by the initializing pool do not match'
error SiloedBorrowingViolation(); // 'User is trying to borrow multiple assets including a siloed one'
error ReserveDebtNotZero(); // the total debt of the reserve needs to be 0
error FlashloanDisabled(); // FlashLoaning for this asset is disabled
error InvalidMaxRate(); // The expect maximum borrow rate is invalid
error WithdrawToAToken(); // Withdrawing to the aToken is not allowed
error SupplyToAToken(); // Supplying to the aToken is not allowed
error Slope2MustBeGteSlope1(); // Variable interest rate slope 2 can not be lower than slope 1
error CallerNotRiskOrPoolOrEmergencyAdmin(); // 'The caller of the function is not a risk, pool or emergency admin'
error LiquidationGraceSentinelCheckFailed(); // 'Liquidation grace sentinel validation failed'
error InvalidGracePeriod(); // Grace period above a valid range
error InvalidFreezeState(); // Reserve is already in the passed freeze state
error InvalidLtvzeroState(); // Reserve is already in the passed ltvzero state
error NotBorrowableInEMode(); // Asset not borrowable in eMode
error CallerNotUmbrella(); // The caller of the function is not the umbrella contract
error ReserveNotInDeficit(); // The reserve is not in deficit
error MustNotLeaveDust(); // Below a certain threshold liquidators need to take the full position
error UserCannotHaveDebt(); // Thrown when a user tries to interact with a method that requires a position without debt
error SelfLiquidation(); // Thrown when a user tries to liquidate themselves
error CallerNotPositionManager(); // Thrown when the caller has not been enabled as a position manager of the on-behalf-of user
error InvalidCollateralInEmode(address reserve, uint256 categoryId); /// Thrown when trying to enter an eMode with an invalid collateral asset
error InvalidDebtInEmode(address reserve, uint256 categoryId); /// Thrown when trying to enter an eMode with an invalid debt asset
error MustBeEmodeCollateral(address reserve, uint256 categoryId); /// Thrown when trying to configure an asset as eMode-ltvzero that is not an eMode collateral
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
/**
* @title WadRayMath library
* @author Aave
* @notice Provides functions to perform calculations with Wad and Ray units
* @dev Provides mul and div function for wads (decimal numbers with 18 digits of precision) and rays (decimal numbers
* with 27 digits of precision).
* @dev Default operations round half up (if a value is >= .5, it will be rounded up, otherwise rounded down).
* @dev For specific rounding behaviors, functions with `Floor` and `Ceil` suffixes or a `Rounding` parameter are available.
*/
library WadRayMath {
enum Rounding {
Floor,
Ceil
}
// HALF_WAD and HALF_RAY expressed with extended notation as constant with operations are not supported in Yul assembly
uint256 internal constant WAD = 1e18;
uint256 internal constant HALF_WAD = 0.5e18;
uint256 internal constant RAY = 1e27;
uint256 internal constant HALF_RAY = 0.5e27;
uint256 internal constant WAD_RAY_RATIO = 1e9;
/**
* @dev Multiplies two wad, rounding half up to the nearest wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @param b Wad
* @return c = a*b, in wad
*/
function wadMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - HALF_WAD) / b
assembly {
if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_WAD), b))))) {
revert(0, 0)
}
c := div(add(mul(a, b), HALF_WAD), WAD)
}
}
/**
* @dev Divides two wad, rounding half up to the nearest wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @param b Wad
* @return c = a/b, in wad
*/
function wadDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
// to avoid overflow, a <= (type(uint256).max - halfB) / WAD
assembly {
if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), WAD))))) {
revert(0, 0)
}
c := div(add(mul(a, WAD), div(b, 2)), b)
}
}
function rayMul(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// to avoid overflow, a <= (type(uint256).max - HALF_RAY) / b
if iszero(or(iszero(b), iszero(gt(a, div(sub(not(0), HALF_RAY), b))))) {
revert(0, 0)
}
c := div(add(mul(a, b), HALF_RAY), RAY)
}
}
function rayMulFloor(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// Overflow check: Ensure a * b does not exceed uint256 max
if iszero(or(iszero(b), iszero(gt(a, div(not(0), b))))) {
revert(0, 0)
}
c := div(mul(a, b), RAY)
}
}
function rayMulCeil(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// Overflow check: Ensure a * b does not exceed uint256 max
if iszero(or(iszero(b), iszero(gt(a, div(not(0), b))))) {
revert(0, 0)
}
let product := mul(a, b)
c := add(div(product, RAY), iszero(iszero(mod(product, RAY))))
}
}
/**
* @notice Divides two ray, rounding half up to the nearest ray
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Ray
* @param b Ray
* @return c = a raydiv b
*/
function rayDiv(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// to avoid overflow, a <= (type(uint256).max - b / 2) / RAY
if or(iszero(b), iszero(iszero(gt(a, div(sub(not(0), div(b, 2)), RAY))))) {
revert(0, 0)
}
c := div(add(mul(a, RAY), div(b, 2)), b)
}
}
function rayDivCeil(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// Overflow check: Ensure a * RAY does not exceed uint256 max
if or(iszero(b), iszero(iszero(gt(a, div(not(0), RAY))))) {
revert(0, 0)
}
let scaled := mul(a, RAY)
c := add(div(scaled, b), iszero(iszero(mod(scaled, b))))
}
}
function rayDivFloor(uint256 a, uint256 b) internal pure returns (uint256 c) {
assembly {
// Overflow check: Ensure a * RAY does not exceed uint256 max
if or(iszero(b), iszero(iszero(gt(a, div(not(0), RAY))))) {
revert(0, 0)
}
c := div(mul(a, RAY), b)
}
}
/**
* @dev Casts ray down to wad
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Ray
* @return b = a converted to wad, rounded half up to the nearest wad
*/
function rayToWad(uint256 a) internal pure returns (uint256 b) {
assembly {
b := div(a, WAD_RAY_RATIO)
let remainder := mod(a, WAD_RAY_RATIO)
if iszero(lt(remainder, div(WAD_RAY_RATIO, 2))) {
b := add(b, 1)
}
}
}
/**
* @dev Converts wad up to ray
* @dev assembly optimized for improved gas savings, see https://twitter.com/transmissions11/status/1451131036377571328
* @param a Wad
* @return b = a converted in ray
*/
function wadToRay(uint256 a) internal pure returns (uint256 b) {
// to avoid overflow, b/WAD_RAY_RATIO == a
assembly {
b := mul(a, WAD_RAY_RATIO)
if iszero(eq(div(b, WAD_RAY_RATIO), a)) {
revert(0, 0)
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {DataTypes} from '../protocol/libraries/types/DataTypes.sol';
/**
* @title IReserveInterestRateStrategy
* @author BGD Labs
* @notice Basic interface for any rate strategy used by the Aave protocol
*/
interface IReserveInterestRateStrategy {
/**
* @notice Sets interest rate data for an Aave rate strategy
* @param reserve The reserve to update
* @param rateData The abi encoded reserve interest rate data to apply to the given reserve
* Abstracted this way as rate strategies can be custom
*/
function setInterestRateParams(address reserve, bytes calldata rateData) external;
/**
* @notice Calculates the interest rates depending on the reserve's state and configurations
* @param params The parameters needed to calculate interest rates
* @return liquidityRate The liquidity rate expressed in ray
* @return variableBorrowRate The variable borrow rate expressed in ray
*/
function calculateInterestRates(
DataTypes.CalculateInterestRatesParams memory params
) external view returns (uint256, uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Address.sol)
pragma solidity ^0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
assembly {
size := extcodesize(account)
}
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, 'Address: insufficient balance');
(bool success, ) = recipient.call{value: amount}('');
require(success, 'Address: unable to send value, recipient may have reverted');
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, 'Address: low-level call failed');
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, 'Address: low-level call with value failed');
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, 'Address: insufficient balance for call');
require(isContract(target), 'Address: call to non-contract');
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data
) internal view returns (bytes memory) {
return functionStaticCall(target, data, 'Address: low-level static call failed');
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
require(isContract(target), 'Address: static call to non-contract');
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, 'Address: low-level delegate call failed');
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
require(isContract(target), 'Address: delegate call to non-contract');
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol';
/**
* @title IPriceOracleSentinel
* @author Aave
* @notice Defines the basic interface for the PriceOracleSentinel
*/
interface IPriceOracleSentinel {
/**
* @dev Emitted after the sequencer oracle is updated
* @param newSequencerOracle The new sequencer oracle
*/
event SequencerOracleUpdated(address newSequencerOracle);
/**
* @dev Emitted after the grace period is updated
* @param newGracePeriod The new grace period value
*/
event GracePeriodUpdated(uint256 newGracePeriod);
/**
* @notice Returns the PoolAddressesProvider
* @return The address of the PoolAddressesProvider contract
*/
function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider);
/**
* @notice Returns true if the `borrow` operation is allowed.
* @dev Operation not allowed when PriceOracle is down or grace period not passed.
* @return True if the `borrow` operation is allowed, false otherwise.
*/
function isBorrowAllowed() external view returns (bool);
/**
* @notice Returns true if the `liquidation` operation is allowed.
* @dev Operation not allowed when PriceOracle is down or grace period not passed.
* @return True if the `liquidation` operation is allowed, false otherwise.
*/
function isLiquidationAllowed() external view returns (bool);
/**
* @notice Updates the address of the sequencer oracle
* @param newSequencerOracle The address of the new Sequencer Oracle to use
*/
function setSequencerOracle(address newSequencerOracle) external;
/**
* @notice Updates the duration of the grace period
* @param newGracePeriod The value of the new grace period duration
*/
function setGracePeriod(uint256 newGracePeriod) external;
/**
* @notice Returns the SequencerOracle
* @return The address of the sequencer oracle contract
*/
function getSequencerOracle() external view returns (address);
/**
* @notice Returns the grace period
* @return The duration of the grace period
*/
function getGracePeriod() external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IPoolAddressesProvider
* @author Aave
* @notice Defines the basic interface for a Pool Addresses Provider.
*/
interface IPoolAddressesProvider {
/**
* @dev Emitted when the market identifier is updated.
* @param oldMarketId The old id of the market
* @param newMarketId The new id of the market
*/
event MarketIdSet(string indexed oldMarketId, string indexed newMarketId);
/**
* @dev Emitted when the pool is updated.
* @param oldAddress The old address of the Pool
* @param newAddress The new address of the Pool
*/
event PoolUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool configurator is updated.
* @param oldAddress The old address of the PoolConfigurator
* @param newAddress The new address of the PoolConfigurator
*/
event PoolConfiguratorUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle is updated.
* @param oldAddress The old address of the PriceOracle
* @param newAddress The new address of the PriceOracle
*/
event PriceOracleUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL manager is updated.
* @param oldAddress The old address of the ACLManager
* @param newAddress The new address of the ACLManager
*/
event ACLManagerUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the ACL admin is updated.
* @param oldAddress The old address of the ACLAdmin
* @param newAddress The new address of the ACLAdmin
*/
event ACLAdminUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the price oracle sentinel is updated.
