S Price: $0.577504 (+11.44%)

Contract

0x85b9fb39b2fa2bD640AFB9474e29aa2D97ef774b
Transaction Hash
Method
Block
From
To
Deposit59345332025-01-30 20:00:5116 hrs ago1738267251IN
0x85b9fb39...D97ef774b
0 S0.0080068155.01
Deposit59342012025-01-30 19:58:2016 hrs ago1738267100IN
0x85b9fb39...D97ef774b
0 S0.007401161.54
Enter Staking59337132025-01-30 19:53:3416 hrs ago1738266814IN
0x85b9fb39...D97ef774b
0 S0.0090549255.01
Deposit59336642025-01-30 19:52:5716 hrs ago1738266777IN
0x85b9fb39...D97ef774b
0 S0.0059071955.01
Deposit59142272025-01-30 16:00:4920 hrs ago1738252849IN
0x85b9fb39...D97ef774b
0 S0.0065209655
Deposit59142192025-01-30 16:00:4320 hrs ago1738252843IN
0x85b9fb39...D97ef774b
0 S0.0066749655
Deposit59142102025-01-30 16:00:3620 hrs ago1738252836IN
0x85b9fb39...D97ef774b
0 S0.0066749655
Leave Staking59142032025-01-30 16:00:3020 hrs ago1738252830IN
0x85b9fb39...D97ef774b
0 S0.0074944155
Deposit59141972025-01-30 16:00:2720 hrs ago1738252827IN
0x85b9fb39...D97ef774b
0 S0.0066749655
Leave Staking59140102025-01-30 15:58:1720 hrs ago1738252697IN
0x85b9fb39...D97ef774b
0 S0.0074951255
Deposit59139992025-01-30 15:58:0620 hrs ago1738252686IN
0x85b9fb39...D97ef774b
0 S0.0065209655
Deposit59139872025-01-30 15:57:5920 hrs ago1738252679IN
0x85b9fb39...D97ef774b
0 S0.0066749655
Deposit59139812025-01-30 15:57:5220 hrs ago1738252672IN
0x85b9fb39...D97ef774b
0 S0.0066749655
Leave Staking59139682025-01-30 15:57:4520 hrs ago1738252665IN
0x85b9fb39...D97ef774b
0 S0.0075006855
Enter Staking59124802025-01-30 15:39:4121 hrs ago1738251581IN
0x85b9fb39...D97ef774b
0 S0.0111328855
Enter Staking59122492025-01-30 15:36:3821 hrs ago1738251398IN
0x85b9fb39...D97ef774b
0 S0.009025555
Enter Staking59121902025-01-30 15:35:4521 hrs ago1738251345IN
0x85b9fb39...D97ef774b
0 S0.0091826955
Enter Staking59120642025-01-30 15:34:2721 hrs ago1738251267IN
0x85b9fb39...D97ef774b
0 S0.0091792255
Enter Staking59119712025-01-30 15:33:2121 hrs ago1738251201IN
0x85b9fb39...D97ef774b
0 S0.0081621155
Enter Staking59118982025-01-30 15:32:4121 hrs ago1738251161IN
0x85b9fb39...D97ef774b
0 S0.0081640955
Enter Staking59116582025-01-30 15:30:2021 hrs ago1738251020IN
0x85b9fb39...D97ef774b
0 S0.0081613955
Enter Staking59116042025-01-30 15:29:5121 hrs ago1738250991IN
0x85b9fb39...D97ef774b
0 S0.0081586455
Enter Staking59113482025-01-30 15:27:1221 hrs ago1738250832IN
0x85b9fb39...D97ef774b
0 S0.0090234655
Enter Staking59113212025-01-30 15:26:5821 hrs ago1738250818IN
0x85b9fb39...D97ef774b
0 S0.0035954655
Enter Staking59066432025-01-30 14:37:1222 hrs ago1738247832IN
0x85b9fb39...D97ef774b
0 S0.0111328855
View all transactions

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MasterFarmer

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 9999 runs

Other Settings:
paris EvmVersion
File 1 of 30 : MasterFarmer.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "prb-math/contracts/PRBMathUD60x18.sol";

import "./Five.sol";

/**
 * @title MasterFarmer
 * @dev This contract manages the minting and distribution of the FIVE token, handles staking,
 *      and distributes rewards based on liquidity pool participation. It also supports staking
 *      with lock periods and implements reward decay mechanisms.
 */
contract MasterFarmer is Ownable, ReentrancyGuard {
    using SafeERC20 for IERC20;

    /**
     * @dev Struct representing information about each pool.
     * @param lpToken The address of the liquidity pool (LP) token contract.
     * @param allocPoint Allocation points assigned to the pool for reward distribution.
     * @param lastRewardBlockTime Timestamp of the last reward distribution.
     * @param accFivePerShare Accumulated FIVE tokens per share, scaled by 1e18 for precision.
     */
    struct PoolInfo {
        IERC20 lpToken;
        uint256 allocPoint;
        uint256 lastRewardBlockTime;
        uint256 accFivePerShare;
    }

