More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 102 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Deposit | 5934533 | 16 hrs ago | IN | 0 S | 0.00800681 | ||||
Deposit | 5934201 | 16 hrs ago | IN | 0 S | 0.0074011 | ||||
Enter Staking | 5933713 | 16 hrs ago | IN | 0 S | 0.00905492 | ||||
Deposit | 5933664 | 16 hrs ago | IN | 0 S | 0.00590719 | ||||
Deposit | 5914227 | 20 hrs ago | IN | 0 S | 0.00652096 | ||||
Deposit | 5914219 | 20 hrs ago | IN | 0 S | 0.00667496 | ||||
Deposit | 5914210 | 20 hrs ago | IN | 0 S | 0.00667496 | ||||
Leave Staking | 5914203 | 20 hrs ago | IN | 0 S | 0.00749441 | ||||
Deposit | 5914197 | 20 hrs ago | IN | 0 S | 0.00667496 | ||||
Leave Staking | 5914010 | 20 hrs ago | IN | 0 S | 0.00749512 | ||||
Deposit | 5913999 | 20 hrs ago | IN | 0 S | 0.00652096 | ||||
Deposit | 5913987 | 20 hrs ago | IN | 0 S | 0.00667496 | ||||
Deposit | 5913981 | 20 hrs ago | IN | 0 S | 0.00667496 | ||||
Leave Staking | 5913968 | 20 hrs ago | IN | 0 S | 0.00750068 | ||||
Enter Staking | 5912480 | 21 hrs ago | IN | 0 S | 0.01113288 | ||||
Enter Staking | 5912249 | 21 hrs ago | IN | 0 S | 0.0090255 | ||||
Enter Staking | 5912190 | 21 hrs ago | IN | 0 S | 0.00918269 | ||||
Enter Staking | 5912064 | 21 hrs ago | IN | 0 S | 0.00917922 | ||||
Enter Staking | 5911971 | 21 hrs ago | IN | 0 S | 0.00816211 | ||||
Enter Staking | 5911898 | 21 hrs ago | IN | 0 S | 0.00816409 | ||||
Enter Staking | 5911658 | 21 hrs ago | IN | 0 S | 0.00816139 | ||||
Enter Staking | 5911604 | 21 hrs ago | IN | 0 S | 0.00815864 | ||||
Enter Staking | 5911348 | 21 hrs ago | IN | 0 S | 0.00902346 | ||||
Enter Staking | 5911321 | 21 hrs ago | IN | 0 S | 0.00359546 | ||||
Enter Staking | 5906643 | 22 hrs ago | IN | 0 S | 0.01113288 |
Loading...
Loading
Contract Name:
MasterFarmer
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 9999 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "prb-math/contracts/PRBMathUD60x18.sol"; import "./Five.sol"; /** * @title MasterFarmer * @dev This contract manages the minting and distribution of the FIVE token, handles staking, * and distributes rewards based on liquidity pool participation. It also supports staking * with lock periods and implements reward decay mechanisms. */ contract MasterFarmer is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; /** * @dev Struct representing information about each pool. * @param lpToken The address of the liquidity pool (LP) token contract. * @param allocPoint Allocation points assigned to the pool for reward distribution. * @param lastRewardBlockTime Timestamp of the last reward distribution. * @param accFivePerShare Accumulated FIVE tokens per share, scaled by 1e18 for precision. */ struct PoolInfo { IERC20 lpToken; uint256 allocPoint; uint256 lastRewardBlockTime; uint256 accFivePerShare; } /** * @dev Struct representing information about each user in a pool. * @param amount The amount of LP tokens provided by the user. * @param rewardDebt The user's pending reward debt for accurate reward tracking. */ struct UserInfo { uint256 amount; uint256 rewardDebt; } /** * @dev Struct representing staking lock information for PID[0]. * @param lockAmount The amount of FIVE tokens locked. * @param unlockTime The timestamp when the locked tokens can be withdrawn. */ struct LockInfo { uint256 lockAmount; uint256 unlockTime; } PoolInfo[] public poolInfo; // Array of pool information. mapping(IERC20 => bool) private poolExistence; // Tracks whether an LP token is already added. mapping(uint256 => mapping(address => UserInfo)) public userInfo; // User information for each pool. mapping(address => LockInfo) public lockInfo; // Lock information for staked tokens in PID[0]. // Constants for system limits and constraints. uint256 public constant MAX_EMISSION = 5 * 1e18; // Maximum emission rate (5 FIVE tokens per second). uint256 public constant MAX_STAKING_PERCENTAGE = 30; // Maximum staking allocation percentage (30%). uint256 public constant MAX_LOCK_TIME = 6 * 30 days; // Maximum lock duration: 6 months. uint256 public constant MIN_LOCK_TIME = 14 days; // Minimum lock duration: 2 weeks. FIVE public five; // Instance of the FIVE token contract. uint256 public emission = 5 * 1e18; // Current emission rate for rewards. uint256 public stakingPercentage = 30; // Staking pool allocation percentage. uint256 public totalAllocPoint = 0; // Total allocation points for all pools. uint256 public startBlockTime; // Timestamp for the start of rewards. uint256 public totalLockedAmount; // Total amount of locked FIVE tokens. uint256 public totalLockedUsers; // Total number of users with locked tokens. uint256 public k; // Parameter controlling the steepness of the reward decay curve. // Event declarations for important actions within the contract. event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount); event SetTreasury(address indexed user, address indexed newTreasury); event SetDev(address indexed user, address indexed newDev); event Add(address indexed user, IERC20 indexed pair, uint256 indexed point); event Set(address indexed user, uint256 indexed pid, uint256 indexed point); event Deposit(address indexed user, uint256 indexed pid, uint256 amount); event Withdraw(address indexed user, uint256 indexed pid, uint256 amount); event EnterStaking(address indexed user, uint256 amount, uint256 lockTime); event LeaveStaking(address indexed user, uint256 amount); event EmissionUpdated(uint256 newRate); event StakingPercentageUpdated(uint256 newPercentage); event LockTimeExtended(address indexed user, uint256 extraLockTime, uint256 newUnlockTime); event KUpdated(uint256 oldK, uint256 newK); /** * @dev Modifier to ensure an LP token is not added more than once. */ modifier nonDuplicated(IERC20 _lpToken) { require(!poolExistence[_lpToken], "Add: pool already exists!"); _; } /** * @dev Modifier to ensure the pool ID is valid. */ modifier onlyValidPool(uint256 _pid) { require(_pid < poolLength(), "Invalid pool ID"); _; } /** * @dev Constructor to initialize the MasterFarmer contract. * @param initialOwner The owner of the contract. * @param _five The FIVE token contract address. * @param _startBlockTime The start time for rewards distribution. * @param initialK Initial steepness value for the decay curve. */ constructor(address initialOwner, FIVE _five, uint256 _startBlockTime, uint256 initialK) Ownable(initialOwner) { require(initialK >= 1e18 && initialK <= 6 * 1e18, "initialK must be between 1 and 6 (scaled by 1e18)"); require(_startBlockTime > block.timestamp, "_startBlockTime must be in the future"); five = _five; startBlockTime = _startBlockTime; k = initialK; // Initialize the staking pool (PID[0]) for FIVE tokens. poolInfo.push( PoolInfo({ lpToken: _five, allocPoint: 1000, lastRewardBlockTime: startBlockTime, accFivePerShare: 0 }) ); poolExistence[_five] = true; // Mark the staking pool as added. totalAllocPoint = 1000; } /** * @notice Reduces the maximum supply of the FIVE token. * @param newMaxSupply The new maximum supply, which must be less than the current maximum supply. */ function decreaseFiveMaxSupply(uint256 newMaxSupply) external onlyOwner { // Update all pools to ensure rewards are based on the current supply before changing it. massUpdatePools(); uint256 currentMaxSupply = five.maxSupply(); uint256 currentTotalSupply = five.totalSupply(); require(newMaxSupply < currentMaxSupply, "New max supply must be less than the current max supply"); require(newMaxSupply >= currentTotalSupply, "New max supply cannot be less than the current total supply"); // Update the max supply in the FIVE token contract. five.decreaseMaxSupply(newMaxSupply); } /** * @notice Updates the emission rate for reward distribution. * @param _emission The new emission rate, must not exceed the MAX_EMISSION limit. */ function setEmission(uint256 _emission) external onlyOwner { require(_emission <= MAX_EMISSION, "Emission rate exceeds maximum limit"); // Update all pools to apply the new emission rate. massUpdatePools(); emission = _emission; emit EmissionUpdated(_emission); } /** * @notice Updates the staking allocation percentage. * @param _percentage The new staking percentage, must not exceed MAX_STAKING_PERCENTAGE. */ function setStakingPercentage(uint256 _percentage) external onlyOwner { require(_percentage <= MAX_STAKING_PERCENTAGE, "Staking percentage exceeds maximum limit"); // Update all pools to apply the new staking percentage. massUpdatePools(); stakingPercentage = _percentage; emit StakingPercentageUpdated(_percentage); // Recalculate allocation points for the staking pool. updateStakingPool(); } /** * @notice Updates the steepness parameter of the reward decay curve. * @param newK The new steepness value, must be within the allowed range (1 to 6, scaled by 1e18). */ function updateK(uint256 newK) external onlyOwner { require(newK >= 1e18 && newK <= 6 * 1e18, "Steepness value out of range"); // Update all pools to ensure rewards are calculated based on the old k value before the change. massUpdatePools(); emit KUpdated(k, newK); k = newK; } /** * @notice Adds a new liquidity pool for reward distribution. * @param _allocPoint Allocation points for the pool. * @param _lpToken Address of the LP token for the pool. * @param _withUpdate Whether to update all pools before adding this one. */ function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate) public onlyOwner nonDuplicated(_lpToken) { if (_withUpdate) { massUpdatePools(); } uint256 lastRewardBlockTime = block.timestamp > startBlockTime ? block.timestamp : startBlockTime; totalAllocPoint += _allocPoint; poolInfo.push( PoolInfo({ lpToken: _lpToken, allocPoint: _allocPoint, lastRewardBlockTime: lastRewardBlockTime, accFivePerShare: 0 }) ); poolExistence[_lpToken] = true; updateStakingPool(); emit Add(msg.sender, _lpToken, _allocPoint); } /** * @notice Updates allocation points for an existing pool. * @param _pid Pool ID to update. * @param _allocPoint New allocation points for the pool. * @param _withUpdate Whether to update all pools before making the change. */ function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public onlyOwner { require(_pid != 0, "Cannot set allocation points for the staking pool"); if (_withUpdate) { massUpdatePools(); } if (poolInfo[_pid].allocPoint != _allocPoint) { uint256 prevAllocPoint = poolInfo[_pid].allocPoint; poolInfo[_pid].allocPoint = _allocPoint; totalAllocPoint = totalAllocPoint - prevAllocPoint + _allocPoint; updateStakingPool(); emit Set(msg.sender, _pid, _allocPoint); } } /** * @dev Updates the allocation points for the staking pool (PID[0]) based on the current staking percentage. * * @notice The staking pool is treated as a special pool (PID[0]) where users stake FIVE tokens to earn rewards. * The allocation points for this pool are recalculated to maintain the specified staking percentage relative * to all other pools' total allocation points. * * @notice This function ensures that the staking pool always gets the correct proportion of rewards * based on the `stakingPercentage` parameter, without requiring manual adjustments when other pools are added or updated. */ function updateStakingPool() internal { // Get the total number of pools in the system. uint256 length = poolLength(); uint256 points = 0; // Iterate over all pools except the staking pool (PID[0]) to sum their allocation points. for (uint256 pid = 1; pid < length; ++pid) { points += poolInfo[pid].allocPoint; } if (points != 0) { // Calculate the new allocation points for the staking pool based on the staking percentage. // The formula ensures the staking pool gets a share proportional to the total allocation points of other pools: // stakingAlloc = (points * stakingPercentage) / (100 - stakingPercentage) uint256 numerator = points * stakingPercentage * 1e18; // Scale to 1e18 for precision. uint256 denominator = 100 - stakingPercentage; // Remaining percentage allocated to non-staking pools. uint256 stakingAlloc = numerator / denominator / 1e18; // Final scaled allocation for the staking pool. totalAllocPoint = totalAllocPoint - poolInfo[0].allocPoint + stakingAlloc; poolInfo[0].allocPoint = stakingAlloc; } } /** * @dev Calculates the maximum amount of FIVE tokens that can be minted based on the remaining supply. * @param _amount Requested mint amount. * @return fiveReward Actual amount of FIVE tokens that can be minted. */ function fiveCanMint(uint256 _amount) internal view returns (uint256 fiveReward) { uint256 canMint = five.maxSupply() - five.totalSupply(); return _amount > canMint ? canMint : _amount; } /** * @notice Calculates pending rewards for a user in a specific pool. * @param _pid Pool ID. * @param _user Address of the user. * @return Pending reward amount in FIVE tokens. */ function pendingFive(uint256 _pid, address _user) public view onlyValidPool(_pid) returns (uint256) { PoolInfo storage pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][_user]; uint256 accFivePerShare = pool.accFivePerShare; uint256 supply = _pid > 0 ? pool.lpToken.balanceOf(address(this)) : totalLockedAmount; if (block.timestamp > pool.lastRewardBlockTime && supply != 0) { uint256 timeElapsed = block.timestamp - pool.lastRewardBlockTime; uint256 rewardAmount = (timeElapsed * emission * pool.allocPoint) / totalAllocPoint; uint256 fiveReward = fiveCanMint(rewardAmount); accFivePerShare += (fiveReward * 1e18) / supply; } return (user.amount * accFivePerShare) / 1e18 - user.rewardDebt; } /** * @notice Calculates decayed pending rewards for a user based on veFIVE balance. * @param _user Address of the user. * @return Decayed pending reward amount in FIVE tokens. */ function decayedPendingFive(address _user) external view returns (uint256) { UserInfo storage user = userInfo[0][_user]; uint256 pending = pendingFive(0, _user); uint256 scaledVeFIVE = (getVeFIVE(_user) * 1e18) / user.amount; return (pending * scaledVeFIVE) / 1e18; } /** * @notice Updates all pools to ensure rewards are distributed accurately. */ function massUpdatePools() public { uint256 length = poolLength(); for (uint256 pid = 0; pid < length; ++pid) { updatePool(pid); } } /** * @notice Updates a specific pool to ensure rewards are distributed accurately. * @param _pid Pool ID to update. */ function updatePool(uint256 _pid) public onlyValidPool(_pid) { PoolInfo storage pool = poolInfo[_pid]; if (block.timestamp <= pool.lastRewardBlockTime) { return; } uint256 supply = _pid > 0 ? pool.lpToken.balanceOf(address(this)) : totalLockedAmount; if (supply == 0) { pool.lastRewardBlockTime = block.timestamp; return; } uint256 timeElapsed = block.timestamp - pool.lastRewardBlockTime; uint256 rewardAmount = (timeElapsed * emission * pool.allocPoint) / totalAllocPoint; uint256 fiveReward = fiveCanMint(rewardAmount); if (fiveReward > 0) { five.mint(address(this), fiveReward); } pool.accFivePerShare += (fiveReward * 1e18) / supply; pool.lastRewardBlockTime = block.timestamp; } /** * @notice Allows users to deposit LP tokens into a pool to earn rewards. * @param _pid Pool ID where the deposit will occur. * @param _amount Amount of LP tokens to deposit. */ function deposit(uint256 _pid, uint256 _amount) public nonReentrant onlyValidPool(_pid) { require(_pid != 0, "Deposit FIVE tokens via staking pool (PID[0])"); PoolInfo storage pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][msg.sender]; // Update pool rewards before processing deposit updatePool(_pid); // Distribute pending rewards to the user if (user.amount > 0) { uint256 pending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt; if (pending > 0) { safeFiveTransfer(msg.sender, pending); } } // Update user balance and transfer LP tokens to the contract if (_amount > 0) { pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount); user.amount += _amount; } user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18; emit Deposit(msg.sender, _pid, _amount); } /** * @notice Allows users to withdraw LP tokens from a pool and claim pending rewards. * @param _pid Pool ID where the withdrawal will occur. * @param _amount Amount of LP tokens to withdraw. */ function withdraw(uint256 _pid, uint256 _amount) public nonReentrant onlyValidPool(_pid) { require(_pid != 0, "Withdraw FIVE tokens via staking pool (PID[0])"); PoolInfo storage pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][msg.sender]; require(user.amount >= _amount, "Insufficient balance to withdraw"); // Update pool rewards before processing withdrawal updatePool(_pid); // Distribute pending rewards to the user uint256 pending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt; if (pending > 0) { safeFiveTransfer(msg.sender, pending); } // Update user balance and transfer LP tokens back to the user if (_amount > 0) { user.amount -= _amount; pool.lpToken.safeTransfer(address(msg.sender), _amount); } user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18; emit Withdraw(msg.sender, _pid, _amount); } /** * @notice Allows users to stake and lock FIVE tokens in the staking pool (PID[0]). * @param _amount Amount of FIVE tokens to stake. * @param _lockDuration Lock duration for the staked tokens, must be within allowed limits. */ function enterStaking(uint256 _amount, uint256 _lockDuration) public nonReentrant { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[0][msg.sender]; LockInfo storage lock = lockInfo[msg.sender]; require(_lockDuration >= MIN_LOCK_TIME && _lockDuration <= MAX_LOCK_TIME, "Invalid lock duration"); // Update pool rewards before processing staking updatePool(0); // Handle pending rewards for previously staked tokens if (user.amount > 0 && block.timestamp <= lock.unlockTime) { uint256 maxPending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt; uint256 pending = (maxPending * ((getVeFIVE(msg.sender) * 1e18) / user.amount)) / 1e18; if (pending > 0) { safeFiveTransfer(msg.sender, pending); if (maxPending > pending) { five.burn(maxPending - pending); } } } // Process staking and update lock details if (_amount > 0) { five.transferFrom(msg.sender, address(this), _amount); user.amount += _amount; lock.lockAmount += _amount; // Extend lock time if applicable uint256 newUnlockTime = block.timestamp + _lockDuration; if (newUnlockTime > lock.unlockTime) { lock.unlockTime = newUnlockTime; } totalLockedAmount += _amount; // Increment user count if this is the first time locking if (lock.lockAmount == _amount) { totalLockedUsers++; } } user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18; emit EnterStaking(msg.sender, _amount, _lockDuration); } /** * @notice Allows users to unstake and withdraw their staked FIVE tokens from PID[0]. */ function leaveStaking() public nonReentrant { PoolInfo storage pool = poolInfo[0]; UserInfo storage user = userInfo[0][msg.sender]; LockInfo storage lock = lockInfo[msg.sender]; require(user.amount > 0 && lock.lockAmount > 0, "No staked tokens to withdraw"); // Update pool rewards before processing unstaking updatePool(0); if (block.timestamp <= lock.unlockTime) { uint256 maxPending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt; uint256 pending = (maxPending * ((getVeFIVE(msg.sender) * 1e18) / user.amount)) / 1e18; if (pending > 0) { safeFiveTransfer(msg.sender, pending); if (maxPending > pending) { five.burn(maxPending - pending); } } } else { // Burn unclaimed rewards if lock has expired uint256 unclaimedRewards = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt; if (unclaimedRewards > 0) { five.burn(unclaimedRewards); } // Reset user and lock data, transfer staked tokens back to the user uint256 amountToTransfer = user.amount; user.amount = 0; lock.lockAmount = 0; lock.unlockTime = 0; totalLockedAmount -= amountToTransfer; totalLockedUsers--; safeFiveTransfer(msg.sender, amountToTransfer); emit LeaveStaking(msg.sender, amountToTransfer); } user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18; } /** * @notice Allows users to extend the lock duration for their staked tokens. * @param _extraLockDuration Additional lock duration to add to the existing lock. */ function extendLockTime(uint256 _extraLockDuration) public nonReentrant { LockInfo storage lock = lockInfo[msg.sender]; require(lock.lockAmount > 0, "No active lock to extend"); uint256 currentTime = block.timestamp; // Determine the new unlock time uint256 newUnlockTime; if (currentTime > lock.unlockTime) { // If the current time is after the existing unlock time, start from the current time newUnlockTime = currentTime + _extraLockDuration; } else { // If still within the lock period, extend from the current unlock time newUnlockTime = lock.unlockTime + _extraLockDuration; } // Ensure the new unlock time does not exceed the maximum lock duration require(newUnlockTime <= currentTime + MAX_LOCK_TIME, "Exceeds maximum lock duration"); // Ensure the new unlock time is not less than the minimum lock duration require(newUnlockTime >= currentTime + MIN_LOCK_TIME, "New unlock time too short"); // Update the unlock time lock.unlockTime = newUnlockTime; emit LockTimeExtended(msg.sender, _extraLockDuration, lock.unlockTime); } /** * @notice Allows users to withdraw their LP tokens in an emergency without receiving rewards. * @param _pid Pool ID where the emergency withdrawal will occur. */ function emergencyWithdraw(uint256 _pid) public nonReentrant onlyValidPool(_pid) { require(_pid != 0, "Emergency withdrawal unavailable for staking pool"); PoolInfo storage pool = poolInfo[_pid]; UserInfo storage user = userInfo[_pid][msg.sender]; require(user.amount > 0, "No tokens to withdraw"); uint256 amount = user.amount; user.amount = 0; user.rewardDebt = 0; pool.lpToken.safeTransfer(msg.sender, amount); emit EmergencyWithdraw(msg.sender, _pid, amount); } /** * @notice Calculates the veFIVE (vote-escrowed FIVE) balance of a user. * @param _user The address of the user whose veFIVE balance is being calculated. * @return veFIVE The calculated veFIVE balance based on the user's locked amount and remaining lock time. * * @dev This function calculates veFIVE using a normalized decay curve: * - The longer the remaining lock time, the higher the veFIVE. * - The amount of locked tokens directly influences the veFIVE balance. * - A decay formula is used to ensure diminishing returns as lock time increases. */ function getVeFIVE(address _user) public view returns (uint256) { LockInfo storage lock = lockInfo[_user]; // If the user's lock has expired or they have no locked tokens, return 0. if (block.timestamp > lock.unlockTime || lock.lockAmount == 0) { return 0; } // Remaining lock time is the difference between the unlock time and the current block timestamp. uint256 remainingTime = lock.unlockTime - block.timestamp; // Maximum veFIVE is directly proportional to the amount of locked tokens. uint256 maxVeFIVE = lock.lockAmount; // Normalize the remaining time as a fraction of the maximum lock duration (scaled to 1e18 for precision). // Example: If the remaining time is 3 months and MAX_LOCK_TIME is 6 months, scaledRemainingTime = 0.5 * 1e18. uint256 scaledRemainingTime = PRBMathUD60x18.div(PRBMathUD60x18.mul(remainingTime, 1e18), MAX_LOCK_TIME); // Multiply the normalized remaining time by the steepness parameter `k`. // This determines how sharply the veFIVE value decays as the remaining time decreases. uint256 scaledX = PRBMathUD60x18.mul(k, scaledRemainingTime); // Calculate the exponential decay factor `exp(-k * scaledRemainingTime)` using PRBMath. // This results in a value between 0 and 1, with higher values for longer remaining times. uint256 expValue = PRBMathUD60x18.div(1e18, PRBMathUD60x18.exp(scaledX)); // Calculate the normalization factor to ensure that veFIVE reaches 100% when the remaining time equals MAX_LOCK_TIME. // The normalization factor is derived as `1 - exp(-k)`, where `k` represents the steepness of the curve. uint256 normalizationFactor = 1e18 - PRBMathUD60x18.div(1e18, PRBMathUD60x18.exp(k)); // Use the normalized decay formula to calculate the veFIVE value: // veFIVE = maxVeFIVE * (1 - exp(-k * scaledRemainingTime)) / normalizationFactor // This ensures veFIVE grows asymptotically with lock time and maxVeFIVE. uint256 veFIVE = PRBMathUD60x18.mul(maxVeFIVE, PRBMathUD60x18.div(1e18 - expValue, normalizationFactor)); return veFIVE; } /** * @notice Returns the total number of pools in the contract. * @return Total pool count. */ function poolLength() public view returns (uint256) { return poolInfo.length; } /** * @dev Safely transfers FIVE tokens, ensuring no transfer exceeds the available balance. * @param _to Recipient address. * @param _amount Amount to transfer. */ function safeFiveTransfer(address _to, uint256 _amount) internal { uint256 fiveBalance = five.balanceOf(address(this)); uint256 transferAmount = _amount > fiveBalance ? fiveBalance : _amount; five.transfer(_to, transferAmount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "./IERC20Permit.sol"; import {ERC20} from "../ERC20.sol"; import {ECDSA} from "../../../utils/cryptography/ECDSA.sol"; import {EIP712} from "../../../utils/cryptography/EIP712.sol"; import {Nonces} from "../../../utils/Nonces.sol"; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol"; /// @title FIVE Token Contract /// @notice ERC20 token with a capped supply, minting, burning, and gasless approvals using EIP-2612. /// @dev Inherits from OpenZeppelin's ERC20, ERC20Permit, and Ownable contracts. contract FIVE is ERC20, Ownable, ERC20Permit { uint256 private _maxSupply; uint256 public totalMinted; uint256 public totalBurned; address public treasuryAddr; /// @notice Event emitted when tokens are minted. event Mint(address indexed minter, address indexed recipient, uint256 amount); /// @notice Event emitted when tokens are burned. event Burn(address indexed burner, uint256 amount); /// @notice Event emitted when the max supply is decreased. event MaxSupplyDecreased(uint256 oldMaxSupply, uint256 newMaxSupply); /// @dev Constructor to initialize the token with its name, symbol, and treasury address. /// @param initialOwner The address of the treasury to receive the initial minted tokens. constructor( address initialOwner, uint256 initialMint ) ERC20("DeFive", "FIVE") Ownable(initialOwner) ERC20Permit("DeFive") { _maxSupply = 2000000000e18; // Set initial max supply treasuryAddr = initialOwner; require(initialOwner != address(0), "Initial Owner address cannot be zero"); require(initialMint <= _maxSupply, "Initial mint exceeds max supply"); _mint(treasuryAddr, initialMint); totalMinted = initialMint; emit Mint(msg.sender, treasuryAddr, initialMint); } /// @notice Mint new tokens, restricted to the MasterFarmer. /// @param recipient The address to receive the minted tokens. /// @param amount The amount of tokens to mint. function mint(address recipient, uint256 amount) external onlyOwner { require(recipient != address(0), "Mint