* @param oldAddress The old address of the PriceOracleSentinel
* @param newAddress The new address of the PriceOracleSentinel
*/
event PriceOracleSentinelUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the pool data provider is updated.
* @param oldAddress The old address of the PoolDataProvider
* @param newAddress The new address of the PoolDataProvider
*/
event PoolDataProviderUpdated(address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when a new proxy is created.
* @param id The identifier of the proxy
* @param proxyAddress The address of the created proxy contract
* @param implementationAddress The address of the implementation contract
*/
event ProxyCreated(
bytes32 indexed id,
address indexed proxyAddress,
address indexed implementationAddress
);
/**
* @dev Emitted when a new non-proxied contract address is registered.
* @param id The identifier of the contract
* @param oldAddress The address of the old contract
* @param newAddress The address of the new contract
*/
event AddressSet(bytes32 indexed id, address indexed oldAddress, address indexed newAddress);
/**
* @dev Emitted when the implementation of the proxy registered with id is updated
* @param id The identifier of the contract
* @param proxyAddress The address of the proxy contract
* @param oldImplementationAddress The address of the old implementation contract
* @param newImplementationAddress The address of the new implementation contract
*/
event AddressSetAsProxy(
bytes32 indexed id,
address indexed proxyAddress,
address oldImplementationAddress,
address indexed newImplementationAddress
);
/**
* @notice Returns the id of the Aave market to which this contract points to.
* @return The market id
*/
function getMarketId() external view returns (string memory);
/**
* @notice Associates an id with a specific PoolAddressesProvider.
* @dev This can be used to create an onchain registry of PoolAddressesProviders to
* identify and validate multiple Aave markets.
* @param newMarketId The market id
*/
function setMarketId(string calldata newMarketId) external;
/**
* @notice Returns an address by its identifier.
* @dev The returned address might be an EOA or a contract, potentially proxied
* @dev It returns ZERO if there is no registered address with the given id
* @param id The id
* @return The address of the registered for the specified id
*/
function getAddress(bytes32 id) external view returns (address);
/**
* @notice General function to update the implementation of a proxy registered with
* certain `id`. If there is no proxy registered, it will instantiate one and
* set as implementation the `newImplementationAddress`.
* @dev IMPORTANT Use this function carefully, only for ids that don't have an explicit
* setter function, in order to avoid unexpected consequences
* @param id The id
* @param newImplementationAddress The address of the new implementation
*/
function setAddressAsProxy(bytes32 id, address newImplementationAddress) external;
/**
* @notice Sets an address for an id replacing the address saved in the addresses map.
* @dev IMPORTANT Use this function carefully, as it will do a hard replacement
* @param id The id
* @param newAddress The address to set
*/
function setAddress(bytes32 id, address newAddress) external;
/**
* @notice Returns the address of the Pool proxy.
* @return The Pool proxy address
*/
function getPool() external view returns (address);
/**
* @notice Updates the implementation of the Pool, or creates a proxy
* setting the new `pool` implementation when the function is called for the first time.
* @param newPoolImpl The new Pool implementation
*/
function setPoolImpl(address newPoolImpl) external;
/**
* @notice Returns the address of the PoolConfigurator proxy.
* @return The PoolConfigurator proxy address
*/
function getPoolConfigurator() external view returns (address);
/**
* @notice Updates the implementation of the PoolConfigurator, or creates a proxy
* setting the new `PoolConfigurator` implementation when the function is called for the first time.
* @param newPoolConfiguratorImpl The new PoolConfigurator implementation
*/
function setPoolConfiguratorImpl(address newPoolConfiguratorImpl) external;
/**
* @notice Returns the address of the price oracle.
* @return The address of the PriceOracle
*/
function getPriceOracle() external view returns (address);
/**
* @notice Updates the address of the price oracle.
* @param newPriceOracle The address of the new PriceOracle
*/
function setPriceOracle(address newPriceOracle) external;
/**
* @notice Returns the address of the ACL manager.
* @return The address of the ACLManager
*/
function getACLManager() external view returns (address);
/**
* @notice Updates the address of the ACL manager.
* @param newAclManager The address of the new ACLManager
*/
function setACLManager(address newAclManager) external;
/**
* @notice Returns the address of the ACL admin.
* @return The address of the ACL admin
*/
function getACLAdmin() external view returns (address);
/**
* @notice Updates the address of the ACL admin.
* @param newAclAdmin The address of the new ACL admin
*/
function setACLAdmin(address newAclAdmin) external;
/**
* @notice Returns the address of the price oracle sentinel.
* @return The address of the PriceOracleSentinel
*/
function getPriceOracleSentinel() external view returns (address);
/**
* @notice Updates the address of the price oracle sentinel.
* @param newPriceOracleSentinel The address of the new PriceOracleSentinel
*/
function setPriceOracleSentinel(address newPriceOracleSentinel) external;
/**
* @notice Returns the address of the data provider.
* @return The address of the DataProvider
*/
function getPoolDataProvider() external view returns (address);
/**
* @notice Updates the address of the data provider.
* @param newDataProvider The address of the new DataProvider
*/
function setPoolDataProvider(address newDataProvider) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(
bytes32 indexed role,
bytes32 indexed previousAdminRole,
bytes32 indexed newAdminRole
);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {Context} from '../../../dependencies/openzeppelin/contracts/Context.sol';
import {IERC20} from '../../../dependencies/openzeppelin/contracts/IERC20.sol';
import {IERC20Detailed} from '../../../dependencies/openzeppelin/contracts/IERC20Detailed.sol';
import {SafeCast} from 'openzeppelin-contracts/contracts/utils/math/SafeCast.sol';
import {WadRayMath} from '../../libraries/math/WadRayMath.sol';
import {Errors} from '../../libraries/helpers/Errors.sol';
import {IAaveIncentivesController} from '../../../interfaces/IAaveIncentivesController.sol';
import {IPoolAddressesProvider} from '../../../interfaces/IPoolAddressesProvider.sol';
import {IPool} from '../../../interfaces/IPool.sol';
import {IACLManager} from '../../../interfaces/IACLManager.sol';
import {DelegationMode} from './DelegationMode.sol';
/**
* @title IncentivizedERC20
* @author Aave, inspired by the Openzeppelin ERC20 implementation
* @notice Basic ERC20 implementation
*/
abstract contract IncentivizedERC20 is Context, IERC20Detailed {
using WadRayMath for uint256;
using SafeCast for uint256;
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Only pool admin can call functions marked by this modifier.
*/
modifier onlyPoolAdmin() {
IACLManager aclManager = IACLManager(_addressesProvider.getACLManager());
require(aclManager.isPoolAdmin(_msgSender()), Errors.CallerNotPoolAdmin());
_;
}
/**
* @dev Only pool can call functions marked by this modifier.
*/
modifier onlyPool() {
require(_msgSender() == address(POOL), Errors.CallerMustBePool());
_;
}
/**
* @dev UserState - additionalData is a flexible field.
* ATokens and VariableDebtTokens use this field store the index of the
* user's last supply/withdrawal/borrow/repayment.
*/
struct UserState {
uint120 balance;
DelegationMode delegationMode;
uint128 additionalData;
}
// Map of users address and their state data (userAddress => userStateData)
mapping(address => UserState) internal _userState;
// Map of allowances (delegator => delegatee => allowanceAmount)
mapping(address => mapping(address => uint256)) private _allowances;
uint256 internal _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
// @dev deprecated on v3.4.0, replaced with immutable REWARDS_CONTROLLER
IAaveIncentivesController internal __deprecated_incentivesController;
IPoolAddressesProvider internal immutable _addressesProvider;
IPool public immutable POOL;
/**
* @notice Returns the address of the Incentives Controller contract
* @return The address of the Incentives Controller
*/
IAaveIncentivesController public immutable REWARDS_CONTROLLER;
/**
* @dev Constructor.
* @param pool The reference to the main Pool contract
* @param name_ The name of the token
* @param symbol_ The symbol of the token
* @param decimals_ The number of decimals of the token
* @param rewardsController The address of the rewards controller contract
*/
constructor(
IPool pool,
string memory name_,
string memory symbol_,
uint8 decimals_,
address rewardsController
) {
_addressesProvider = pool.ADDRESSES_PROVIDER();
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
POOL = pool;
REWARDS_CONTROLLER = IAaveIncentivesController(rewardsController);
}
/// @inheritdoc IERC20Detailed
function name() public view override returns (string memory) {
return _name;
}
/// @inheritdoc IERC20Detailed
function symbol() external view override returns (string memory) {
return _symbol;
}
/// @inheritdoc IERC20Detailed
function decimals() external view override returns (uint8) {
return _decimals;
}
/// @inheritdoc IERC20
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/// @inheritdoc IERC20
function balanceOf(address account) public view virtual override returns (uint256) {
return _userState[account].balance;
}
/**
* @notice Returns the address of the Incentives Controller contract
* @return The address of the Incentives Controller
*/
function getIncentivesController() external view virtual returns (IAaveIncentivesController) {
return REWARDS_CONTROLLER;
}
/// @inheritdoc IERC20
function transfer(address recipient, uint256 amount) external virtual override returns (bool) {
uint120 castAmount = amount.toUint120();
_transfer(_msgSender(), recipient, castAmount);
return true;
}
/// @inheritdoc IERC20
function allowance(
address owner,
address spender
) external view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/// @inheritdoc IERC20
function approve(address spender, uint256 amount) external virtual override returns (bool) {
_approve({owner: _msgSender(), spender: spender, amount: amount, emitEvent: true});
return true;
}
/// @inheritdoc IERC20
function transferFrom(
address sender,
address recipient,
uint256 amount
) external virtual override returns (bool) {
uint120 castAmount = amount.toUint120();
_spendAllowance({
owner: sender,
spender: _msgSender(),
amount: castAmount,
correctedAmount: castAmount
});
_transfer(sender, recipient, castAmount);
return true;
}
/**
* @notice Sets the allowance of the caller to spend `owner`'s tokens to 0.
* @param owner The address whose tokens are being renounced.
*/
function renounceAllowance(address owner) external virtual {
_approve({owner: owner, spender: _msgSender(), amount: 0, emitEvent: true});
}
/**
* @notice Increases the allowance of spender to spend _msgSender() tokens
* @dev This function is deprecated and will be removed in a future version.
* @custom:deprecated
* @param spender The user allowed to spend on behalf of _msgSender()
* @param addedValue The amount being added to the allowance
* @return `true`
*/
function increaseAllowance(address spender, uint256 addedValue) external virtual returns (bool) {
_approve({
owner: _msgSender(),
spender: spender,
amount: _allowances[_msgSender()][spender] + addedValue,
emitEvent: true
});
return true;
}
/**
* @notice Decreases the allowance of spender to spend _msgSender() tokens
* @dev This function is deprecated and will be removed in a future version.
* @custom:deprecated
* @param spender The user allowed to spend on behalf of _msgSender()
* @param subtractedValue The amount being subtracted to the allowance
* @return `true`
*/
function decreaseAllowance(
address spender,
uint256 subtractedValue
) external virtual returns (bool) {
uint256 currentAllowance = _allowances[_msgSender()][spender];
_approve({
owner: _msgSender(),
spender: spender,
amount: currentAllowance - subtractedValue,
emitEvent: true
});
return true;
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Revert if not enough allowance is available.
*
* Doesn't emit the Approval event.
*
* @param owner The owner of the tokens
* @param spender The user allowed to spend on behalf of owner
* @param amount The minimum amount being consumed from the allowance
* @param correctedAmount The maximum amount being consumed from the allowance
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount,
uint256 correctedAmount
) internal virtual {
uint256 currentAllowance = _allowances[owner][spender];
if (currentAllowance < amount) {
revert ERC20InsufficientAllowance(spender, currentAllowance, amount);
}
if (currentAllowance == type(uint256).max) {
return;
}
uint256 consumption = currentAllowance >= correctedAmount ? correctedAmount : currentAllowance;
_approve({
owner: owner,
spender: spender,
amount: currentAllowance - consumption,
emitEvent: false
});
}
/**
* @notice Transfers tokens between two users and apply incentives if defined.
* @param sender The source address
* @param recipient The destination address
* @param amount The amount getting transferred
*/
function _transfer(address sender, address recipient, uint120 amount) internal virtual {
uint120 oldSenderBalance = _userState[sender].balance;
_userState[sender].balance = oldSenderBalance - amount;
uint120 oldRecipientBalance = _userState[recipient].balance;
_userState[recipient].balance = oldRecipientBalance + amount;
if (address(REWARDS_CONTROLLER) != address(0)) {
uint256 currentTotalSupply = _totalSupply;
REWARDS_CONTROLLER.handleAction(sender, currentTotalSupply, oldSenderBalance);
if (sender != recipient) {
REWARDS_CONTROLLER.handleAction(recipient, currentTotalSupply, oldRecipientBalance);
}
}
}
/**
* @notice Approve `spender` to use `amount` of `owner`s balance
* @param owner The address owning the tokens
* @param spender The address approved for spending
* @param amount The amount of tokens to approve spending of
* @param emitEvent Whether to emit the Approval event
*/
function _approve(
address owner,
address spender,
uint256 amount,
bool emitEvent
) internal virtual {
_allowances[owner][spender] = amount;
if (emitEvent) {
emit Approval(owner, spender, amount);
}
}
/**
* @notice Update the name of the token
* @param newName The new name for the token
*/
function _setName(string memory newName) internal {
_name = newName;
}
/**
* @notice Update the symbol for the token
* @param newSymbol The new symbol for the token
*/
function _setSymbol(string memory newSymbol) internal {
_symbol = newSymbol;
}
/**
* @notice Update the number of decimals for the token
* @param newDecimals The new number of decimals for the token
*/
function _setDecimals(uint8 newDecimals) internal {
_decimals = newDecimals;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IScaledBalanceToken
* @author Aave
* @notice Defines the basic interface for a scaled-balance token.
*/
interface IScaledBalanceToken {
/**
* @dev Emitted after the mint action
* @param caller The address performing the mint
* @param onBehalfOf The address of the user that will receive the minted tokens
* @param value The scaled-up amount being minted (based on user entered amount and balance increase from interest)
* @param balanceIncrease The increase in scaled-up balance since the last action of 'onBehalfOf'
* @param index The next liquidity index of the reserve
*/
event Mint(
address indexed caller,
address indexed onBehalfOf,
uint256 value,
uint256 balanceIncrease,
uint256 index
);
/**
* @dev Emitted after the burn action
* @dev If the burn function does not involve a transfer of the underlying asset, the target defaults to zero address
* @param from The address from which the tokens will be burned
* @param target The address that will receive the underlying, if any
* @param value The scaled-up amount being burned (user entered amount - balance increase from interest)
* @param balanceIncrease The increase in scaled-up balance since the last action of 'from'
* @param index The next liquidity index of the reserve
*/
event Burn(
address indexed from,
address indexed target,
uint256 value,
uint256 balanceIncrease,
uint256 index
);
/**
* @notice Returns the scaled balance of the user.
* @dev The scaled balance is the sum of all the updated stored balance divided by the reserve's liquidity index
* at the moment of the update
* @param user The user whose balance is calculated
* @return The scaled balance of the user
*/
function scaledBalanceOf(address user) external view returns (uint256);
/**
* @notice Returns the scaled balance of the user and the scaled total supply.
* @param user The address of the user
* @return The scaled balance of the user
* @return The scaled total supply
*/
function getScaledUserBalanceAndSupply(address user) external view returns (uint256, uint256);
/**
* @notice Returns the scaled total supply of the scaled balance token. Represents sum(debt/index)
* @return The scaled total supply
*/
function scaledTotalSupply() external view returns (uint256);
/**
* @notice Returns last index interest was accrued to the user's balance
* @param user The address of the user
* @return The last index interest was accrued to the user's balance, expressed in ray
*/
function getPreviousIndex(address user) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
import {IPool} from './IPool.sol';
/**
* @title IInitializableAToken
* @author Aave
* @notice Interface for the initialize function on AToken
*/
interface IInitializableAToken {
/**
* @dev Emitted when an aToken is initialized
* @param underlyingAsset The address of the underlying asset
* @param pool The address of the associated pool
* @param treasury The address of the treasury
* @param incentivesController The address of the incentives controller for this aToken
* @param aTokenDecimals The decimals of the underlying
* @param aTokenName The name of the aToken
* @param aTokenSymbol The symbol of the aToken
* @param params A set of encoded parameters for additional initialization
*/
event Initialized(
address indexed underlyingAsset,
address indexed pool,
address treasury,
address incentivesController,
uint8 aTokenDecimals,
string aTokenName,
string aTokenSymbol,
bytes params
);
/**
* @notice Initializes the aToken
* @param pool The pool contract that is initializing this contract
* @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH)
* @param aTokenDecimals The decimals of the aToken, same as the underlying asset's
* @param aTokenName The name of the aToken
* @param aTokenSymbol The symbol of the aToken
* @param params A set of encoded parameters for additional initialization
*/
function initialize(
IPool pool,
address underlyingAsset,
uint8 aTokenDecimals,
string calldata aTokenName,
string calldata aTokenSymbol,
bytes calldata params
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IAaveIncentivesController} from './IAaveIncentivesController.sol';
import {IPool} from './IPool.sol';
/**
* @title IInitializableDebtToken
* @author Aave
* @notice Interface for the initialize function common between debt tokens
*/
interface IInitializableDebtToken {
/**
* @dev Emitted when a debt token is initialized
* @param underlyingAsset The address of the underlying asset
* @param pool The address of the associated pool
* @param incentivesController The address of the incentives controller for this aToken
* @param debtTokenDecimals The decimals of the debt token
* @param debtTokenName The name of the debt token
* @param debtTokenSymbol The symbol of the debt token
* @param params A set of encoded parameters for additional initialization
*/
event Initialized(
address indexed underlyingAsset,
address indexed pool,
address incentivesController,
uint8 debtTokenDecimals,
string debtTokenName,
string debtTokenSymbol,
bytes params
);
/**
* @notice Initializes the debt token.
* @param pool The pool contract that is initializing this contract
* @param underlyingAsset The address of the underlying asset of this aToken (E.g. WETH for aWETH)
* @param debtTokenDecimals The decimals of the debtToken, same as the underlying asset's
* @param debtTokenName The name of the token
* @param debtTokenSymbol The symbol of the token
* @param params A set of encoded parameters for additional initialization
*/
function initialize(
IPool pool,
address underlyingAsset,
uint8 debtTokenDecimals,
string memory debtTokenName,
string memory debtTokenSymbol,
bytes calldata params
) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return payable(msg.sender);
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;
import {IERC20} from './IERC20.sol';
interface IERC20Detailed is IERC20 {
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title IAaveIncentivesController
* @author Aave
* @notice Defines the basic interface for an Aave Incentives Controller.
* @dev It only contains one single function, needed as a hook on aToken and debtToken transfers.
*/
interface IAaveIncentivesController {
/**
* @dev Called by the corresponding asset on transfer hook in order to update the rewards distribution.
* @dev The units of `totalSupply` and `userBalance` should be the same.
* @param user The address of the user whose asset balance has changed
* @param totalSupply The total supply of the asset prior to user balance change
* @param userBalance The previous user balance prior to balance change
*/
function handleAction(address user, uint256 totalSupply, uint256 userBalance) external;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {IPoolAddressesProvider} from './IPoolAddressesProvider.sol';
/**
* @title IACLManager
* @author Aave
* @notice Defines the basic interface for the ACL Manager
*/
interface IACLManager {
/**
* @notice Returns the contract address of the PoolAddressesProvider
* @return The address of the PoolAddressesProvider
*/
function ADDRESSES_PROVIDER() external view returns (IPoolAddressesProvider);
/**
* @notice Returns the identifier of the PoolAdmin role
* @return The id of the PoolAdmin role
*/
function POOL_ADMIN_ROLE() external view returns (bytes32);
/**
* @notice Returns the identifier of the EmergencyAdmin role
* @return The id of the EmergencyAdmin role
*/
function EMERGENCY_ADMIN_ROLE() external view returns (bytes32);
/**
* @notice Returns the identifier of the RiskAdmin role
* @return The id of the RiskAdmin role
*/
function RISK_ADMIN_ROLE() external view returns (bytes32);
/**
* @notice Returns the identifier of the FlashBorrower role
* @return The id of the FlashBorrower role
*/
function FLASH_BORROWER_ROLE() external view returns (bytes32);
/**
* @notice Returns the identifier of the Bridge role
* @return The id of the Bridge role
*/
function BRIDGE_ROLE() external view returns (bytes32);
/**
* @notice Returns the identifier of the AssetListingAdmin role
* @return The id of the AssetListingAdmin role
*/
function ASSET_LISTING_ADMIN_ROLE() external view returns (bytes32);
/**
* @notice Set the role as admin of a specific role.
* @dev By default the admin role for all roles is `DEFAULT_ADMIN_ROLE`.