to zero address"); require(totalSupply() + amount <= _maxSupply, "ERC20: minting exceeds max supply"); _mint(recipient, amount); totalMinted += amount; emit Mint(msg.sender, recipient, amount); } /// @notice Burn tokens from the caller's balance. /// @param amount The amount of tokens to burn. function burn(uint256 amount) external { require(balanceOf(msg.sender) >= amount, "Insufficient balance to burn"); _burn(msg.sender, amount); totalBurned += amount; emit Burn(msg.sender, amount); } /// @notice Reduce the maximum token supply. Only decreases are allowed. /// @param newMaxSupply The new maximum supply, which must be less than the current max supply. function decreaseMaxSupply(uint256 newMaxSupply) external onlyOwner { require(newMaxSupply < _maxSupply, "New max supply must be less than the current max supply"); require(newMaxSupply >= totalSupply(), "New max supply must not be less than the total supply"); uint256 oldMaxSupply = _maxSupply; _maxSupply = newMaxSupply; emit MaxSupplyDecreased(oldMaxSupply, newMaxSupply); } /// @notice Get the current maximum token supply. /// @return The current maximum supply of the token. function maxSupply() external view returns (uint256) { return _maxSupply; } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivFixedPointOverflow(uint256 prod1); /// @notice Emitted when the result overflows uint256. error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator); /// @notice Emitted when one of the inputs is type(int256).min. error PRBMath__MulDivSignedInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows int256. error PRBMath__MulDivSignedOverflow(uint256 rAbs); /// @notice Emitted when the input is MIN_SD59x18. error PRBMathSD59x18__AbsInputTooSmall(); /// @notice Emitted when ceiling a number overflows SD59x18. error PRBMathSD59x18__CeilOverflow(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__DivInputTooSmall(); /// @notice Emitted when one of the intermediary unsigned results overflows SD59x18. error PRBMathSD59x18__DivOverflow(uint256 rAbs); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathSD59x18__ExpInputTooBig(int256 x); /// @notice Emitted when the input is greater than 192. error PRBMathSD59x18__Exp2InputTooBig(int256 x); /// @notice Emitted when flooring a number underflows SD59x18. error PRBMathSD59x18__FloorUnderflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMathSD59x18__FromIntOverflow(int256 x); /// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMathSD59x18__FromIntUnderflow(int256 x); /// @notice Emitted when the product of the inputs is negative. error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y); /// @notice Emitted when multiplying the inputs overflows SD59x18. error PRBMathSD59x18__GmOverflow(int256 x, int256 y); /// @notice Emitted when the input is less than or equal to zero. error PRBMathSD59x18__LogInputTooSmall(int256 x); /// @notice Emitted when one of the inputs is MIN_SD59x18. error PRBMathSD59x18__MulInputTooSmall(); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__MulOverflow(uint256 rAbs); /// @notice Emitted when the intermediary absolute result overflows SD59x18. error PRBMathSD59x18__PowuOverflow(uint256 rAbs); /// @notice Emitted when the input is negative. error PRBMathSD59x18__SqrtNegativeInput(int256 x); /// @notice Emitted when the calculating the square root overflows SD59x18. error PRBMathSD59x18__SqrtOverflow(int256 x); /// @notice Emitted when addition overflows UD60x18. error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y); /// @notice Emitted when ceiling a number overflows UD60x18. error PRBMathUD60x18__CeilOverflow(uint256 x); /// @notice Emitted when the input is greater than 133.084258667509499441. error PRBMathUD60x18__ExpInputTooBig(uint256 x); /// @notice Emitted when the input is greater than 192. error PRBMathUD60x18__Exp2InputTooBig(uint256 x); /// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18. error PRBMathUD60x18__FromUintOverflow(uint256 x); /// @notice Emitted when multiplying the inputs overflows UD60x18. error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y); /// @notice Emitted when the input is less than 1. error PRBMathUD60x18__LogInputTooSmall(uint256 x); /// @notice Emitted when the calculating the square root overflows UD60x18. error PRBMathUD60x18__SqrtOverflow(uint256 x); /// @notice Emitted when subtraction underflows UD60x18. error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y); /// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library /// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point /// representation. When it does not, it is explicitly mentioned in the NatSpec documentation. library PRBMath { /// STRUCTS /// struct SD59x18 { int256 value; } struct UD60x18 { uint256 value; } /// STORAGE /// /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @dev Largest power of two divisor of SCALE. uint256 internal constant SCALE_LPOTD = 262144; /// @dev SCALE inverted mod 2^256. uint256 internal constant SCALE_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// FUNCTIONS /// /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. /// See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows // because the initial result is 2^191 and all magic factors are less than 2^65. if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } // We're doing two things at the same time: // // 1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for // the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191 // rather than 192. // 2. Convert the result to the unsigned 60.18-decimal fixed-point format. // // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n". result *= SCALE; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first one in the binary representation of x. /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set /// @param x The uint256 number for which to find the index of the most significant bit. /// @return msb The index of the most significant bit as an uint256. function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) { if (x >= 2**128) { x >>= 128; msb += 128; } if (x >= 2**64) { x >>= 64; msb += 64; } if (x >= 2**32) { x >>= 32; msb += 32; } if (x >= 2**16) { x >>= 16; msb += 16; } if (x >= 2**8) { x >>= 8; msb += 8; } if (x >= 2**4) { x >>= 4; msb += 4; } if (x >= 2**2) { x >>= 2; msb += 2; } if (x >= 2**1) { // No need to shift x any more. msb += 1; } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Requirements: /// - The denominator cannot be zero. /// - The result must fit within uint256. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The multiplicand as an uint256. /// @param y The multiplier as an uint256. /// @param denominator The divisor as an uint256. /// @return result The result as an uint256. function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { result = prod0 / denominator; } return result; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath__MulDivOverflow(prod1, denominator); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. unchecked { // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 lpotdod = denominator & (~denominator + 1); assembly { // Divide denominator by lpotdod. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one. lpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * lpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /// @notice Calculates floor(x*y÷1e18) with full precision. /// /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of /// being rounded to 1e-18. See "Listing 6" and text above it at https://accu.org/index.php/journals/1717. /// /// Requirements: /// - The result must fit within uint256. /// /// Caveats: /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works. /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations: /// 1. x * y = type(uint256).max * SCALE /// 2. (x * y) % SCALE >= SCALE / 2 /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 >= SCALE) { revert PRBMath__MulDivFixedPointOverflow(prod1); } uint256 remainder; uint256 roundUpUnit; assembly { remainder := mulmod(x, y, SCALE) roundUpUnit := gt(remainder, 499999999999999999) } if (prod1 == 0) { unchecked { result = (prod0 / SCALE) + roundUpUnit; return result; } } assembly { result := add( mul( or( div(sub(prod0, remainder), SCALE_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1)) ), SCALE_INVERSE ), roundUpUnit ) } } /// @notice Calculates floor(x*y÷denominator) with full precision. /// /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately. /// /// Requirements: /// - None of the inputs can be type(int256).min. /// - The result must fit within int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. function mulDivSigned( int256 x, int256 y, int256 denominator ) internal pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath__MulDivSignedInputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 ax; uint256 ay; uint256 ad; unchecked { ax = x < 0 ? uint256(-x) : uint256(x); ay = y < 0 ? uint256(-y) : uint256(y); ad = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of (x*y)÷denominator. The result must fit within int256. uint256 rAbs = mulDiv(ax, ay, ad); if (rAbs > uint256(type(int256).max)) { revert PRBMath__MulDivSignedOverflow(rAbs); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly { sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs. // If yes, the result should be negative. result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs); } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Caveats: /// - This function does not work with fixed-point numbers. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as an uint256. function sqrt(uint256 x) internal pure returns (uint256 result) { if (x == 0) { return 0; } // Set the initial guess to the least power of two that is greater than or equal to sqrt(x). uint256 xAux = uint256(x); result = 1; if (xAux >= 0x100000000000000000000000000000000) { xAux >>= 128; result <<= 64; } if (xAux >= 0x10000000000000000) { xAux >>= 64; result <<= 32; } if (xAux >= 0x100000000) { xAux >>= 32; result <<= 16; } if (xAux >= 0x10000) { xAux >>= 16; result <<= 8; } if (xAux >= 0x100) { xAux >>= 8; result <<= 4; } if (xAux >= 0x10) { xAux >>= 4; result <<= 2; } if (xAux >= 0x8) { result <<= 1; } // The operations can never overflow because the result is max 2^127 when it enters this block. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // Seven iterations should be enough uint256 roundedDownResult = x / result; return result >= roundedDownResult ? roundedDownResult : result; } } }
// SPDX-License-Identifier: Unlicense pragma solidity >=0.8.4; import "./PRBMath.sol"; /// @title PRBMathUD60x18 /// @author Paul Razvan Berg /// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18 /// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60 /// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the /// maximum values permitted by the Solidity type uint256. library PRBMathUD60x18 { /// @dev Half the SCALE number. uint256 internal constant HALF_SCALE = 5e17; /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number. uint256 internal constant LOG2_E = 1_442695040888963407; /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have. uint256 internal constant MAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; /// @dev How many trailing decimals can be represented. uint256 internal constant SCALE = 1e18; /// @notice Calculates the arithmetic average of x and y, rounding down. /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number. function avg(uint256 x, uint256 y) internal pure returns (uint256 result) { // The operations can never overflow. unchecked { // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice. result = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to MAX_WHOLE_UD60x18. /// /// @param x The unsigned 60.18-decimal fixed-point number to ceil. /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number. function ceil(uint256 x) internal pure returns (uint256 result) { if (x > MAX_WHOLE_UD60x18) { revert PRBMathUD60x18__CeilOverflow(x); } assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "SCALE - remainder" but faster. let delta := sub(SCALE, remainder) // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number. /// /// @dev Uses mulDiv to enable overflow-safe multiplication and division. /// /// Requirements: /// - The denominator cannot be zero. /// /// @param x The numerator as an unsigned 60.18-decimal fixed-point number. /// @param y The denominator as an unsigned 60.18-decimal fixed-point number. /// @param result The quotient as an unsigned 60.18-decimal fixed-point number. function div(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDiv(x, SCALE, y); } /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number. /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant). function e() internal pure returns (uint256 result) { result = 2_718281828459045235; } /// @notice Calculates the natural exponent of x. /// /// @dev Based on the insight that e^x = 2^(x * log2(e)). /// /// Requirements: /// - All from "log2". /// - x must be less than 133.084258667509499441. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp(uint256 x) internal pure returns (uint256 result) { // Without this check, the value passed to "exp2" would be greater than 192. if (x >= 133_084258667509499441) { revert PRBMathUD60x18__ExpInputTooBig(x); } // Do the fixed-point multiplication inline to save gas. unchecked { uint256 doubleScaleProduct = x * LOG2_E; result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Requirements: /// - x must be 192 or less. /// - The result must fit within MAX_UD60x18. /// /// @param x The exponent as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function exp2(uint256 x) internal pure returns (uint256 result) { // 2^192 doesn't fit within the 192.64-bit format used internally in this function. if (x >= 192e18) { revert PRBMathUD60x18__Exp2InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x192x64 = (x << 64) / SCALE; // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation. result = PRBMath.exp2(x192x64); } } /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x. /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The unsigned 60.18-decimal fixed-point number to floor. /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number. function floor(uint256 x) internal pure returns (uint256 result) { assembly { // Equivalent to "x % SCALE" but faster. let remainder := mod(x, SCALE) // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x. /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part. /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of. /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number. function frac(uint256 x) internal pure returns (uint256 result) { assembly { result := mod(x, SCALE) } } /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation. /// /// @dev Requirements: /// - x must be less than or equal to MAX_UD60x18 divided by SCALE. /// /// @param x The basic integer to convert. /// @param result The same number in unsigned 60.18-decimal fixed-point representation. function fromUint(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__FromUintOverflow(x); } result = x * SCALE; } } /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down. /// /// @dev Requirements: /// - x * y must fit within MAX_UD60x18, lest it overflows. /// /// @param x The first operand as an unsigned 60.18-decimal fixed-point number. /// @param y The second operand as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function gm(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { return 0; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xy = x * y; if (xy / x != y) { revert PRBMathUD60x18__GmOverflow(x, y); } // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE // during multiplication. See the comments within the "sqrt" function. result = PRBMath.sqrt(xy); } } /// @notice Calculates 1 / x, rounding toward zero. /// /// @dev Requirements: /// - x cannot be zero. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse. /// @return result The inverse as an unsigned 60.18-decimal fixed-point number. function inv(uint256 x) internal pure returns (uint256 result) { unchecked { // 1e36 is SCALE * SCALE. result = 1e36 / x; } } /// @notice Calculates the natural logarithm of x. /// /// @dev Based on the insight that ln(x) = log2(x) / log2(e). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm. /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number. function ln(uint256 x) internal pure returns (uint256 result) { // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x) // can return is 196205294292027477728. unchecked { result = (log2(x) * SCALE) / LOG2_E; } } /// @notice Calculates the common logarithm of x. /// /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common /// logarithm based on the insight that log10(x) = log2(x) / log2(10). /// /// Requirements: /// - All from "log2". /// /// Caveats: /// - All from "log2". /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm. /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number. function log10(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined // in this contract. // prettier-ignore assembly { switch x case 1 { result := mul(SCALE, sub(0, 18)) } case 10 { result := mul(SCALE, sub(1, 18)) } case 100 { result := mul(SCALE, sub(2, 18)) } case 1000 { result := mul(SCALE, sub(3, 18)) } case 10000 { result := mul(SCALE, sub(4, 18)) } case 100000 { result := mul(SCALE, sub(5, 18)) } case 1000000 { result := mul(SCALE, sub(6, 18)) } case 10000000 { result := mul(SCALE, sub(7, 18)) } case 100000000 { result := mul(SCALE, sub(8, 18)) } case 1000000000 { result := mul(SCALE, sub(9, 18)) } case 10000000000 { result := mul(SCALE, sub(10, 18)) } case 100000000000 { result := mul(SCALE, sub(11, 18)) } case 1000000000000 { result := mul(SCALE, sub(12, 18)) } case 10000000000000 { result := mul(SCALE, sub(13, 18)) } case 100000000000000 { result := mul(SCALE, sub(14, 18)) } case 1000000000000000 { result := mul(SCALE, sub(15, 18)) } case 10000000000000000 { result := mul(SCALE, sub(16, 18)) } case 100000000000000000 { result := mul(SCALE, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := SCALE } case 100000000000000000000 { result := mul(SCALE, 2) } case 1000000000000000000000 { result := mul(SCALE, 3) } case 10000000000000000000000 { result := mul(SCALE, 4) } case 100000000000000000000000 { result := mul(SCALE, 5) } case 1000000000000000000000000 { result := mul(SCALE, 6) } case 10000000000000000000000000 { result := mul(SCALE, 7) } case 100000000000000000000000000 { result := mul(SCALE, 8) } case 1000000000000000000000000000 { result := mul(SCALE, 9) } case 10000000000000000000000000000 { result := mul(SCALE, 10) } case 100000000000000000000000000000 { result := mul(SCALE, 11) } case 1000000000000000000000000000000 { result := mul(SCALE, 12) } case 10000000000000000000000000000000 { result := mul(SCALE, 13) } case 100000000000000000000000000000000 { result := mul(SCALE, 14) } case 1000000000000000000000000000000000 { result := mul(SCALE, 15) } case 10000000000000000000000000000000000 { result := mul(SCALE, 16) } case 100000000000000000000000000000000000 { result := mul(SCALE, 17) } case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) } case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) } case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) } case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) } case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) } case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) } case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) } case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) } case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) } default { result := MAX_UD60x18 } } if (result == MAX_UD60x18) { // Do the fixed-point division inline to save gas. The denominator is log2(10). unchecked { result = (log2(x) * SCALE) / 3_321928094887362347; } } } /// @notice Calculates the binary logarithm of x. /// /// @dev Based on the iterative approximation algorithm. /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Requirements: /// - x must be greater than or equal to SCALE, otherwise the result would be negative. /// /// Caveats: /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm. /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number. function log2(uint256 x) internal pure returns (uint256 result) { if (x < SCALE) { revert PRBMathUD60x18__LogInputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n). uint256 n = PRBMath.mostSignificantBit(x / SCALE); // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow // because n is maximum 255 and SCALE is 1e18. result = n * SCALE; // This is y = x * 2^(-n). uint256 y = x >> n; // If y = 1, the fractional part is zero. if (y == SCALE) { return result; } // Calculate the fractional part via the iterative approximation. // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster. for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) { y = (y * y) / SCALE; // Is y^2 > 2 and so in the range [2,4)? if (y >= 2 * SCALE) { // Add the 2^(-m) factor to the logarithm. result += delta; // Corresponds to z/2 on Wikipedia. y >>= 1; } } } } /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal /// fixed-point number. /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function. /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The product as an unsigned 60.18-decimal fixed-point number. function mul(uint256 x, uint256 y) internal pure returns (uint256 result) { result = PRBMath.mulDivFixedPoint(x, y); } /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number. function pi() internal pure returns (uint256 result) { result = 3_141592653589793238; } /// @notice Raises x to the power of y. /// /// @dev Based on the insight that x^y = 2^(log2(x) * y). /// /// Requirements: /// - All from "exp2", "log2" and "mul". /// /// Caveats: /// - All from "exp2", "log2" and "mul". /// - Assumes 0^0 is 1. /// /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number. /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number. /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number. function pow(uint256 x, uint256 y) internal pure returns (uint256 result) { if (x == 0) { result = y == 0 ? SCALE : uint256(0); } else { result = exp2(mul(log2(x), y)); } } /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the /// famous algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring /// /// Requirements: /// - The result must fit within MAX_UD60x18. /// /// Caveats: /// - All from "mul". /// - Assumes 0^0 is 1. /// /// @param x The base as an unsigned 60.18-decimal fixed-point number. /// @param y The exponent as an uint256. /// @return result The result as an unsigned 60.18-decimal fixed-point number. function powu(uint256 x, uint256 y) internal pure returns (uint256 result) { // Calculate the first iteration of the loop in advance. result = y & 1 > 0 ? x : SCALE; // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster. for (y >>= 1; y > 0; y >>= 1) { x = PRBMath.mulDivFixedPoint(x, x); // Equivalent to "y % 2 == 1" but faster. if (y & 1 > 0) { result = PRBMath.mulDivFixedPoint(result, x); } } } /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number. function scale() internal pure returns (uint256 result) { result = SCALE; } /// @notice Calculates the square root of x, rounding down. /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Requirements: /// - x must be less than MAX_UD60x18 / SCALE. /// /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root. /// @return result The result as an unsigned 60.18-decimal fixed-point . function sqrt(uint256 x) internal pure returns (uint256 result) { unchecked { if (x > MAX_UD60x18 / SCALE) { revert PRBMathUD60x18__SqrtOverflow(x); } // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root). result = PRBMath.sqrt(x * SCALE); } } /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process. /// @param x The unsigned 60.18-decimal fixed-point number to convert. /// @return result The same number in basic integer form. function toUint(uint256 x) internal pure returns (uint256 result) { unchecked { result = x / SCALE; } } }
{ "optimizer": { "enabled": true, "runs": 9999 }, "metadata": { "bytecodeHash": "none", "useLiteralContent": true }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"contract FIVE","name":"_five","type":"address"},{"internalType":"uint256","name":"_startBlockTime","type":"uint256"},{"internalType":"uint256","name":"initialK","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__ExpInputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"pair","type":"address"},{"indexed":true,"internalType":"uint256","name":"point","type":"uint256"}],"name":"Add","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"EmissionUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockTime","type":"uint256"}],"name":"EnterStaking","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldK","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newK","type":"uint256"}],"name":"KUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"LeaveStaking","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"extraLockTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newUnlockTime","type":"uint256"}],"name":"LockTimeExtended","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"point","type":"uint256"}],"name":"Set","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newDev","type":"address"}],"name":"SetDev","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newTreasury","type":"address"}],"name":"SetTreasury","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"StakingPercentageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"MAX_EMISSION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_LOCK_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_STAKING_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_LOCK_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"decayedPendingFive","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"decreaseFiveMaxSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emission","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"enterStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_extraLockDuration","type":"uint256"}],"name":"extendLockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"five","outputs":[{"internalType":"contract