* @param role The role to be managed by the admin role
* @param adminRole The admin role
*/
function setRoleAdmin(bytes32 role, bytes32 adminRole) external;
/**
* @notice Adds a new admin as PoolAdmin
* @param admin The address of the new admin
*/
function addPoolAdmin(address admin) external;
/**
* @notice Removes an admin as PoolAdmin
* @param admin The address of the admin to remove
*/
function removePoolAdmin(address admin) external;
/**
* @notice Returns true if the address is PoolAdmin, false otherwise
* @param admin The address to check
* @return True if the given address is PoolAdmin, false otherwise
*/
function isPoolAdmin(address admin) external view returns (bool);
/**
* @notice Adds a new admin as EmergencyAdmin
* @param admin The address of the new admin
*/
function addEmergencyAdmin(address admin) external;
/**
* @notice Removes an admin as EmergencyAdmin
* @param admin The address of the admin to remove
*/
function removeEmergencyAdmin(address admin) external;
/**
* @notice Returns true if the address is EmergencyAdmin, false otherwise
* @param admin The address to check
* @return True if the given address is EmergencyAdmin, false otherwise
*/
function isEmergencyAdmin(address admin) external view returns (bool);
/**
* @notice Adds a new admin as RiskAdmin
* @param admin The address of the new admin
*/
function addRiskAdmin(address admin) external;
/**
* @notice Removes an admin as RiskAdmin
* @param admin The address of the admin to remove
*/
function removeRiskAdmin(address admin) external;
/**
* @notice Returns true if the address is RiskAdmin, false otherwise
* @param admin The address to check
* @return True if the given address is RiskAdmin, false otherwise
*/
function isRiskAdmin(address admin) external view returns (bool);
/**
* @notice Adds a new address as FlashBorrower
* @param borrower The address of the new FlashBorrower
*/
function addFlashBorrower(address borrower) external;
/**
* @notice Removes an address as FlashBorrower
* @param borrower The address of the FlashBorrower to remove
*/
function removeFlashBorrower(address borrower) external;
/**
* @notice Returns true if the address is FlashBorrower, false otherwise
* @param borrower The address to check
* @return True if the given address is FlashBorrower, false otherwise
*/
function isFlashBorrower(address borrower) external view returns (bool);
/**
* @notice Adds a new address as Bridge
* @param bridge The address of the new Bridge
*/
function addBridge(address bridge) external;
/**
* @notice Removes an address as Bridge
* @param bridge The address of the bridge to remove
*/
function removeBridge(address bridge) external;
/**
* @notice Returns true if the address is Bridge, false otherwise
* @param bridge The address to check
* @return True if the given address is Bridge, false otherwise
*/
function isBridge(address bridge) external view returns (bool);
/**
* @notice Adds a new admin as AssetListingAdmin
* @param admin The address of the new admin
*/
function addAssetListingAdmin(address admin) external;
/**
* @notice Removes an admin as AssetListingAdmin
* @param admin The address of the admin to remove
*/
function removeAssetListingAdmin(address admin) external;
/**
* @notice Returns true if the address is AssetListingAdmin, false otherwise
* @param admin The address to check
* @return True if the given address is AssetListingAdmin, false otherwise
*/
function isAssetListingAdmin(address admin) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
enum DelegationMode {
NO_DELEGATION,
VOTING_DELEGATED,
PROPOSITION_DELEGATED,
FULL_POWER_DELEGATED
}{
"remappings": [
"solidity-utils/=lib/solidity-utils/src/",
"forge-std/=lib/forge-std/src/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"openzeppelin-contracts-upgradeable/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
"@openzeppelin/contracts-upgradeable/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/contracts/",
"@openzeppelin/contracts/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
"erc4626-tests/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/solidity-utils/lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "none",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "shanghai",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"CollateralCannotBeLiquidated","type":"error"},{"inputs":[],"name":"HealthFactorNotBelowThreshold","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidReserveIndex","type":"error"},{"inputs":[],"name":"LiquidationGraceSentinelCheckFailed","type":"error"},{"inputs":[],"name":"MustNotLeaveDust","type":"error"},{"inputs":[],"name":"NotEnoughAvailableUserBalance","type":"error"},{"inputs":[],"name":"PriceOracleSentinelCheckFailed","type":"error"},{"inputs":[],"name":"ReserveInactive","type":"error"},{"inputs":[],"name":"ReserveNotInDeficit","type":"error"},{"inputs":[],"name":"ReservePaused","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[],"name":"SelfLiquidation","type":"error"},{"inputs":[],"name":"SpecifiedCurrencyNotBorrowedByUser","type":"error"},{"inputs":[],"name":"UserCannotHaveDebt","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"reserve","type":"address"},{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountCovered","type":"uint256"}],"name":"DeficitCovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"debtAsset","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountCreated","type":"uint256"}],"name":"DeficitCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"asset","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalDebt","type":"uint256"}],"name":"IsolationModeTotalDebtUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"collateralAsset","type":"address"},{"indexed":true,"internalType":"address","name":"debtAsset","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"debtToCover","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidatedCollateralAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"liquidator","type":"address"},{"indexed":false,"internalType":"bool","name":"receiveAToken","type":"bool"}],"name":"LiquidationCall","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"reserve","type":"address"},{"indexed":false,"internalType":"uint256","name":"liquidityRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stableBorrowRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"variableBorrowRate","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"liquidityIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"variableBorrowIndex","type":"uint256"}],"name":"ReserveDataUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"reserve","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"ReserveUsedAsCollateralDisabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"reserve","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"ReserveUsedAsCollateralEnabled","type":"event"},{"inputs":[],"name":"CLOSE_FACTOR_HF_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_BASE_MAX_CLOSE_FACTOR_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_LEFTOVER_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Contract Creation Code
61304a610034600b8282823980515f1a607314602857634e487b7160e01b5f525f60045260245ffd5b305f52607381538281f3fe7300000000000000000000000000000000000000003014608060405260043610610060575f3560e01c80631a00fd001461006457806364e377d01461007e5780637e9e608c1461008a57806383c1087d146100a9578063a18964a5146100ca575b5f5ffd5b61006c6100d9565b60405190815260200160405180910390f35b61006c642e90edd00081565b818015610095575f5ffd5b5061006c6100a4366004612bed565b6100ec565b8180156100b4575f5ffd5b506100c86100c3366004612cc1565b610469565b005b61006c670d2f13f7789f000081565b6100e96002642e90edd000612de9565b81565b5f81606001515f036101115760405163162908e360e11b815260040160405180910390fd5b6020808301516001600160a01b03165f9081529085905260408120600381015490916001600160801b039091169081900361015f576040516394468f0360e01b815260040160405180910390fd5b60408051602081019091528554908190527f555555555555555555555555555555555555555555555555555555555555555516156101b0576040516316f1ef8160e01b815260040160405180910390fd5b5f6101ba83610f47565b90506101c6838261106a565b5f6101dc82610120015151600160381b16151590565b9050806101fc576040516324335bc960e21b815260040160405180910390fd5b60608601518381111561020c5750825b6101408301518751604051630ed1279f60e11b81526001600160a01b0391821660048201525f929190911690631da24f3e90602401602060405180830381865afa15801561025c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102809190612e08565b90505f61029a8560600151846110cf90919063ffffffff16565b9050818111156102bd576040516311ef12cb60e21b815260040160405180910390fd5b600387015460408051602081019091528b5481525f916102e89190600160a81b900461ffff166110e3565b90508080156102f657508282145b1561032057600388015460208b01518b51610320928e92600160a81b90910461ffff16915f611116565b6101408601518a51606088015160405163b18d6afd60e01b81526001600160a01b0384169363b18d6afd9361035d9390928a918991600401612e1f565b6020604051808303815f875af1158015610379573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061039d9190612e50565b506103a7846111cf565b6003890180545f906103c39084906001600160801b0316612e6b565b92506101000a8154816001600160801b0302191690836001600160801b0316021790555061040a868b602001515f5f8e604001518d61120b9095949392919063ffffffff16565b6020808b01518b51604080516001600160a01b0392831681529384018890529116917f84b203e49f1a4b553088061534231969a68ad1c81be192205e96d23a206cb26a910160405180910390a2509196505050505050505b9392505050565b6104716129fe565b6040808301516001600160a01b039081165f908152602089815283822060608701518416835284832060808801519094168352908890529290206104b482610f47565b6102008501526104c383610f47565b6102208501526102008401516104da90839061106a565b6102208401516104eb90849061106a565b6040805160a081018252825460808083019182529082528701516001600160a01b03908116602083015260c0880151169181019190915260e086015160ff16606082015261053e908a908a9089906114be565b5060a0890152505061010086015260e08501526102208401516060810151610140909101516080870151604051630ed1279f60e11b81526001600160a01b0391821660048201526105de93929190911690631da24f3e906024015b602060405180830381865afa1580156105b4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d89190612e08565b906118b1565b845261020084015160a0810151610160909101516080870151604051630ed1279f60e11b81526001600160a01b03918216600482015261066d93929190911690631da24f3e906024015b602060405180830381865afa158015610643573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106679190612e08565b906118bc565b8460200181815250506106e28184846040518060c001604052808961020001518152602001896020015181526020018960a0015181526020018a61010001516001600160a01b031681526020018a608001516001600160a01b031681526020018a5f01516001600160a01b03168152506118c7565b60e085015160ff1615801590610733575060e085015160ff165f90815260208790526040902054600384015461073391600160301b90046001600160801b031690600160a81b900461ffff16611b6d565b156107645760e085015160ff165f90815260208790526040902054640100000000900461ffff16608085015261077d565b61022084015161012001515160201c61ffff1660808501525b60c0850151604080870151905163b3596f0760e01b81526001600160a01b03918216600482015291169063b3596f0790602401602060405180830381865afa1580156107cb573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107ef9190612e08565b61018085015260c0850151606086015160405163b3596f0760e01b81526001600160a01b03918216600482015291169063b3596f0790602401602060405180830381865afa158015610843573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108679190612e08565b6101a085015261022084015161012001515160301c60ff1661088a90600a612f6d565b6101c085015261020084015161012001515160301c60ff166108ad90600a612f6d565b6101e0850181905260208501516101a08601516108c992611ba6565b6101408501526101c084015161018085015185516108e79190612f78565b6108f19190612de9565b6101608501819052602085015190642e90edd0001180159061091d5750642e90edd00085610140015110155b80156109345750670d2f13f7789f00008560a00151115b15610981576101008501515f9061094d90611388611bd1565b905080866101400151111561097f576101a08601516101e08701516109729083612f78565b61097c9190612de9565b91505b505b80866020015111610996578560200151610998565b805b6040860181905261022086015161012001516101808701516101c08801516101a08901516101e08a01518a5160808c01516109d4979190611bf5565b61012089015260c08801526040870181905260608701919091526020860151118015610a135750845160c08601516060870151610a119190612f8f565b105b15610ad4575f610a296002642e90edd000612de9565b610a5187604001518860200151610a409190612fa2565b886101a00151896101e00151611ba6565b101590505f610a666002642e90edd000612de9565b6101c088015161018089015160c08a015160608b01518b51610a889190612fa2565b610a929190612fa2565b610a9c9190612f78565b610aa69190612de9565b10159050818015610ab45750805b610ad157604051632d8a6c3960e21b815260040160405180910390fd5b50505b845160c08601516060870151610aea9190612f8f565b03610b1757600384015460408701516080880151610b17928592600160a81b90910461ffff16915f611116565b5f8561012001518660e00151149050610b5186610200015185858a608001518b606001518b602001518c60400151888f6101200151611da1565b61022086015161012001515160d41c64ffffffffff1615610b8557610b858b87610200015188604001518a60400151611f58565b8660a0015115610c2457610220860151610140810151608089015189516060808b01519401516001600160a01b039093169363353b7b9a93610bc89082906110cf565b8b6102200151606001516040518663ffffffff1660e01b8152600401610bf2959493929190612e1f565b5f604051808303815f87803b158015610c09575f5ffd5b505af1158015610c1b573d5f5f3e3d5ffd5b50505050610c67565b86606001516001600160a01b031687604001516001600160a01b031603610c5c57610200860151602090810151610220880151909101525b610c67858888611fe1565b60c086015115610e26575f610c92876102200151606001518860c001516110cf90919063ffffffff16565b610220880151610140015160808a0151604051630ed1279f60e11b81526001600160a01b0391821660048201529293505f92911690631da24f3e90602401602060405180830381865afa158015610ceb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d0f9190612e08565b905080821115610d3e57809150610d3888610220015160600151826118b190919063ffffffff16565b60c08901525b87610220015161014001516001600160a01b031663353b7b9a8a608001518a610220015161014001516001600160a01b031663ae1673356040518163ffffffff1660e01b8152600401602060405180830381865afa158015610da2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dc69190612fb5565b8b60c00151868d6102200151606001516040518663ffffffff1660e01b8152600401610df6959493929190612e1f565b5f604051808303815f87803b158015610e0d575f5ffd5b505af1158015610e1f573d5f5f3e3d5ffd5b5050505050505b808015610e64575060408051602081019091528354908190527f55555555555555555555555555555555555555555555555555555555555555551615155b15610e7557610e758b8b858a6120b7565b86516102008701516101400151604088015160608a0151610ea3936001600160a01b039091169290916121cd565b86608001516001600160a01b031687606001516001600160a01b031688604001516001600160a01b03167fe413a321e8681d831f4dbccbca790d2952b56f977908e45be37335533e00528689604001518a606001518c5f01518d60a00151604051610f32949392919093845260208401929092526001600160a01b031660408301521515606082015260800190565b60405180910390a45050505050505050505050565b610f4f612a84565b610f57612a84565b6040805160208101825284548152610120830181905251901c61ffff1661010082015260018301546001600160801b0380821660608401819052604080850191909152600286015480831660a086018190526080860152600160801b93849004831660c086015283900490911660e08401526004808601546001600160a01b03908116610140860152600687015416610160850181905260038701549390930464ffffffffff16610180850152815163b1bf962d60e01b8152915163b1bf962d9280830192602092918290030181865afa158015611037573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061105b9190612e08565b60208201819052815292915050565b4264ffffffffff1681610180015164ffffffffff1603611088575050565b6110928282612265565b61109c828261233c565b6003909101805464ffffffffff4216600160801b810264ffffffffff60801b199092169190911790915561018090910152565b5f6110da83836123f4565b90505b92915050565b5f60808210611105576040516385e98beb60e01b815260040160405180910390fd5b509051600191821b82011c16151590565b60808410611137576040516385e98beb60e01b815260040160405180910390fd5b600184811b81011b8115611187578554811786556040516001600160a01b0380851691908616907e058a56ea94653cdf4f152d227ace22d4c00ad99e2a43f58cb7d9e3feb295f2905f90a36111c7565b855481191686556040516001600160a01b0380851691908616907f44c58d81365b66dd4b1a7f36c25aa97b8c71c361ee4937adc1a00000227db5dd905f90a35b505050505050565b5f6001600160801b03821115611207576040516306dfcc6560e41b815260806004820152602481018390526044015b60405180910390fd5b5090565b5f6112278660a0015187602001516118bc90919063ffffffff16565b60408051610100808201835260038b01546001600160801b0390811683526020830189905282840188905260608301859052908a015160808301526001600160a01b0389811660a0840152600160c084015260088c0154600160801b900490911660e0830152915163b90db31b60e01b81529293505f92839286169163b90db31b916113109190600401815181526020808301519082015260408083015190820152606080830151908201526080808301519082015260a0808301516001600160a01b03169082015260c08083015115159082015260e091820151918101919091526101000190565b6040805180830381865afa15801561132a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061134e9190612fd0565b9150915061135b826111cf565b60018a0180546001600160801b03928316600160801b029216919091179055611383816111cf565b60028a0180546001600160801b03928316600160801b02921691909117905585156113fa576113b1866111cf565b60088a0180546010906113d5908490600160801b90046001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b031602179055505b841561145257611409856111cf565b60088a01805460109061142d908490600160801b90046001600160801b0316612e6b565b92506101000a8154816001600160801b0302191690836001600160801b031602179055505b60608881015160a0808b0151604080518781525f602082015280820187905294850193909352608084015290516001600160a01b038a16927f804c9b842b2748a22bb64b345453a3de7ca54a6ca45ce00d415894979e22897a92908290030190a2505050505050505050565b5f5f5f5f5f5f6114d0875f0151511590565b156114ec57505f94508493508392508291505f199050816118a4565b6114f4612af5565b606088015160ff161561154f5760608801805160ff9081165f90815260208c815260408083205462010000900461ffff166101a087015293519092168152908b90522054600160301b90046001600160801b03166101c08201525b87515160608201525f805b6060830151156117c6575050606081018051600281811c909252600180821614919081161480806115885750815b156117b65760e08301515f90815260208d905260409020546001600160a01b03166101e08401819052156117b6576101e08301516001600160a01b03165f90815260208e8152604091829020825191820190925281548152608085018190525160301c60ff16600a0a602085015260408b8101516101e0860151915163b3596f0760e01b81526001600160a01b03928316600482015291169063b3596f0790602401602060405180830381865afa158015611645573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116699190612e08565b84528115611781576116888b6020015182865f01518760200151612436565b60408501819052610120850180516116a1908390612f8f565b90525060608b01805160ff165f90815260208e90526040902090516116c79183916124a1565b60a085018190525f036116e157600161020085015261170b565b8360a0015184604001516116f59190612f78565b84610160018181516117079190612f8f565b9052505b60608b015160ff161580159061172f575061172f846101c001518560e00151611b6d565b15611744576101a084015160c0850152611757565b60808401515160101c61ffff1660c08501525b8360c00151846040015161176b9190612f78565b846101800181815161177d9190612f8f565b9052505b82156117b45761179e8b6020015182865f01518760200151612545565b84610140018181516117b09190612f8f565b9052505b505b60e083018051600101905261155a565b61014083015115611800576127106117f184610140015185610180015161259e90919063ffffffff16565b6117fb9190612de9565b611803565b5f195b6101008401526101208301515f0361181b575f611836565b8261012001518361016001518161183457611834612dc1565b045b6101608401526101208301515f0361184e575f611869565b8261012001518361018001518161186757611867612dc1565b045b610180840181905261012084015161014085015161016086015161010087015161020090970151929c50909a50985090965092945091925050505b9499939850945094509450565b5f6110da83836125d3565b5f6110da83836125f9565b604080516080810182525f8082526020820181905291810182905260608101919091528160a001516001600160a01b031682608001516001600160a01b031603611924576040516344511af160e01b815260040160405180910390fd5b6040805160208082018352865491829052671000000000000000808316151591850191909152600160381b91821615801580865286516101200151519283161515606087015291909216151592840192909252611982575080604001515b61199f576040516324335bc960e21b815260040160405180910390fd5b80602001511580156119b357508060600151155b6119d0576040516334dfd7c760e21b815260040160405180910390fd5b60608201516001600160a01b031615806119f55750670d2f13f7789f00008260400151105b80611a5f575081606001516001600160a01b0316637a5d20ea6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a3b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a5f9190612e50565b611a7c57604051639103700960e01b815260040160405180910390fd5b600384015464ffffffffff428116600160b81b90920416108015611ab45750600383015464ffffffffff428116600160b81b90920416105b611ad1576040516304f1f30360e51b815260040160405180910390fd5b670de0b6b3a7640000826040015110611afd5760405163930bb77160e01b815260040160405180910390fd5b6003840154604080516020810190915286548152611b2591600160a81b900461ffff166110e3565b611b42576040516312f36b9d60e31b815260040160405180910390fd5b81602001515f03611b6657604051633653732b60e01b815260040160405180910390fd5b5050505050565b5f60808210611b8f576040516385e98beb60e01b815260040160405180910390fd5b506001600160801b0391909116901c600116151590565b5f81611bb0575f5ffd5b825f1904841115831517611bc2575f5ffd5b50910281810491900615150190565b5f81156113881983900484111517611be7575f5ffd5b506127109102611388010490565b5f5f5f5f611c3f6040518061012001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81525090565b61010081018c90528c5160981c61ffff1660a0820152611c5f898d612f78565b8b611c6a8a8d612f78565b611c749190612f78565b611c7e9190612de9565b60208201819052611c8f9087611bd1565b808252871015611ce85760608101879052611cde86611cae8d8d612f78565b8b8460600151856101000151611cc49190612f78565b611cce9190612f78565b611cd89190612de9565b90612627565b6080820152611cf7565b80516060820152608081018890525b8a8161010001518260600151611d0d9190612f78565b611d179190612de9565b60e082015260a081015115611d76576060810151611d35908761266a565b8160600151611d449190612fa2565b6040820181905260a0820151611d5a9190611bd1565b60c08201819052606082018051611d72908390612fa2565b9052505b6060810151608082015160c083015160e090930151919f909e50919c509a5098505050505050505050565b60018415611e66575f83611db55784611db7565b855b90508a61016001516001600160a01b031663f5298aca89611de58e60a001518561269