FIVE","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getVeFIVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"k","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"leaveStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lockInfo","outputs":[{"internalType":"uint256","name":"lockAmount","type":"uint256"},{"internalType":"uint256","name":"unlockTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingFive","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"lpToken","type":"address"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlockTime","type":"uint256"},{"internalType":"uint256","name":"accFivePerShare","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_emission","type":"uint256"}],"name":"setEmission","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"setStakingPercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startBlockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLockedUsers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newK","type":"uint256"}],"name":"updateK","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052674563918244f40000600755601e60085560006009553480156200002757600080fd5b5060405162003aea38038062003aea8339810160408190526200004a916200030c565b836001600160a01b0381166200007b57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b6200008681620002a3565b5060018055670de0b6b3a76400008110801590620000ac57506753444835ec5800008111155b620001145760405162461bcd60e51b815260206004820152603160248201527f696e697469616c4b206d757374206265206265747765656e203120616e64203660448201527020287363616c656420627920316531382960781b606482015260840162000072565b428211620001735760405162461bcd60e51b815260206004820152602560248201527f5f7374617274426c6f636b54696d65206d75737420626520696e207468652066604482015264757475726560d81b606482015260840162000072565b600680546001600160a01b03199081166001600160a01b03958616908117909255600a849055600d92909255604080516080810182528281526103e86020808301828152838501978852600060608501818152600280546001818101835591845296517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace60049098029788018054909b169c169b909b1790985590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf85015596517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad084015594517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad19092019190915591845260039092529120805460ff19169092179091556009555062000359565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b03811681146200030957600080fd5b50565b600080600080608085870312156200032357600080fd5b84516200033081620002f3565b60208601519094506200034381620002f3565b6040860151606090960151949790965092505050565b61378180620003696000396000f3fe608060405234801561001057600080fd5b506004361061025c5760003560e01c8063715018a611610145578063af11c34c116100bd578063e0395c1e1161008c578063f2fde38b11610071578063f2fde38b14610522578063fa78668f14610535578063fde042811461053f57600080fd5b8063e0395c1e14610506578063e2bbb1581461050f57600080fd5b8063af11c34c146104b7578063b4f40c61146104d7578063dc6fe235146104e0578063ddce102f146104f357600080fd5b80638da5cb5b1161011457806394e382c0116100f957806394e382c01461048d57806399fcfccb1461049c578063a81d4658146104a457600080fd5b80638da5cb5b1461041c57806393f1a40b1461045b57600080fd5b8063715018a6146103ef57806381e1ccba146103f7578063827c049e14610400578063828047a51461040957600080fd5b80632ab97b9d116101d85780635312ea8e116101a757806364482f791161018c57806364482f791461038d5780636552374a146103a05780636bd3b87c146103b357600080fd5b80635312ea8e14610372578063630b5ba11461038557600080fd5b80632ab97b9d1461032f5780633ff0320714610342578063441a3e701461034c57806351eb05a61461035f57600080fd5b80630f44b5a91161022f57806316a6d94a1161021457806316a6d94a1461030057806317caf6f1146103135780631eaaa0451461031c57600080fd5b80630f44b5a9146102a35780631526fe27146102b657600080fd5b806305a9f27414610261578063081e3eda1461027d5780630c18d4ce146102855780630e38c32b1461028e575b600080fd5b61026a600b5481565b6040519081526020015b60405180910390f35b60025461026a565b61026a600a5481565b6102a161029c3660046134a4565b610547565b005b61026a6102b13660046134df565b610616565b6102c96102c43660046134a4565b6106bb565b6040805173ffffffffffffffffffffffffffffffffffffffff90951685526020850193909352918301526060820152608001610274565b6102a161030e3660046134fc565b61070c565b61026a60095481565b6102a161032a36600461352c565b610ab8565b6102a161033d3660046134a4565b610d12565b61026a6212750081565b6102a161035a3660046134fc565b610dcf565b6102a161036d3660046134a4565b611037565b6102a16103803660046134a4565b6112a3565b6102a1611479565b6102a161039b36600461356e565b6114aa565b61026a6103ae3660046134df565b61160d565b6103da6103c13660046134df565b6005602052600090815260409020805460019091015482565b60408051928352602083019190915201610274565b6102a1611719565b61026a60085481565b61026a60075481565b6102a16104173660046134a4565b61172d565b60005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610274565b6103da61046936600461359c565b60046020908152600092835260408084209091529082529020805460019091015482565b61026a674563918244f4000081565b6102a16118cc565b61026a6104b236600461359c565b611c35565b6006546104369073ffffffffffffffffffffffffffffffffffffffff1681565b61026a600d5481565b6102a16104ee3660046134a4565b611e58565b6102a16105013660046134a4565b612107565b61026a600c5481565b6102a161051d3660046134fc565b6121d0565b6102a16105303660046134df565b6123ef565b61026a62ed4e0081565b61026a601e81565b61054f612450565b601e8111156105cb5760405162461bcd60e51b815260206004820152602860248201527f5374616b696e672070657263656e746167652065786365656473206d6178696d60448201527f756d206c696d697400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6105d3611479565b60088190556040518181527fe85e3e0b319540f3d1e14a6900e5f1005bf953ea549c6c41e3428224d8898de69060200160405180910390a16106136124a3565b50565b73ffffffffffffffffffffffffffffffffffffffff811660009081527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec60205260408120816106658185611c35565b9050600082600001546106778661160d565b61068990670de0b6b3a76400006135fb565b6106939190613641565b9050670de0b6b3a76400006106a882846135fb565b6106b29190613641565b95945050505050565b600281815481106106cb57600080fd5b6000918252602090912060049091020180546001820154600283015460039093015473ffffffffffffffffffffffffffffffffffffffff9092169350919084565b6107146125d3565b6000600260008154811061072a5761072a61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec82526040808520600590935290932060049092029092019250621275008410801590610787575062ed4e008411155b6107d35760405162461bcd60e51b815260206004820152601560248201527f496e76616c6964206c6f636b206475726174696f6e000000000000000000000060448201526064016105c2565b6107dd6000611037565b8154158015906107f1575080600101544211155b1561090f5760008260010154670de0b6b3a76400008560030154856000015461081a91906135fb565b6108249190613641565b61082e91906136ab565b90506000670de0b6b3a764000084600001546108493361160d565b61085b90670de0b6b3a76400006135fb565b6108659190613641565b61086f90846135fb565b6108799190613641565b9050801561090c5761088b3382612616565b8082111561090c5760065473ffffffffffffffffffffffffffffffffffffffff166342966c686108bb83856136ab565b6040518263ffffffff1660e01b81526004016108d991815260200190565b600060405180830381600087803b1580156108f357600080fd5b505af1158015610907573d6000803e3d6000fd5b505050505b50505b8415610a44576006546040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201523060248201526044810187905273ffffffffffffffffffffffffffffffffffffffff909116906323b872dd906064016020604051808303816000875af1158015610992573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b691906136be565b50848260000160008282546109cb91906136db565b90915550508054859082906000906109e49084906136db565b90915550600090506109f685426136db565b90508160010154811115610a0c57600182018190555b85600b6000828254610a1e91906136db565b90915550508154869003610a4257600c8054906000610a3c836136ee565b91905055505b505b60038301548254670de0b6b3a764000091610a5e916135fb565b610a689190613641565b6001830155604080518681526020810186905233917f8022d0cd856e916e535bdaaf7c0674e7b2e2f0231ffef91f47d0214b8b801579910160405180910390a2505050610ab460018055565b5050565b610ac0612450565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040902054829060ff1615610b385760405162461bcd60e51b815260206004820152601960248201527f4164643a20706f6f6c20616c726561647920657869737473210000000000000060448201526064016105c2565b8115610b4657610b46611479565b6000600a544211610b5957600a54610b5b565b425b90508460096000828254610b6f91906136db565b90915550506040805160808101825273ffffffffffffffffffffffffffffffffffffffff86811680835260208084018a8152848601878152600060608701818152600280546001808201835591845298517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace6004909a02998a0180547fffffffffffffffffffffffff000000000000000000000000000000000000000016919099161790975592517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf88015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad087015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad1909501949094559083526003905291902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169091179055610cc66124a3565b604051859073ffffffffffffffffffffffffffffffffffffffff86169033907f5f43b6be860b00b28d44981331005a0503e6b566155ca1423af4299a6bde1f4690600090a45050505050565b610d1a612450565b670de0b6b3a76400008110158015610d3a57506753444835ec5800008111155b610d865760405162461bcd60e51b815260206004820152601c60248201527f53746565706e6573732076616c7565206f7574206f662072616e67650000000060448201526064016105c2565b610d8e611479565b600d5460408051918252602082018390527fbd75af1b16e208f9d05e71a979a9d85e61791ef6537c46f819b0b443ab8baa38910160405180910390a1600d55565b610dd76125d3565b81610de160025490565b8110610e2f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b82600003610ea55760405162461bcd60e51b815260206004820152602e60248201527f5769746864726177204649564520746f6b656e7320766961207374616b696e6760448201527f20706f6f6c20285049445b305d2900000000000000000000000000000000000060648201526084016105c2565b600060028481548110610eba57610eba61367c565b6000918252602080832087845260048083526040808620338752909352919093208054929091029092019250841115610f355760405162461bcd60e51b815260206004820181905260248201527f496e73756666696369656e742062616c616e636520746f20776974686472617760448201526064016105c2565b610f3e85611037565b60008160010154670de0b6b3a764000084600301548460000154610f6291906135fb565b610f6c9190613641565b610f7691906136ab565b90508015610f8857610f883382612616565b8415610fca5784826000016000828254610fa291906136ab565b90915550508254610fca9073ffffffffffffffffffffffffffffffffffffffff163387612762565b60038301548254670de0b6b3a764000091610fe4916135fb565b610fee9190613641565b6001830155604051858152869033907ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b5689060200160405180910390a350505050610ab460018055565b8061104160025490565b811061108f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b6000600283815481106110a4576110a461367c565b90600052602060002090600402019050806002015442116110c457505050565b60008084116110d557600b54611166565b81546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611142573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111669190613726565b90508060000361117c5750426002909101555050565b600082600201544261118e91906136ab565b905060006009548460010154600754846111a891906135fb565b6111b291906135fb565b6111bc9190613641565b905060006111c9826127e3565b9050801561125c576006546040517f40c10f190000000000000000000000000000000000000000000000000000000081523060048201526024810183905273ffffffffffffffffffffffffffffffffffffffff909116906340c10f1990604401600060405180830381600087803b15801561124357600080fd5b505af1158015611257573d6000803e3d6000fd5b505050505b8361126f82670de0b6b3a76400006135fb565b6112799190613641565b85600301600082825461128c91906136db565b909155505042600290950194909455505050505050565b6112ab6125d3565b806112b560025490565b81106113035760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b816000036113795760405162461bcd60e51b815260206004820152603160248201527f456d657267656e6379207769746864726177616c20756e617661696c61626c6560448201527f20666f72207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b60006002838154811061138e5761138e61367c565b60009182526020808320868452600480835260408086203387529093529190932080549290910290920192506114065760405162461bcd60e51b815260206004820152601560248201527f4e6f20746f6b656e7320746f207769746864726177000000000000000000000060448201526064016105c2565b80546000808355600183015582546114359073ffffffffffffffffffffffffffffffffffffffff163383612762565b604051818152859033907fbb757047c2b5f3974fe26b7c10f732e7bce710b0952a71082702781e62ae05959060200160405180910390a35050505061061360018055565b600061148460025490565b905060005b81811015610ab45761149a81611037565b6114a3816136ee565b9050611489565b6114b2612450565b826000036115285760405162461bcd60e51b815260206004820152603160248201527f43616e6e6f742073657420616c6c6f636174696f6e20706f696e747320666f7260448201527f20746865207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b801561153657611536611479565b816002848154811061154a5761154a61367c565b90600052602060002090600402016001015414611608576000600284815481106115765761157661367c565b9060005260206000209060040201600101549050826002858154811061159e5761159e61367c565b90600052602060002090600402016001018190555082816009546115c291906136ab565b6115cc91906136db565b6009556115d76124a3565b6040518390859033907f9eca8f7bcfb868d72b4ed95b71c627c194ab6bcb9b83adb2280e8a0320bb847690600090a4505b505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600560205260408120600181015442118061164357508054155b156116515750600092915050565b600042826001015461166391906136ab565b8254909150600061168861167f84670de0b6b3a764000061292a565b62ed4e00612936565b90506000611698600d548361292a565b905060006116b6670de0b6b3a76400006116b18461294b565b612936565b905060006116d1670de0b6b3a76400006116b1600d5461294b565b6116e390670de0b6b3a76400006136ab565b9050600061170b8661170661170086670de0b6b3