390919063ffffffff16565b60a08f01516040516001600160e01b031960e086901b1681526001600160a01b0390931660048401526024830191909152604482015260640160408051808303815f875af1158015611e39573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e5d9190613011565b60208d01529150505b5f611e718587612fa2565b9050838015611e7f57508015155b15611f1b57611e8d816111cf565b60038b0180545f90611ea99084906001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b03160217905550866001600160a01b0316886001600160a01b03167f2bccfb3fad376d59d7accf970515eb77b2f27b082c90ed0fb15583dd5a94269983604051611f1291815260200190565b60405180910390a35b8115611f3d5760038a0154611f3d908a90600160a81b900461ffff165f61269e565b611f4b8a8c89885f8861120b565b5050505050505050505050565b6001600160a01b0381165f908152602085905260408120600901546001600160801b031690611f8785856126e2565b90505f816001600160801b0316836001600160801b031611611fa9575f611fb3565b611fb38284612e6b565b6001600160a01b0385165f908152602089905260409020909150611fd8908583612717565b50505050505050565b61200e81610220015183604001515f84606001518661012001518861120b9095949392919063ffffffff16565b610220810151610140810151608084015184516060808601519401516001600160a01b039093169363b18d6afd936120479082906110cf565b866102200151606001516040518663ffffffff1660e01b8152600401612071959493929190612e1f565b6020604051808303815f875af115801561208d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120b19190612e50565b50505050565b81545f805b8215611fd85750600282901c9160019081161480156121c2575f828152602087905260409020546001600160a01b031680156121c0576001600160a01b0381165f90815260208990526040812061211290610f47565b905061212981610120015151600160381b16151590565b156121be576001600160a01b0382165f90815260208a90526040902061214f908261106a565b6001600160a01b038083165f90815260208b9052604090819020608089015160a08501516101608601519351630ed1279f60e11b815282861660048201526121be9587958e94938a936121b093919290911690631da24f3e90602401610628565b5f60018e6101200151611da1565b505b505b8160010191506120bc565b6040516323b872dd60e01b8082526001600160a01b0385811660048401528416602483015260448201839052905f80606483828a5af161220f573d5f5f3e3d5ffd5b506122198561277a565b611b665760405162461bcd60e51b815260206004820152601960248201527f475076323a206661696c6564207472616e7366657246726f6d0000000000000060448201526064016111fe565b60c0810151156122d0575f6122838260c0015183610180015161281d565b905061229c82604001518261285890919063ffffffff16565b606083018190526122ac906111cf565b6001840180546001600160801b0319166001600160801b0392909216919091179055505b805115612338575f6122eb8260e00151836101800151612899565b905061230482608001518261285890919063ffffffff16565b60a08301819052612314906111cf565b6002840180546001600160801b0319166001600160801b0392909216919091179055505b5050565b8061010001515f0361234c575050565b5f61236c82608001518360a001516123649190612fa2565b8351906125d3565b90505f61238783610100015183611bd190919063ffffffff16565b905080156120b1576123ae6123a984606001518361269390919063ffffffff16565b6111cf565b6008850180545f906123ca9084906001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b0316021790555050505050565b5f8115744f3a68dbc8f03f243baf513267aa9a3ee524f8e02884111715612419575f5ffd5b50676765c793fa10079d601b1b9190910281810491900615150190565b5f5f8361247b612445876128a5565b600488810154604051630ed1279f60e11b81526001600160a01b038c811693820193909352911690631da24f3e90602401610599565b6124859190612f78565b905082818161249657612496612dc1565b049695505050505050565b5f60ff8216158015906124db5750825460038501546124db91600160301b90046001600160801b031690600160a81b900461ffff16611b6d565b15612527576002830154600385015461250f91600160801b90046001600160801b031690600160a81b900461ffff16611b6d565b1561251b57505f610462565b50815461ffff16610462565b604080516020810190915284549081905261ffff165b949350505050565b5f5f61258761255386612901565b6006870154604051630ed1279f60e11b81526001600160a01b038a8116600483015290911690631da24f3e90602401610628565b9050612594818585611ba6565b9695505050505050565b5f8115670de0b6b3a7640000600284041904841117156125bc575f5ffd5b50670de0b6b3a76400009190910260028204010490565b5f815f19048311158215176125e6575f5ffd5b50676765c793fa10079d601b1b91020490565b5f815f190483111582151761260c575f5ffd5b50676765c793fa10079d601b1b910281810491900615150190565b5f81157e068db8bac710cb295e9e1b089a027525460aa64c2f837b4a2339c0ebedfa4384111715612656575f5ffd5b506127109190910281810491900615150190565b5f811561271060028404190484111715612682575f5ffd5b506127109190910260028204010490565b5f6110da8383612957565b608082106126bf576040516385e98beb60e01b815260040160405180910390fd5b600182811b1b81156126d6578354811784556120b1565b83549019169092555050565b610120820151515f906110da9060029060301c60ff166127029190612fa2565b61270d90600a612f6d565b6123a99084612de9565b6009830180546001600160801b0319166001600160801b0383169081179091556040519081526001600160a01b038316907faef84d3b40895fd58c561f3998000f0583abb992a52fbdc99ace8e8de4d676a59060200160405180910390a2505050565b5f61279c565b62461bcd60e51b5f52602060045280602452508060445260645ffd5b3d80156127db576020811461280c576127d67f475076323a206d616c666f726d6564207472616e7366657220726573756c7400601f612780565b612817565b823b612803576128037311d41d8c8e881b9bdd08184818dbdb9d1c9858dd60621b6014612780565b60019150612817565b3d5f5f3e5f51151591505b50919050565b5f8061283064ffffffffff841642612fa2565b61283a9085612f78565b6301e133809004905061253d81676765c793fa10079d601b1b612f8f565b5f81156b019d971e4fe8401e740000001983900484111517612878575f5ffd5b50676765c793fa10079d601b1b91026b019d971e4fe8401e74000000010490565b5f6110da838342612991565b60038101545f90600160801b900464ffffffffff164281036128d3575050600101546001600160801b031690565b6001830154610462906001600160801b03808216916128fb91600160801b909104168461281d565b90612858565b60038101545f90600160801b900464ffffffffff1642810361292f575050600201546001600160801b031690565b6002830154610462906001600160801b03808216916128fb91600160801b9091041684612899565b5f8115744f3a68dbc8f03f243baf513267aa9a3ee524f8e0288411171561297c575f5ffd5b50676765c793fa10079d601b1b919091020490565b5f806129a464ffffffffff851684612fa2565b9050805f036129c157676765c793fa10079d601b1b915050610462565b6301e13380818602046129e66129da8260068104612858565b82906002820401612858565b01676765c793fa10079d601b1b019150509392505050565b6040518061024001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152602001612a72612a84565b8152602001612a7f612a84565b905290565b604051806101a001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152602001612adb60405180602001604052805f81525090565b81525f602082018190526040820181905260609091015290565b6040518061022001604052805f81526020015f81526020015f81526020015f8152602001612b2e60405180602001604052805f81525090565b81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f6001600160801b031681526020015f6001600160a01b031681526020015f151581525090565b604051610140810167ffffffffffffffff81118282101715612bc057634e487b7160e01b5f52604160045260245ffd5b60405290565b6001600160a01b0381168114612bda575f5ffd5b50565b8035612be881612bc6565b919050565b5f5f5f83850360c0811215612c00575f5ffd5b84359350602085013592506080603f1982011215612c1c575f5ffd5b506040516080810167ffffffffffffffff81118282101715612c4c57634e487b7160e01b5f52604160045260245ffd5b6040908152850135612c5d81612bc6565b81526060850135612c6d81612bc6565b60208201526080850135612c8081612bc6565b604082015260a094909401356060850152509093909250565b8015158114612bda575f5ffd5b8035612be881612c99565b803560ff81168114612be8575f5ffd5b5f5f5f5f5f8587036101c0811215612cd7575f5ffd5b86359550602087013594506040870135935060608701359250610140607f1982011215612d02575f5ffd5b50612d0b612b90565b612d1760808801612bdd565b815260a08701356020820152612d2f60c08801612bdd565b6040820152612d4060e08801612bdd565b6060820152612d526101008801612bdd565b6080820152612d646101208801612ca6565b60a0820152612d766101408801612bdd565b60c0820152612d886101608801612cb1565b60e0820152612d9a6101808801612bdd565b610100820152612dad6101a08801612bdd565b610120820152809150509295509295909350565b634e487b7160e01b5f52601260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f82612e0357634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215612e18575f5ffd5b5051919050565b6001600160a01b03958616815293909416602084015260408301919091526060820152608081019190915260a00190565b5f60208284031215612e60575f5ffd5b815161046281612c99565b6001600160801b0382811682821603908111156110dd576110dd612dd5565b6001815b6001841115612ec557808504811115612ea957612ea9612dd5565b6001841615612eb757908102905b60019390931c928002612e8e565b935093915050565b5f82612edb575060016110dd565b81612ee757505f6110dd565b8160018114612efd5760028114612f0757612f23565b60019150506110dd565b60ff841115612f1857612f18612dd5565b50506001821b6110dd565b5060208310610133831016604e8410600b8410161715612f46575081810a6110dd565b612f525f198484612e8a565b805f1904821115612f6557612f65612dd5565b029392505050565b5f6110da8383612ecd565b80820281158282048414176110dd576110dd612dd5565b808201808211156110dd576110dd612dd5565b818103818111156110dd576110dd612dd5565b5f60208284031215612fc5575f5ffd5b815161046281612bc6565b5f5f60408385031215612fe1575f5ffd5b505080516020909101519092909150565b6001600160801b0381811683821601908111156110dd576110dd612dd5565b5f5f60408385031215613022575f5ffd5b825161302d81612c99565b602093909301519294929350505056fea164736f6c634300081b000a
Deployed Bytecode
0x738dc095f287dbebd9e15f75bb3dfbf18389bb81043014608060405260043610610060575f3560e01c80631a00fd001461006457806364e377d01461007e5780637e9e608c1461008a57806383c1087d146100a9578063a18964a5146100ca575b5f5ffd5b61006c6100d9565b60405190815260200160405180910390f35b61006c642e90edd00081565b818015610095575f5ffd5b5061006c6100a4366004612bed565b6100ec565b8180156100b4575f5ffd5b506100c86100c3366004612cc1565b610469565b005b61006c670d2f13f7789f000081565b6100e96002642e90edd000612de9565b81565b5f81606001515f036101115760405163162908e360e11b815260040160405180910390fd5b6020808301516001600160a01b03165f9081529085905260408120600381015490916001600160801b039091169081900361015f576040516394468f0360e01b815260040160405180910390fd5b60408051602081019091528554908190527f555555555555555555555555555555555555555555555555555555555555555516156101b0576040516316f1ef8160e01b815260040160405180910390fd5b5f6101ba83610f47565b90506101c6838261106a565b5f6101dc82610120015151600160381b16151590565b9050806101fc576040516324335bc960e21b815260040160405180910390fd5b60608601518381111561020c5750825b6101408301518751604051630ed1279f60e11b81526001600160a01b0391821660048201525f929190911690631da24f3e90602401602060405180830381865afa15801561025c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102809190612e08565b90505f61029a8560600151846110cf90919063ffffffff16565b9050818111156102bd576040516311ef12cb60e21b815260040160405180910390fd5b600387015460408051602081019091528b5481525f916102e89190600160a81b900461ffff166110e3565b90508080156102f657508282145b1561032057600388015460208b01518b51610320928e92600160a81b90910461ffff16915f611116565b6101408601518a51606088015160405163b18d6afd60e01b81526001600160a01b0384169363b18d6afd9361035d9390928a918991600401612e1f565b6020604051808303815f875af1158015610379573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061039d9190612e50565b506103a7846111cf565b6003890180545f906103c39084906001600160801b0316612e6b565b92506101000a8154816001600160801b0302191690836001600160801b0316021790555061040a868b602001515f5f8e604