a76400006136ab565b85612936565b61292a565b9a9950505050505050505050565b611721612450565b61172b60006129ba565b565b6117356125d3565b33600090815260056020526040902080546117925760405162461bcd60e51b815260206004820152601860248201527f4e6f20616374697665206c6f636b20746f20657874656e64000000000000000060448201526064016105c2565b600181015442906000908211156117b4576117ad84836136db565b90506117c7565b8383600101546117c491906136db565b90505b6117d462ed4e00836136db565b8111156118235760405162461bcd60e51b815260206004820152601d60248201527f45786365656473206d6178696d756d206c6f636b206475726174696f6e00000060448201526064016105c2565b61183062127500836136db565b81101561187f5760405162461bcd60e51b815260206004820152601960248201527f4e657720756e6c6f636b2074696d6520746f6f2073686f72740000000000000060448201526064016105c2565b60018301819055604080518581526020810183905233917e3b7d2ad3b9d4b540c9231c2d2302e09268ce8fbb59d4005bf049893beffa2e910160405180910390a250505061061360018055565b6118d46125d3565b600060026000815481106118ea576118ea61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec8252604080852060059093529093208154600490930290930193509190158015906119435750805415155b61198f5760405162461bcd60e51b815260206004820152601c60248201527f4e6f207374616b656420746f6b656e7320746f2077697468647261770000000060448201526064016105c2565b6119996000611037565b80600101544211611ac15760008260010154670de0b6b3a7640000856003015485600001546119c891906135fb565b6119d29190613641565b6119dc91906136ab565b90506000670de0b6b3a764000084600001546119f73361160d565b611a0990670de0b6b3a76400006135fb565b611a139190613641565b611a1d90846135fb565b611a279190613641565b90508015611aba57611a393382612616565b80821115611aba5760065473ffffffffffffffffffffffffffffffffffffffff166342966c68611a6983856136ab565b6040518263ffffffff1660e01b8152600401611a8791815260200190565b600060405180830381600087803b158015611aa157600080fd5b505af1158015611ab5573d6000803e3d6000fd5b505050505b5050611c05565b60008260010154670de0b6b3a764000085600301548560000154611ae591906135fb565b611aef9190613641565b611af991906136ab565b90508015611b86576006546040517f42966c680000000000000000000000000000000000000000000000000000000081526004810183905273ffffffffffffffffffffffffffffffffffffffff909116906342966c6890602401600060405180830381600087803b158015611b6d57600080fd5b505af1158015611b81573d6000803e3d6000fd5b505050505b8254600080855580845560018401819055600b8054839290611ba99084906136ab565b9091555050600c8054906000611bbe8361373f565b9190505550611bcd3382612616565b60405181815233907fbeeac20c93f16ecc5d2707dffeb3263a7f99053ac0aa548803e9e8b5a00074389060200160405180910390a250505b60038301548254670de0b6b3a764000091611c1f916135fb565b611c299190613641565b60019283015550805550565b600082611c4160025490565b8110611c8f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b600060028581548110611ca457611ca461367c565b600091825260208083208884526004808352604080862073ffffffffffffffffffffffffffffffffffffffff8b16875290935291842092909102016003810154909350909187611cf657600b54611d87565b83546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611d63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d879190613726565b9050836002015442118015611d9b57508015155b15611e1c576000846002015442611db291906136ab565b90506000600954866001015460075484611dcc91906135fb565b611dd691906135fb565b611de09190613641565b90506000611ded826127e3565b905083611e0282670de0b6b3a76400006135fb565b611e0c9190613641565b611e1690866136db565b94505050505b60018301548354670de0b6b3a764000090611e389085906135fb565b611e429190613641565b611e4c91906136ab565b98975050505050505050565b611e60612450565b611e68611479565b600654604080517fd5abeb01000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163d5abeb019160048083019260209291908290030181865afa158015611ed8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611efc9190613726565b90506000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f6d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611f919190613726565b90508183106120085760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c7900000000000000000060648201526084016105c2565b8083101561207e5760405162461bcd60e51b815260206004820152603b60248201527f4e6577206d617820737570706c792063616e6e6f74206265206c65737320746860448201527f616e207468652063757272656e7420746f74616c20737570706c79000000000060648201526084016105c2565b6006546040517f91ff4a730000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff909116906391ff4a7390602401600060405180830381600087803b1580156120ea57600080fd5b505af11580156120fe573d6000803e3d6000fd5b50505050505050565b61210f612450565b674563918244f4000081111561218d5760405162461bcd60e51b815260206004820152602360248201527f456d697373696f6e20726174652065786365656473206d6178696d756d206c6960448201527f6d6974000000000000000000000000000000000000000000000000000000000060648201526084016105c2565b612195611479565b60078190556040518181527fb114240d54ce08081cbd18870dc3b6cd4091bb86ff29d2ad41906c2a2d6723d49060200160405180910390a150565b6121d86125d3565b816121e260025490565b81106122305760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b826000036122a65760405162461bcd60e51b815260206004820152602d60248201527f4465706f736974204649564520746f6b656e7320766961207374616b696e672060448201527f706f6f6c20285049445b305d290000000000000000000000000000000000000060648201526084016105c2565b6000600284815481106122bb576122bb61367c565b600091825260208083208784526004808352604080862033875290935291909320910290910191506122ec85611037565b80541561233f5760008160010154670de0b6b3a76400008460030154846000015461231791906135fb565b6123219190613641565b61232b91906136ab565b9050801561233d5761233d3382612616565b505b83156123835781546123699073ffffffffffffffffffffffffffffffffffffffff16333087612a2f565b8381600001600082825461237d91906136db565b90915550505b60038201548154670de0b6b3a76400009161239d916135fb565b6123a79190613641565b6001820155604051848152859033907f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a159060200160405180910390a3505050610ab460018055565b6123f7612450565b73ffffffffffffffffffffffffffffffffffffffff8116612447576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016105c2565b610613816129ba565b60005473ffffffffffffffffffffffffffffffffffffffff16331461172b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105c2565b60006124ae60025490565b9050600060015b828110156124ff57600281815481106124d0576124d061367c565b906000526020600020906004020160010154826124ed91906136db565b91506124f8816136ee565b90506124b5565b508015610ab45760006008548261251691906135fb565b61252890670de0b6b3a76400006135fb565b90506000600854606461253b91906136ab565b90506000670de0b6b3a76400006125528385613641565b61255c9190613641565b90508060026000815481106125735761257361367c565b90600052602060002090600402016001015460095461259291906136ab565b61259c91906136db565b6009819055508060026000815481106125b7576125b761367c565b9060005260206000209060040201600101819055505050505050565b60026001540361260f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600155565b6006546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009173ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa158015612685573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906126a99190613726565b905060008183116126ba57826126bc565b815b6006546040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff87811660048301526024820184905292935091169063a9059cbb906044016020604051808303816000875af1158015612737573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061275b91906136be565b5050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83811660248301526044820183905261160891859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612a7b565b600080600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612853573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906128779190613726565b600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128e4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129089190613726565b61291291906136ab565b90508083116129215782612923565b805b9392505050565b60006129238383612b1f565b600061292383670de0b6b3a764000084612c37565b6000680736ea4425c11ac6318210612992576040517f315da068000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b6714057b7ef767814f8202612923670de0b6b3a76400006706f05b59d3b20000830104612d3a565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60405173ffffffffffffffffffffffffffffffffffffffff8481166024830152838116604483015260648201839052612a759186918216906323b872dd9060840161279c565b50505050565b600080602060008451602086016000885af180612a9e576040513d6000823e3d81fd5b50506000513d91508115612ab6578060011415612ad0565b73ffffffffffffffffffffffffffffffffffffffff84163b155b15612a75576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016105c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050670de0b6b3a76400008110612b9a576040517fd31b3402000000000000000000000000000000000000000000000000000000008152600481018290526024016105c2565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff8211905082600003612bd85780670de0b6b3a7640000850401945050505050612c31565b6204000082850304939091119091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669020190505b92915050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff85870985870292508281108382030391505080600003612c8f57838281612c8557612c85613612565b0492505050612923565b838110612cd2576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016105c2565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000680a688906bd8b0000008210612d81576040517f4a4f26f1000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b670de0b6b3a7640000604083901b046129238177800000000000000000000000000000000000000000000000678000000000000000821615612dcc5768016a09e667f3bcc9090260401c5b674000000000000000821615612deb576801306fe0a31b7152df0260401c5b672000000000000000821615612e0a576801172b83c7d517adce0260401c5b671000000000000000821615612e295768010b5586cf9890f62a0260401c5b670800000000000000821615612e48576801059b0d31585743ae0260401c5b670400000000000000821615612e6757680102c9a3e778060ee70260401c5b670200000000000000821615612e865768010163da9fb33356d80260401c5b670100000000000000821615612ea557680100b1afa5abcbed610260401c5b6680000000000000821615612ec35768010058c86da1c09ea20260401c5b6640000000000000821615612ee1576801002c605e2e8cec500260401c5b6620000000000000821615612eff57680100162f3904051fa10260401c5b6610000000000000821615612f1d576801000b175effdc76ba0260401c5b6608000000000000821615612f3b57680100058ba01fb9f96d0260401c5b6604000000000000821615612f595768010002c5cc37da94920260401c5b6602000000000000821615612f77576801000162e525ee05470260401c5b6601000000000000821615612f955768010000b17255775c040260401c5b65800000000000821615612fb2576801000058b91b5bc9ae0260401c5b65400000000000821615612fcf57680100002c5c89d5ec6d0260401c5b65200000000000821615612fec5768010000162e43f4f8310260401c5b6510000000000082161561300957680100000b1721bcfc9a0260401c5b650800000000008216156130265768010000058b90cf1e6e0260401c5b65040000000000821615613043576801000002c5c863b73f0260401c5b6502000000000082161561306057680100000162e430e5a20260401c5b6501000000000082161561307d576801000000b1721835510260401c5b64800000000082161561309957680100000058b90c0b490260401c5b6440000000008216156130b55768010000002c5c8601cc0260401c5b6420000000008216156130d1576801000000162e42fff00260401c5b6410000000008216156130ed5768010000000b17217fbb0260401c5b640800000000821615613109576801000000058b90bfce0260401c5b64040000000082161561312557680100000002c5c85fe30260401c5b6402000000008216156131415768010000000162e42ff10260401c5b64010000000082161561315d57680100000000b17217f80260401c5b63800000008216156131785768010000000058b90bfc0260401c5b6340000000821615613193576801000000002c5c85fe0260401c5b63200000008216156131ae57680100000000162e42ff0260401c5b63100000008216156131c9576801000000000b17217f0260401c5b63080000008216156131e457680100000000058b90c00260401c5b63040000008216156131ff5768010000000002c5c8600260401c5b630200000082161561321a576801000000000162e4300260401c5b63010000008216156132355768010000000000b172180260401c5b6280000082161561324f576801000000000058b90c0260401c5b6240000082161561326957680100000000002c5c860260401c5b622000008216156132835768010000000000162e430260401c5b6210000082161561329d57680100000000000b17210260401c5b620800008216156132b75768010000000000058b910260401c5b620400008216156132d1576801000000000002c5c80260401c5b620200008216156132eb57680100000000000162e40260401c5b62010000821615613305576801000000000000b1720260401c5b61800082161561331e57680100000000000058b90260401c5b6140008216156133375768010000000000002c5d0260401c5b612000821615613350576801000000000000162e0260401c5b6110008216156133695768010000000000000b170260401c5b610800821615613382576801000000000000058c0260401c5b61040082161561339b57680100000000000002c60260401c5b6102008216156133b457680100000000000001630260401c5b6101008216156133cd57680100000000000000b10260401c5b60808216156133e557680100000000000000590260401c5b60408216156133fd576801000000000000002c0260401c5b602082161561341557680100000000000000160260401c5b601082161561342d576801000000000000000b0260401c5b600882161561344557680100000000000000060260401c5b600482161561345d57680100000000000000030260401c5b600282161561347557680100000000000000010260401c5b600182161561348d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134b657600080fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff8116811461061357600080fd5b6000602082840312156134f157600080fd5b8135612923816134bd565b6000806040838503121561350f57600080fd5b50508035926020909101359150565b801515811461061357600080fd5b60008060006060848603121561354157600080fd5b833592506020840135613553816134bd565b915060408401356135638161351e565b809150509250925092565b60008060006060848603121561358357600080fd5b833592506020840135915060408401356135638161351e565b600080604083850312156135af57600080fd5b8235915060208301356135c1816134bd565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417612c3157612c316135cc565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613677577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b81810381811115612c3157612c316135cc565b6000602082840312156136d057600080fd5b81516129238161351e565b80820180821115612c3157612c316135cc565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361371f5761371f6135cc565b5060010190565b60006020828403121561373857600080fd5b5051919050565b60008161374e5761374e6135cc565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff019056fea164736f6c6343000814000a0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df0000000000000000000000000000000000000000000000000000000067963a0d00000000000000000000000000000000000000000000000029a2241af62c0000
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061025c5760003560e01c8063715018a611610145578063af11c34c116100bd578063e0395c1e1161008c578063f2fde38b11610071578063f2fde38b14610522578063fa78668f14610535578063fde042811461053f57600080fd5b8063e0395c1e14610506578063e2bbb1581461050f57600080fd5b8063af11c34c146104b7578063b4f40c61146104d7578063dc6fe235146104e0578063ddce102f146104f357600080fd5b80638da5cb5b1161011457806394e382c0116100f957806394e382c01461048d57806399fcfccb1461049c578063a81d4658146104a457600080fd5b80638da5cb5b1461041c57806393f1a40b1461045b57600080fd5b8063715018a6146103ef57806381e1ccba146103f7578063827c049e14610400578063828047a51461040957600080fd5b80632ab97b9d116101d85780635312ea8e116101a757806364482f791161018c57806364482f791461038d5780636552374a146103a05780636bd3b87c146103b357600080fd5b80635312ea8e14610372578063630b5ba11461038557600080fd5b80632ab97b9d1461032f5780633ff0320714610342578063441a3e701461034c57806351eb05a61461035f57600080fd5b80630f44b5a91161022f57806316a6d94a1161021457806316a6d94a1461030057806317caf6f1146103135780631eaaa0451461031c57600080fd5b80630f44b5a9146102a35780631526fe27146102b657600080fd5b806305a9f27414610261578063081e3eda1461027d5780630c18d4ce146102855780630e38c32b1461028e575b600080fd5b61026a600b5481565b6040519081526020015b60405180910390f35b60025461026a565b61026a600a5481565b6102a161029c3660046134a4565b610547565b005b61026a6102b13660046134df565b610616565b6102c96102c43660046134a4565b6106bb565b6040805173ffffffffffffffffffffffffffffffffffffffff90951685526020850193909352918301526060820152608001610274565b6102a161030e3660046134fc565b61070c565b61026a60095481565b6102a161032a36600461352c565b610ab8565b6102a161033d3660046134a4565b610d12565b61026a6212750081565b6102a161035a3660046134fc565b610dcf565b6102a161036d3660046134a4565b611037565b6102a16103803660046134a4565b6112a3565b6102a1611479565b6102a161039b36600461356e565b6114aa565b61026a6103ae3660046134df565b61160d565b6103da6103c13660046134df565b6005602052600090815260409020805460019091015482565b60408051928352602083019190915201610274565b6102a1611719565b61026a60085481565b61026a60075481565b6102a16104173660046134a4565b61172d565b60005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610274565b6103da61046936600461359c565b60046020908152600092835260408084209091529082529020805460019091015482565b61026a674563918244f4000081565b6102a16118cc565b61026a6104b236600461359c565b611c35565b6006546104369073ffffffffffffffffffffffffffffffffffffffff1681565b61026a600d5481565b6102a16104ee3660046134a4565b611e58565b6102a16105013660046134a4565b612107565b61026a600c5481565b6102a161051d3660046134fc565b6121d0565b6102a16105303660046134df565b6123ef565b61026a62ed4e0081565b61026a601e81565b61054f612450565b601e8111156105cb5760405162461bcd60e51b815260206004820152602860248201527f5374616b696e672070657263656e746167652065786365656473206d6178696d60448201527f756d206c696d697400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6105d3611479565b60088190556040518181527fe85e3e0b319540f3d1e14a6900e5f1005bf953ea549c6c41e3428224d8898de69060200160405180910390a16106136124a3565b50565b73ffffffffffffffffffffffffffffffffffffffff811660009081527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec60205260408120816106658185611c35565b9050600082600001546106778661160d565b61068990670de0b6b3a76400006135fb565b6106939190613641565b9050670de0b6b3a76400006106a882846135fb565b6106b29190613641565b95945050505050565b600281815481106106cb57600080fd5b6000918252602090912060049091020180546001820154600283015460039093015473ffffffffffffffffffffffffffffffffffffffff9092169350919084565b6107146125d3565b6000600260008154811061072a5761072a61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec82526040808520600590935290932060049092029092019250621275008410801590610787575062ed4e008411155b6107d35760405162461bcd60e51b815260206004820152601560248201527f496e76616c6964206c6f636b206475726174696f6e000000000000000000000060448201526064016105c2565b6107dd6000611037565b8154158015906107f1575080600101544211155b1561090f5760008260010154670de0b6b3a76400008560030154856000015461081a91906135fb565b6108249190613641565b61082e91906136ab565b90506000670de0b6b3a764000084600001546108493361160d565b61085b90670de0b6b3a76400006135fb565b6108659190613641565b61086f90846135fb565b6108799190613641565b9050801561090c5761088b3382612616565b8082111561090c5760065473ffffffffffffffffffffffffffffffffffffffff166342966c686108bb83856136ab565b6040518263ffffffff1660e01b81526004016108d991815260200190565b600060405180830381600087803b1580156108f357600080fd5b505af1158015610907573d6000803e3d6000fd5b505050505b50505b8415610a44576006546040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201523060248201526044810187905273ffffffffffffffffffffffffffffffffffffffff909116906323b872dd906064016020604051808303816000875af1158015610992573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b691906136be565b50848260000160008282546109cb91906136db565b90915550508054859082906000906109e49084906136db565b90915550600090506109f685426136db565b90508160010154811115610a0c57600182018190555b85600b6000828254610a1e91906136db565b90915550508154869003610a4257600c8054906000610a3c836136ee565b91905055505b505b60038301548254670de0b6b3a764000091610a5e916135fb565b610a689190613641565b6001830155604080518681526020810186905233917f8022d0cd856e916e535bdaaf7c0674e7b2e2f0231ffef91f47d0214b8b801579910160405180910390a2505050610ab460018055565b5050565b610ac0612450565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040902054829060ff1615610b385760405162461bcd60e51b815260206004820152601960248201527f4164643a20706f6f6c20616c726561647920657869737473210000000000000060448201526064016105c2565b8115610b4657610b46611479565b6000600a544211610b5957600a54610b5b565b425b90508460096000828254610b6f91906136db565b90915550506040805160808101825273ffffffffffffffffffffffffffffffffffffffff86811680835260208084018a8152848601878152600060608701818152600280546001808201835591845298517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace6004909a02998a0180547fffffffffffffffffffffffff000000000000000000000000000000000000000016919099161790975592517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf88015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad087015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad1909501949094559083526003905291902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169091179055610cc66124a3565b604051859073ffffffffffffffffffffffffffffffffffffffff86169033907f5f43b6be860b00b28d44981331005a0503e6b566155ca1423af4299a6bde1f4690600090a45050505050565b610d1a612450565b670de0b6b3a76400008110158015610d3a57506753444835ec5800008111155b610d865760405162461bcd60e51b815260206004820152601c60248201527f53746565706e6573732076616c7565206f7574206f662072616e67650000000060448201526064016105c2565b610d8e611479565b600d5460408051918252602082018390527fbd75af1b16e208f9d05e71a979a9d85e61791ef6537c46f819b0b443ab8baa38910160405180910390a1600d55565b610dd76125d3565b81610de160025490565b8110610e2f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b82600003610ea55760405162461bcd60e51b815260206004820152602e60248201527f5769746864726177204649564520746f6b656e7320766961207374616b696e6760448201527f20706f6f6c20285049445b305d2900000000000000000000000000000000000060648201526084016105c2565b600060028481548110610eba57610eba61367c565b6000918252602080832087845260048083526040808620338752909352919093208054929091029092019250841115610f355760405162461bcd60e51b815260206004820181905260248201527f496e73756666696369656e742062616c616e636520746f20776974686472617760448201526064016105c2565b610f3e85611037565b60008160010154670de0b6b3a764000084600301548460000154610f6291906135fb565b610f6c9190613641565b610f7691906136ab565b90508015610f8857610f883382612616565b8415610fca5784826000016000828254610fa291906136ab565b90915550508254610fca9073ffffffffffffffffffffffffffffffffffffffff163387612762565b60038301548254670de0b6b3a764000091610fe4916135fb565b610fee9190613641565b6001830155604051858152869033907ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b5689060200160405180910390a350505050610ab460018055565b8061104160025490565b811061108f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b6000600283815481106110a4576110a461367c565b90600052602060002090600402019050806002015442116110c457505050565b60008084116110d557600b54611166565b81546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611142573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111669190613726565b90508060000361117c5750426002909101555050565b600082600201544261118e91906136ab565b905060006009548460010154600754846111a891906135fb565b6111b291906135fb565b6111bc9190613641565b905060006111c9826127e3565b9050801561125c576006546040517f40c10f190000000000000000000000000000000000000000000000000000000081523060048201526024810183905273ffffffffffffffffffffffffffffffffffffffff909116906340c10f1990604401600060405180830381600087803b15801561124357600080fd5b505af1158015611257573d6000803e3d6000fd5b505050505b8361126f82670de0b6b3a76400006135fb565b6112799190613641565b85600301600082825461128c91906136db565b909155505042600290950194909455505050505050565b6112ab6125d3565b806112b560025490565b81106113035760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b816000036113795760405162461bcd60e51b815260206004820152603160248201527f456d657267656e6379207769746864726177616c20756e617661696c61626c6560448201527f20666f72207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b60006002838154811061138e5761138e61367c565b60009182526020808320868452600480835260408086203387529093529190932080549290910290920192506114065760405162461bcd60e51b815260206004820152601560248201527f4e6f20746f6b656e7320746f207769746864726177000000000000000000000060448201526064016105c2565b80546000808355600183015582546114359073ffffffffffffffffffffffffffffffffffffffff163383612762565b604051818152859033907fbb757047c2b5f3974fe26b7c10f732e7bce710b0952a71082702781e62ae05959060200160405180910390a35050505061061360018055565b600061148460025490565b905060005b81811015610ab45761149a81611037565b6114a3816136ee565b9050611489565b6114b2612450565b826000036115285760405162461bcd60e51b815260206004820152603160248201527f43616e6e6f742073657420616c6c6f636174696f6e20706f696e747320666f7260448201527f20746865207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b801561153657611536611479565b816002848154811061154a5761154a61367c565b90600052602060002090600402016001015414611608576000600284815481106115765761157661367c565b9060005260206000209060040201600101549050826002858154811061159e5761159e61367c565b90600052602060002090600402016001018190555082816009546115c291906136ab565b6115cc91906136db565b6009556115d76124a3565b6040518390859033907f9eca8f7bcfb868d72b4ed95b71c627c194ab6bcb9b83adb2280e8a0320bb847690600090a4505b505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600560205260408120600181015442118061164357508054155b156116515750600092915050565b600042826001015461166391906136ab565b8254909150600061168861167f84670de0b6b3a764000061292a565b62ed4e00612936565b90506000611698600d548361292a565b905060006116b6670de0b6b3a76400006116b18461294b565b612936565b905060006116d1670de0b6b3a76400006116b1600d5461294b565b6116e390670de0b6b3a76400006136ab565b9050600061170b8661170661170086670de0b6b3a76400006136ab565b85612936565b61292a565b9a9950505050505050505050565b611721612450565b61172b60006129ba565b565b6117356125d3565b33600090815260056020526040902080546117925760405162461bcd60e51b815260206004820152601860248201527f4e6f20616374697665206c6f636b20746f20657874656e64000000000000000060448201526064016105c2565b600181015442906000908211156117b4576117ad84836136db565b90506117c7565b8383600101546117c491906136db565b90505b6117d462ed4e00836136db565b8111156118235760405162461bcd60e51b815260206004820152601d60248201527f45786365656473206d6178696d756d206c6f636b206475726174696f6e00000060448201526064016105c2565b61183062127500836136db565b81101561187f5760405162461bcd60e51b815260206004820152601960248201527f4e657720756e6c6f636b2074696d6520746f6f2073686f72740000000000000060448201526064016105c2565b60018301819055604080518581526020810183905233917e3b7d2ad3b9d4b540c9231c2d2302e09268ce8fbb59d4005bf049893beffa2e910160405180910390a250505061061360018055565b6118d46125d3565b600060026000815481106118ea576118ea61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec8252604080852060059093529093208154600490930290930193509190158015906119435750805415155b61198f5760405162461bcd60e51b815260206004820152601c60248201527f4e6f207374616b656420746f6b656e7320746f2077697468647261770000000060448201526064016105c2565b6119996000611037565b80600101544211611ac15760008260010154670de0b6b3a7640000856003015485600001546119c891906135fb565b6119d29190613641565b6119dc91906136ab565b90506000670de0b6b3a764000084600001546119f73361160d565