001518d61120b9095949392919063ffffffff16565b6020808b01518b51604080516001600160a01b0392831681529384018890529116917f84b203e49f1a4b553088061534231969a68ad1c81be192205e96d23a206cb26a910160405180910390a2509196505050505050505b9392505050565b6104716129fe565b6040808301516001600160a01b039081165f908152602089815283822060608701518416835284832060808801519094168352908890529290206104b482610f47565b6102008501526104c383610f47565b6102208501526102008401516104da90839061106a565b6102208401516104eb90849061106a565b6040805160a081018252825460808083019182529082528701516001600160a01b03908116602083015260c0880151169181019190915260e086015160ff16606082015261053e908a908a9089906114be565b5060a0890152505061010086015260e08501526102208401516060810151610140909101516080870151604051630ed1279f60e11b81526001600160a01b0391821660048201526105de93929190911690631da24f3e906024015b602060405180830381865afa1580156105b4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d89190612e08565b906118b1565b845261020084015160a0810151610160909101516080870151604051630ed1279f60e11b81526001600160a01b03918216600482015261066d93929190911690631da24f3e906024015b602060405180830381865afa158015610643573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106679190612e08565b906118bc565b8460200181815250506106e28184846040518060c001604052808961020001518152602001896020015181526020018960a0015181526020018a61010001516001600160a01b031681526020018a608001516001600160a01b031681526020018a5f01516001600160a01b03168152506118c7565b60e085015160ff1615801590610733575060e085015160ff165f90815260208790526040902054600384015461073391600160301b90046001600160801b031690600160a81b900461ffff16611b6d565b156107645760e085015160ff165f90815260208790526040902054640100000000900461ffff16608085015261077d565b61022084015161012001515160201c61ffff1660808501525b60c0850151604080870151905163b3596f0760e01b81526001600160a01b03918216600482015291169063b3596f0790602401602060405180830381865afa1580156107cb573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107ef9190612e08565b61018085015260c0850151606086015160405163b3596f0760e01b81526001600160a01b03918216600482015291169063b3596f0790602401602060405180830381865afa158015610843573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108679190612e08565b6101a085015261022084015161012001515160301c60ff1661088a90600a612f6d565b6101c085015261020084015161012001515160301c60ff166108ad90600a612f6d565b6101e0850181905260208501516101a08601516108c992611ba6565b6101408501526101c084015161018085015185516108e79190612f78565b6108f19190612de9565b6101608501819052602085015190642e90edd0001180159061091d5750642e90edd00085610140015110155b80156109345750670d2f13f7789f00008560a00151115b15610981576101008501515f9061094d90611388611bd1565b905080866101400151111561097f576101a08601516101e08701516109729083612f78565b61097c9190612de9565b91505b505b80866020015111610996578560200151610998565b805b6040860181905261022086015161012001516101808701516101c08801516101a08901516101e08a01518a5160808c01516109d4979190611bf5565b61012089015260c08801526040870181905260608701919091526020860151118015610a135750845160c08601516060870151610a119190612f8f565b105b15610ad4575f610a296002642e90edd000612de9565b610a5187604001518860200151610a409190612fa2565b886101a00151896101e00151611ba6565b101590505f610a666002642e90edd000612de9565b6101c088015161018089015160c08a015160608b01518b51610a889190612fa2565b610a929190612fa2565b610a9c9190612f78565b610aa69190612de9565b10159050818015610ab45750805b610ad157604051632d8a6c3960e21b815260040160405180910390fd5b50505b845160c08601516060870151610aea9190612f8f565b03610b1757600384015460408701516080880151610b17928592600160a81b90910461ffff16915f611116565b5f8561012001518660e00151149050610b5186610200015185858a608001518b606001518b602001518c60400151888f6101200151611da1565b61022086015161012001515160d41c64ffffffffff1615610b8557610b858b87610200015188604001518a60400151611f58565b8660a0015115610c2457610220860151610140810151608089015189516060808b01519401516001600160a01b039093169363353b7b9a93610bc89082906110cf565b8b6102200151606001516040518663ffffffff1660e01b8152600401610bf2959493929190612e1f565b5f604051808303815f87803b158015610c09575f5ffd5b505af1158015610c1b573d5f5f3e3d5ffd5b50505050610c67565b86606001516001600160a01b031687604001516001600160a01b031603610c5c57610200860151602090810151610220880151909101525b610c67858888611fe1565b60c086015115610e26575f610c92876102200151606001518860c001516110cf90919063ffffffff16565b610220880151610140015160808a0151604051630ed1279f60e11b81526001600160a01b0391821660048201529293505f92911690631da24f3e90602401602060405180830381865afa158015610ceb573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d0f9190612e08565b905080821115610d3e57809150610d3888610220015160600151826118b190919063ffffffff16565b60c08901525b87610220015161014001516001600160a01b031663353b7b9a8a608001518a610220015161014001516001600160a01b031663ae1673356040518163ffffffff1660e01b8152600401602060405180830381865afa158015610da2573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610dc69190612fb5565b8b60c00151868d6102200151606001516040518663ffffffff1660e01b8152600401610df6959493929190612e1f565b5f604051808303815f87803b158015610e0d575f5ffd5b505af1158015610e1f573d5f5f3e3d5ffd5b5050505050505b808015610e64575060408051602081019091528354908190527f55555555555555555555555555555555555555555555555555555555555555551615155b15610e7557610e758b8b858a6120b7565b86516102008701516101400151604088015160608a0151610ea3936001600160a01b039091169290916121cd565b86608001516001600160a01b031687606001516001600160a01b031688604001516001600160a01b03167fe413a321e8681d831f4dbccbca790d2952b56f977908e45be37335533e00528689604001518a606001518c5f01518d60a00151604051610f32949392919093845260208401929092526001600160a01b031660408301521515606082015260800190565b60405180910390a45050505050505050505050565b610f4f612a84565b610f57612a84565b6040805160208101825284548152610120830181905251901c61ffff1661010082015260018301546001600160801b0380821660608401819052604080850191909152600286015480831660a086018190526080860152600160801b93849004831660c086015283900490911660e08401526004808601546001600160a01b03908116610140860152600687015416610160850181905260038701549390930464ffffffffff16610180850152815163b1bf962d60e01b8152915163b1bf962d9280830192602092918290030181865afa158015611037573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061105b9190612e08565b60208201819052815292915050565b4264ffffffffff1681610180015164ffffffffff1603611088575050565b6110928282612265565b61109c828261233c565b6003909101805464ffffffffff4216600160801b810264ffffffffff60801b199092169190911790915561018090910152565b5f6110da83836123f4565b90505b92915050565b5f60808210611105576040516385e98beb60e01b815260040160405180910390fd5b509051600191821b82011c16151590565b60808410611137576040516385e98beb60e01b815260040160405180910390fd5b600184811b81011b8115611187578554811786556040516001600160a01b0380851691908616907e058a56ea94653cdf4f152d227ace22d4c00ad99e2a43f58cb7d9e3feb295f2905f90a36111c7565b855481191686556040516001600160a01b0380851691908616907f44c58d81365b66dd4b1a7f36c25aa97b8c71c361ee4937adc1a00000227db5dd905f90a35b505050505050565b5f6001600160801b03821115611207576040516306dfcc6560e41b815260806004820152602481018390526044015b60405180910390fd5b5090565b5f6112278660a0015187602001516118bc90919063ffffffff16565b60408051610100808201835260038b01546001600160801b0390811683526020830189905282840188905260608301859052908a015160808301526001600160a01b0389811660a0840152600160c084015260088c0154600160801b900490911660e0830152915163b90db31b60e01b81529293505f92839286169163b90db31b916113109190600401815181526020808301519082015260408083015190820152606080830151908201526080808301519082015260a0808301516001600160a01b03169082015260c08083015115159082015260e091820151918101919091526101000190565b6040805180830381865afa15801561132a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061134e9190612fd0565b9150915061135b826111cf565b60018a0180546001600160801b03928316600160801b029216919091179055611383816111cf565b60028a0180546001600160801b03928316600160801b02921691909117905585156113fa576113b1866111cf565b60088a0180546010906113d5908490600160801b90046001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b031602179055505b841561145257611409856111cf565b60088a01805460109061142d908490600160801b90046001600160801b0316612e6b565b92506101000a8154816001600160801b0302191690836001600160801b031602179055505b60608881015160a0808b0151604080518781525f602082015280820187905294850193909352608084015290516001600160a01b038a16927f804c9b842b2748a22bb64b345453a3de7ca54a6ca45ce00d415894979e22897a92908290030190a2505050505050505050565b5f5f5f5f5f5f6114d0875f0151511590565b156114ec57505f94508493508392508291505f199050816118a4565b6114f4612af5565b606088015160ff161561154f5760608801805160ff9081165f90815260208c815260408083205462010000900461ffff166101a087015293519092168152908b90522054600160301b90046001600160801b03166101c08201525b87515160608201525f805b6060830151156117c6575050606081018051600281811c909252600180821614919081161480806115885750815b156117b65760e08301515f90815260208d905260409020546001600160a01b03166101e08401819052156117b6576101e08301516001600160a01b03165f90815260208e8152604091829020825191820190925281548152608085018190525160301c60ff16600a0a602085015260408b8101516101e0860151915163b3596f0760e01b81526001600160a01b03928316600482015291169063b3596f0790602401602060405180830381865afa158015611645573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116699190612e08565b84528115611781576116888b6020015182865f01518760200151612436565b60408501819052610120850180516116a1908390612f8f565b90525060608b01805160ff165f90815260208e90526040902090516116c79183916124a1565b60a085018190525f036116e157600161020085015261170b565b8360a0015184604001516116f59190612f78565b84610160018181516117079190612f8f565b9052505b60608b015160ff161580159061172f575061172f846101c001518560e00151611b6d565b15611744576101a084015160c0850152611757565b60808401515160101c61ffff1660c08501525b8360c00151846040015161176b9190612f78565b846101800181815161177d9190612f8f565b9052505b82156117b45761179e8b6020015182865f01518760200151612545565b84610140018181516117b09190612f8f565b9052505b505b60e083018051600101905261155a565b61014083015115611800576127106117f184610140015185610180015161259e90919063ffffffff16565b6117fb9190612de9565b611803565b5f195b6101008401526101208301515f0361181b575f611836565b8261012001518361016001518161183457611834612dc1565b045b6101608401526101208301515f0361184e575f611869565b8261012001518361018001518161186757611867612dc1565b045b610180840181905261012084015161014085015161016086015161010087015161020090970151929c50909a50985090965092945091925050505b9499939850945094509450565b5f6110da83836125d3565b5f6110da83836125f9565b604080516080810182525f8082526020820181905291810182905260608101919091528160a001516001600160a01b031682608001516001600160a01b031603611924576040516344511af160e01b815260040160405180910390fd5b6040805160208082018352865491829052671000000000000000808316151591850191909152600160381b91821615801580865286516101200151519283161515606087015291909216151592840192909252611982575080604001515b61199f576040516324335bc960e21b815260040160405180910390fd5b80602001511580156119b357508060600151155b6119d0576040516334dfd7c760e21b815260040160405180910390fd5b60608201516001600160a01b031615806119f55750670d2f13f7789f00008260400151105b80611a5f575081606001516001600160a01b0316637a5d20ea6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611a3b573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a5f9190612e50565b611a7c57604051639103700960e01b815260040160405180910390fd5b600384015464ffffffffff428116600160b81b90920416108015611ab45750600383015464ffffffffff428116600160b81b90920416105b611ad1576040516304f1f30360e51b815260040160405180910390fd5b670de0b6b3a7640000826040015110611afd5760405163930bb77160e01b815260040160405180910390fd5b6003840154604080516020810190915286548152611b2591600160a81b900461ffff166110e3565b611b42576040516312f36b9d60e31b815260040160405180910390fd5b81602001515f03611b6657604051633653732b60e01b815260040160405180910390fd5b5050505050565b5f60808210611b8f576040516385e98beb60e01b815260040160405180910390fd5b506001600160801b0391909116901c600116151590565b5f81611bb0575f5ffd5b825f1904841115831517611bc2575f5ffd5b50910281810491900615150190565b5f81156113881983900484111517611be7575f5ffd5b506127109102611388010490565b5f5f5f5f611c3f6040518061012001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81525090565b61010081018c90528c5160981c61ffff1660a0820152611c5f898d612f78565b8b611c6a8a8d612f78565b611c749190612f78565b611c7e9190612de9565b60208201819052611c8f9087611bd1565b808252871015611ce85760608101879052611cde86611cae8d8d612f78565b8b8460600151856101000151611cc49190612f78565b611cce9190612f78565b611cd89190612de9565b90612627565b6080820152611cf7565b80516060820152608081018890525b8a8161010001518260600151611d0d9190612f78565b611d179190612de9565b60e082015260a081015115611d76576060810151611d35908761266a565b8160600151611d449190612fa2565b6040820181905260a0820151611d5a9190611bd1565b60c08201819052606082018051611d72908390612fa2565b9052505b6060810151608082015160c083015160e090930151919f909e50919c509a5098505050505050505050565b60018415611e66575f83611db55784611db7565b855b90508a61016001516001600160a01b031663f5298aca89611de58e60a001518561269390919063ffffffff16565b60a08f01516040516001600160e01b031960e086901b1681526001600160a01b0390931660048401526024830191909152604482015260640160408051808303815f875af1158015611e39573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611e5d9190613011565b60208d01529150505b5f611e718587612fa2565b9050838015611e7f57508015155b15611f1b57611e8d816111cf565b60038b0180545f90611ea99084906001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b03160217905550866001600160a01b0316886001600160a01b03167f2bccfb3fad376d59d7accf970515eb77b2f27b082c90ed0fb15583dd5a94269983604051611f1291815260200190565b60405180910390a35b8115611f3d5760038a0154611f3d908a90600160a81b900461ffff165f61269e565b611f4b8a8c89885f8861120b565b5050505050505050505050565b6001600160a01b0381165f908152602085905260408120600901546001600160801b031690611f8785856126e2565b90505f816001600160801b0316836001600160801b031611611fa9575f611fb3565b611fb38284612e6b565b6001600160a01b0385165f908152602089905260409020909150611fd8908583612717565b50505050505050565b61200e81610220015183604001515f84606001518661012001518861120b9095949392919063ffffffff16565b610220810151610140810151608084015184516060808601519401516001600160a01b039093169363b18d6afd936120479082906110cf565b866102200151606001516040518663ffffffff1660e01b8152600401612071959493929190612e1f565b6020604051808303815f875af115801561208d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120b19190612e50565b50505050565b81545f805b8215611fd85750600282901c9160019081161480156121c2575f828152602087905260409020546001600160a01b031680156121c0576001600160a01b0381165f90815260208990526040812061211290610f47565b905061212981610120015151600160381b16151590565b156121be576001600160a01b0382165f90815260208a90526040902061214f908261106a565b6001600160a01b038083165f90815260208b9052604090819020608089015160a08501516101608601519351630ed1279f60e11b815282861660048201526121be9587958e94938a936121b093919290911690631da24f3e90602401610628565b5f60018e6101200151611da1565b505b505b8160010191506120bc565b6040516323b872dd60e01b8082526001600160a01b0385811660048401528416602483015260448201839052905f80606483828a5af161220f573d5f5f3e3d5ffd5b506122198561277a565b611b665760405162461bcd60e51b815260206004820152601960248201527f475076323a206661696c6564207472616e7366657246726f6d0000000000000060448201526064016111fe565b60c0810151156122d0575f6122838260c0015183610180015161281d565b905061229c82604001518261285890919063ffffffff16565b606083018190526122ac906111cf565b6001840180546001600160801b0319166001600160801b0392909216919091179055505b805115612338575f6122eb8260e00151836101800151612899565b905061230482608001518261285890919063ffffffff16565b60a08301819052612314906111cf565b6002840180546001600160801b0319166001600160801b0392909216919091179055505b5050565b8061010001515f0361234c575050565b5f61236c82608001518360a001516123649190612fa2565b8351906125d3565b90505f61238783610100015183611bd190919063ffffffff16565b905080156120b1576123ae6123a984606001518361269390919063ffffffff16565b6111cf565b6008850180545f906123ca9084906001600160801b0316612ff2565b92506101000a8154816001600160801b0302191690836001600160801b0316021790555050505050565b5f8115744f3a68dbc8f03f243baf513267aa9a3ee524f8e02884111715612419575f5ffd5b50676765c793fa10079d601b1b9190910281810491900615150190565b5f5f8361247b612445876128a5565b600488810154604051630ed1279f60e11b81526001600160a01b038c811693820193909352911690631da24f3e90602401610599565b6124859190612f78565b905082818161249657612496612dc1565b049695505050505050565b5f60ff8216158015906124db5750825460038501546124db91600160301b90046001600160801b031690600160a81b900461ffff16611b6d565b15612527576002830154600385015461250f91600160801b90046001600160801b031690600160a81b900461ffff16611b6d565b1561251b57505f610462565b50815461ffff16610462565b604080516020810190915284549081905261ffff165b949350505050565b5f5f61258761255386612901565b6006870154604051630ed1279f60e11b81526001600160a01b038a8116600483015290911690631da24f3e90602401610628565b9050612594818585611ba6565b9695505050505050565b5f8115670de0b6b3a7640000600284041904841117156125bc575f5ffd5b50670de0b6b3a76400009190910260028204010490565b5f815f19048311158215176125e6575f5ffd5b50676765c793fa10079d601b1b91020490565b5f815f190483111582151761260c575f5ffd5b50676765c793fa10079d601b1b910281810491900615150190565b5f81157e068db8bac710cb295e9e1b089a027525460aa64c2f837b4a2339c0ebedfa4384111715612656575f5ffd5b506127109190910281810491900615150190565b5f811561271060028404190484111715612682575f5ffd5b506127109190910260028204010490565b5f6110da8383612957565b608082106126bf576040516385e98beb60e01b815260040160405180910390fd5b600182811b1b81156126d6578354811784556120b1565b83549019169092555050565b610120820151515f906110da9060029060301c60ff166127029190612fa2565b61270d90600a612f6d565b6123a99084612de9565b6009830180546001600160801b0319166001600160801b0383169081179091556040519081526001600160a01b038316907faef84d3b40895fd58c561f3998000f0583abb992a52fbdc99ace8e8de4d676a59060200160405180910390a2505050565b5f61279c565b62461bcd60e51b5f52602060045280602452508060445260645ffd5b3d80156127db576020811461280c576127d67f475076323a206d616c666f726d6564207472616e7366657220726573756c7400601f612780565b612817565b823b612803576128037311d41d8c8e881b9bdd08184818dbdb9d1c9858dd60621b6014612780565b60019150612817565b3d5f5f3e5f51151591505b50919050565b5f8061283064ffffffffff841642612fa2565b61283a9085612f78565b6301e133809004905061253d81676765c793fa10079d601b1b612f8f565b5f81156b019d971e4fe8401e740000001983900484111517612878575f5ffd5b50676765c793fa10079d601b1b91026b019d971e4fe8401e74000000010490565b5f6110da838342612991565b60038101545f90600160801b900464ffffffffff164281036128d3575050600101546001600160801b031690565b6001830154610462906001600160801b03808216916128fb91600160801b909104168461281d565b90612858565b60038101545f90600160801b900464ffffffffff1642810361292f575050600201546001600160801b031690565b6002830154610462906001600160801b03808216916128fb91600160801b9091041684612899565b5f8115744f3a68dbc8f03f243baf513267aa9a3ee524f8e0288411171561297c575f5ffd5b50676765c793fa10079d601b1b919091020490565b5f806129a464ffffffffff851684612fa2565b9050805f036129c157676765c793fa10079d601b1b915050610462565b6301e13380818602046129e66129da8260068104612858565b82906002820401612858565b01676765c793fa10079d601b1b019150509392505050565b6040518061024001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152602001612a72612a84565b8152602001612a7f612a84565b905290565b604051806101a001604052805f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f8152602001612adb60405180602001604052805f81525090565b81525f602082018190526040820181905260609091015290565b6040518061022001604052805f81526020015f81526020015f81526020015f8152602001612b2e60405180602001604052805f81525090565b81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f81526020015f6001600160801b031681526020015f6001600160a01b031681526020015f151581525090565b604051610140810167ffffffffffffffff81118282101715612bc057634e487b7160e01b5f52604160045260245ffd5b60405290565b6001600160a01b0381168114612bda575f5ffd5b50565b8035612be881612bc6565b919050565b5f5f5f83850360c0811215612c00575f5ffd5b84359350602085013592506080603f1982011215612c1c575f5ffd5b506040516080810167ffffffffffffffff81118282101715612c4c57634e487b7160e01b5f52604160045260245ffd5b6040908152850135612c5d81612bc6565b81526060850135612c6d81612bc6565b60208201526080850135612c8081612bc6565b604082015260a094909401356060850152509093909250565b8015158114612bda575f5ffd5b8035612be881612c99565b803560ff81168114612be8575f5ffd5b5f5f5f5f5f8587036101c0811215612cd7575f5ffd5b86359550602087013594506040870135935060608701359250610140607f1982011215612d02575f5ffd5b50612d0b612b90565b612d1760808801612bdd565b815260a08701356020820152612d2f60c08801612bdd565b6040820152612d4060e08801612bdd565b6060820152612d526101008801612bdd565b6080820152612d646101208801612ca6565b60a0820152612d766101408801612bdd565b60c0820152612d886101608801612cb1565b60e0820152612d9a6101808801612bdd565b610100820152612dad6101a08801612bdd565b610120820152809150509295509295909350565b634e487b7160e01b5f52601260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f82612e0357634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215612e18575f5ffd5b5051919050565b6001600160a01b03958616815293909416602084015260408301919091526060820152608081019190915260a00190565b5f60208284031215612e60575f5ffd5b815161046281612c99565b6001600160801b0382811682821603908111156110dd576110dd612dd5565b6001815b6001841115612ec557808504811115612ea957612ea9612dd5565b6001841615612eb757908102905b60019390931c928002612e8e565b935093915050565b5f82612edb575060016110dd565b81612ee757505f6110dd565b8160018114612efd5760028114612f0757612f23565b60019150506110dd565b60ff841115612f1857612f18612dd5565b50506001821b6110dd565b5060208310610133831016604e8410600b8410161715612f46575081810a6110dd565b612f525f198484612e8a565b805f1904821115612f6557612f65612dd5565b029392505050565b5f6110da8383612ecd565b80820281158282048414176110dd576110dd612dd5565b808201808211156110dd576110dd612dd5565b818103818111156110dd576110dd612dd5565b5f60208284031215612fc5575f5ffd5b815161046281612bc6565b5f5f60408385031215612fe1575f5ffd5b505080516020909101519092909150565b6001600160801b0381811683821601908111156110dd576110dd612dd5565b5f5f60408385031215613022575f5ffd5b825161302d81612c99565b602093909301519294929350505056fea164736f6c634300081b000a
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.