b611a0990670de0b6b3a76400006135fb565b611a139190613641565b611a1d90846135fb565b611a279190613641565b90508015611aba57611a393382612616565b80821115611aba5760065473ffffffffffffffffffffffffffffffffffffffff166342966c68611a6983856136ab565b6040518263ffffffff1660e01b8152600401611a8791815260200190565b600060405180830381600087803b158015611aa157600080fd5b505af1158015611ab5573d6000803e3d6000fd5b505050505b5050611c05565b60008260010154670de0b6b3a764000085600301548560000154611ae591906135fb565b611aef9190613641565b611af991906136ab565b90508015611b86576006546040517f42966c680000000000000000000000000000000000000000000000000000000081526004810183905273ffffffffffffffffffffffffffffffffffffffff909116906342966c6890602401600060405180830381600087803b158015611b6d57600080fd5b505af1158015611b81573d6000803e3d6000fd5b505050505b8254600080855580845560018401819055600b8054839290611ba99084906136ab565b9091555050600c8054906000611bbe8361373f565b9190505550611bcd3382612616565b60405181815233907fbeeac20c93f16ecc5d2707dffeb3263a7f99053ac0aa548803e9e8b5a00074389060200160405180910390a250505b60038301548254670de0b6b3a764000091611c1f916135fb565b611c299190613641565b60019283015550805550565b600082611c4160025490565b8110611c8f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b600060028581548110611ca457611ca461367c565b600091825260208083208884526004808352604080862073ffffffffffffffffffffffffffffffffffffffff8b16875290935291842092909102016003810154909350909187611cf657600b54611d87565b83546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611d63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d879190613726565b9050836002015442118015611d9b57508015155b15611e1c576000846002015442611db291906136ab565b90506000600954866001015460075484611dcc91906135fb565b611dd691906135fb565b611de09190613641565b90506000611ded826127e3565b905083611e0282670de0b6b3a76400006135fb565b611e0c9190613641565b611e1690866136db565b94505050505b60018301548354670de0b6b3a764000090611e389085906135fb565b611e429190613641565b611e4c91906136ab565b98975050505050505050565b611e60612450565b611e68611479565b600654604080517fd5abeb01000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163d5abeb019160048083019260209291908290030181865afa158015611ed8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611efc9190613726565b90506000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f6d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611f919190613726565b90508183106120085760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c7900000000000000000060648201526084016105c2565b8083101561207e5760405162461bcd60e51b815260206004820152603b60248201527f4e6577206d617820737570706c792063616e6e6f74206265206c65737320746860448201527f616e207468652063757272656e7420746f74616c20737570706c79000000000060648201526084016105c2565b6006546040517f91ff4a730000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff909116906391ff4a7390602401600060405180830381600087803b1580156120ea57600080fd5b505af11580156120fe573d6000803e3d6000fd5b50505050505050565b61210f612450565b674563918244f4000081111561218d5760405162461bcd60e51b815260206004820152602360248201527f456d697373696f6e20726174652065786365656473206d6178696d756d206c6960448201527f6d6974000000000000000000000000000000000000000000000000000000000060648201526084016105c2565b612195611479565b60078190556040518181527fb114240d54ce08081cbd18870dc3b6cd4091bb86ff29d2ad41906c2a2d6723d49060200160405180910390a150565b6121d86125d3565b816121e260025490565b81106122305760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b826000036122a65760405162461bcd60e51b815260206004820152602d60248201527f4465706f736974204649564520746f6b656e7320766961207374616b696e672060448201527f706f6f6c20285049445b305d290000000000000000000000000000000000000060648201526084016105c2565b6000600284815481106122bb576122bb61367c565b600091825260208083208784526004808352604080862033875290935291909320910290910191506122ec85611037565b80541561233f5760008160010154670de0b6b3a76400008460030154846000015461231791906135fb565b6123219190613641565b61232b91906136ab565b9050801561233d5761233d3382612616565b505b83156123835781546123699073ffffffffffffffffffffffffffffffffffffffff16333087612a2f565b8381600001600082825461237d91906136db565b90915550505b60038201548154670de0b6b3a76400009161239d916135fb565b6123a79190613641565b6001820155604051848152859033907f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a159060200160405180910390a3505050610ab460018055565b6123f7612450565b73ffffffffffffffffffffffffffffffffffffffff8116612447576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016105c2565b610613816129ba565b60005473ffffffffffffffffffffffffffffffffffffffff16331461172b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105c2565b60006124ae60025490565b9050600060015b828110156124ff57600281815481106124d0576124d061367c565b906000526020600020906004020160010154826124ed91906136db565b91506124f8816136ee565b90506124b5565b508015610ab45760006008548261251691906135fb565b61252890670de0b6b3a76400006135fb565b90506000600854606461253b91906136ab565b90506000670de0b6b3a76400006125528385613641565b61255c9190613641565b90508060026000815481106125735761257361367c565b90600052602060002090600402016001015460095461259291906136ab565b61259c91906136db565b6009819055508060026000815481106125b7576125b761367c565b9060005260206000209060040201600101819055505050505050565b60026001540361260f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600155565b6006546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009173ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa158015612685573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906126a99190613726565b905060008183116126ba57826126bc565b815b6006546040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff87811660048301526024820184905292935091169063a9059cbb906044016020604051808303816000875af1158015612737573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061275b91906136be565b5050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83811660248301526044820183905261160891859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612a7b565b600080600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612853573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906128779190613726565b600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128e4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129089190613726565b61291291906136ab565b90508083116129215782612923565b805b9392505050565b60006129238383612b1f565b600061292383670de0b6b3a764000084612c37565b6000680736ea4425c11ac6318210612992576040517f315da068000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b6714057b7ef767814f8202612923670de0b6b3a76400006706f05b59d3b20000830104612d3a565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60405173ffffffffffffffffffffffffffffffffffffffff8481166024830152838116604483015260648201839052612a759186918216906323b872dd9060840161279c565b50505050565b600080602060008451602086016000885af180612a9e576040513d6000823e3d81fd5b50506000513d91508115612ab6578060011415612ad0565b73ffffffffffffffffffffffffffffffffffffffff84163b155b15612a75576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016105c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050670de0b6b3a76400008110612b9a576040517fd31b3402000000000000000000000000000000000000000000000000000000008152600481018290526024016105c2565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff8211905082600003612bd85780670de0b6b3a7640000850401945050505050612c31565b6204000082850304939091119091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669020190505b92915050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff85870985870292508281108382030391505080600003612c8f57838281612c8557612c85613612565b0492505050612923565b838110612cd2576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016105c2565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000680a688906bd8b0000008210612d81576040517f4a4f26f1000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b670de0b6b3a7640000604083901b046129238177800000000000000000000000000000000000000000000000678000000000000000821615612dcc5768016a09e667f3bcc9090260401c5b674000000000000000821615612deb576801306fe0a31b7152df0260401c5b672000000000000000821615612e0a576801172b83c7d517adce0260401c5b671000000000000000821615612e295768010b5586cf9890f62a0260401c5b670800000000000000821615612e48576801059b0d31585743ae0260401c5b670400000000000000821615612e6757680102c9a3e778060ee70260401c5b670200000000000000821615612e865768010163da9fb33356d80260401c5b670100000000000000821615612ea557680100b1afa5abcbed610260401c5b6680000000000000821615612ec35768010058c86da1c09ea20260401c5b6640000000000000821615612ee1576801002c605e2e8cec500260401c5b6620000000000000821615612eff57680100162f3904051fa10260401c5b6610000000000000821615612f1d576801000b175effdc76ba0260401c5b6608000000000000821615612f3b57680100058ba01fb9f96d0260401c5b6604000000000000821615612f595768010002c5cc37da94920260401c5b6602000000000000821615612f77576801000162e525ee05470260401c5b6601000000000000821615612f955768010000b17255775c040260401c5b65800000000000821615612fb2576801000058b91b5bc9ae0260401c5b65400000000000821615612fcf57680100002c5c89d5ec6d0260401c5b65200000000000821615612fec5768010000162e43f4f8310260401c5b6510000000000082161561300957680100000b1721bcfc9a0260401c5b650800000000008216156130265768010000058b90cf1e6e0260401c5b65040000000000821615613043576801000002c5c863b73f0260401c5b6502000000000082161561306057680100000162e430e5a20260401c5b6501000000000082161561307d576801000000b1721835510260401c5b64800000000082161561309957680100000058b90c0b490260401c5b6440000000008216156130b55768010000002c5c8601cc0260401c5b6420000000008216156130d1576801000000162e42fff00260401c5b6410000000008216156130ed5768010000000b17217fbb0260401c5b640800000000821615613109576801000000058b90bfce0260401c5b64040000000082161561312557680100000002c5c85fe30260401c5b6402000000008216156131415768010000000162e42ff10260401c5b64010000000082161561315d57680100000000b17217f80260401c5b63800000008216156131785768010000000058b90bfc0260401c5b6340000000821615613193576801000000002c5c85fe0260401c5b63200000008216156131ae57680100000000162e42ff0260401c5b63100000008216156131c9576801000000000b17217f0260401c5b63080000008216156131e457680100000000058b90c00260401c5b63040000008216156131ff5768010000000002c5c8600260401c5b630200000082161561321a576801000000000162e4300260401c5b63010000008216156132355768010000000000b172180260401c5b6280000082161561324f576801000000000058b90c0260401c5b6240000082161561326957680100000000002c5c860260401c5b622000008216156132835768010000000000162e430260401c5b6210000082161561329d57680100000000000b17210260401c5b620800008216156132b75768010000000000058b910260401c5b620400008216156132d1576801000000000002c5c80260401c5b620200008216156132eb57680100000000000162e40260401c5b62010000821615613305576801000000000000b1720260401c5b61800082161561331e57680100000000000058b90260401c5b6140008216156133375768010000000000002c5d0260401c5b612000821615613350576801000000000000162e0260401c5b6110008216156133695768010000000000000b170260401c5b610800821615613382576801000000000000058c0260401c5b61040082161561339b57680100000000000002c60260401c5b6102008216156133b457680100000000000001630260401c5b6101008216156133cd57680100000000000000b10260401c5b60808216156133e557680100000000000000590260401c5b60408216156133fd576801000000000000002c0260401c5b602082161561341557680100000000000000160260401c5b601082161561342d576801000000000000000b0260401c5b600882161561344557680100000000000000060260401c5b600482161561345d57680100000000000000030260401c5b600282161561347557680100000000000000010260401c5b600182161561348d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134b657600080fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff8116811461061357600080fd5b6000602082840312156134f157600080fd5b8135612923816134bd565b6000806040838503121561350f57600080fd5b50508035926020909101359150565b801515811461061357600080fd5b60008060006060848603121561354157600080fd5b833592506020840135613553816134bd565b915060408401356135638161351e565b809150509250925092565b60008060006060848603121561358357600080fd5b833592506020840135915060408401356135638161351e565b600080604083850312156135af57600080fd5b8235915060208301356135c1816134bd565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417612c3157612c316135cc565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613677577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b81810381811115612c3157612c316135cc565b6000602082840312156136d057600080fd5b81516129238161351e565b80820180821115612c3157612c316135cc565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361371f5761371f6135cc565b5060010190565b60006020828403121561373857600080fd5b5051919050565b60008161374e5761374e6135cc565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff019056fea164736f6c6343000814000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df0000000000000000000000000000000000000000000000000000000067963a0d00000000000000000000000000000000000000000000000029a2241af62c0000
-----Decoded View---------------
Arg [0] : initialOwner (address): 0x6571c18ddEa876Ce67932bE7115A4E2d11b5D943
Arg [1] : _five (address): 0x804CFf5509b987167ce3e892b64BB24c8fbaD3dF
Arg [2] : _startBlockTime (uint256): 1737898509
Arg [3] : initialK (uint256): 3000000000000000000
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943
Arg [1] : 000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df
Arg [2] : 0000000000000000000000000000000000000000000000000000000067963a0d
Arg [3] : 00000000000000000000000000000000000000000000000029a2241af62c0000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.