    /**
     * @dev Struct representing information about each user in a pool.
     * @param amount The amount of LP tokens provided by the user.
     * @param rewardDebt The user's pending reward debt for accurate reward tracking.
     */
    struct UserInfo {
        uint256 amount;
        uint256 rewardDebt;
    }

    /**
     * @dev Struct representing staking lock information for PID[0].
     * @param lockAmount The amount of FIVE tokens locked.
     * @param unlockTime The timestamp when the locked tokens can be withdrawn.
     */
    struct LockInfo {
        uint256 lockAmount;
        uint256 unlockTime;
    }

    PoolInfo[] public poolInfo; // Array of pool information.
    mapping(IERC20 => bool) private poolExistence; // Tracks whether an LP token is already added.
    mapping(uint256 => mapping(address => UserInfo)) public userInfo; // User information for each pool.
    mapping(address => LockInfo) public lockInfo; // Lock information for staked tokens in PID[0].

    // Constants for system limits and constraints.
    uint256 public constant MAX_EMISSION = 5 * 1e18; // Maximum emission rate (5 FIVE tokens per second).
    uint256 public constant MAX_STAKING_PERCENTAGE = 30; // Maximum staking allocation percentage (30%).
    uint256 public constant MAX_LOCK_TIME = 6 * 30 days; // Maximum lock duration: 6 months.
    uint256 public constant MIN_LOCK_TIME = 14 days; // Minimum lock duration: 2 weeks.

    FIVE public five; // Instance of the FIVE token contract.
    uint256 public emission = 5 * 1e18; // Current emission rate for rewards.
    uint256 public stakingPercentage = 30; // Staking pool allocation percentage.
    uint256 public totalAllocPoint = 0; // Total allocation points for all pools.
    uint256 public startBlockTime; // Timestamp for the start of rewards.
    uint256 public totalLockedAmount; // Total amount of locked FIVE tokens.
    uint256 public totalLockedUsers; // Total number of users with locked tokens.
    uint256 public k; // Parameter controlling the steepness of the reward decay curve.

    // Event declarations for important actions within the contract.
    event EmergencyWithdraw(address indexed user, uint256 indexed pid, uint256 amount);
    event SetTreasury(address indexed user, address indexed newTreasury);
    event SetDev(address indexed user, address indexed newDev);
    event Add(address indexed user, IERC20 indexed pair, uint256 indexed point);
    event Set(address indexed user, uint256 indexed pid, uint256 indexed point);
    event Deposit(address indexed user, uint256 indexed pid, uint256 amount);
    event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);
    event EnterStaking(address indexed user, uint256 amount, uint256 lockTime);
    event LeaveStaking(address indexed user, uint256 amount);
    event EmissionUpdated(uint256 newRate);
    event StakingPercentageUpdated(uint256 newPercentage);
    event LockTimeExtended(address indexed user, uint256 extraLockTime, uint256 newUnlockTime);
    event KUpdated(uint256 oldK, uint256 newK);

    /**
     * @dev Modifier to ensure an LP token is not added more than once.
     */
    modifier nonDuplicated(IERC20 _lpToken) {
        require(!poolExistence[_lpToken], "Add: pool already exists!");
        _;
    }

    /**
     * @dev Modifier to ensure the pool ID is valid.
     */
    modifier onlyValidPool(uint256 _pid) {
        require(_pid < poolLength(), "Invalid pool ID");
        _;
    }

    /**
     * @dev Constructor to initialize the MasterFarmer contract.
     * @param initialOwner The owner of the contract.
     * @param _five The FIVE token contract address.
     * @param _startBlockTime The start time for rewards distribution.
     * @param initialK Initial steepness value for the decay curve.
     */
    constructor(address initialOwner, FIVE _five, uint256 _startBlockTime, uint256 initialK) Ownable(initialOwner) {
        require(initialK >= 1e18 && initialK <= 6 * 1e18, "initialK must be between 1 and 6 (scaled by 1e18)");
        require(_startBlockTime > block.timestamp, "_startBlockTime must be in the future");

        five = _five;
        startBlockTime = _startBlockTime;
        k = initialK;

        // Initialize the staking pool (PID[0]) for FIVE tokens.
        poolInfo.push(
            PoolInfo({ lpToken: _five, allocPoint: 1000, lastRewardBlockTime: startBlockTime, accFivePerShare: 0 })
        );

        poolExistence[_five] = true; // Mark the staking pool as added.
        totalAllocPoint = 1000;
    }

    /**
     * @notice Reduces the maximum supply of the FIVE token.
     * @param newMaxSupply The new maximum supply, which must be less than the current maximum supply.
     */
    function decreaseFiveMaxSupply(uint256 newMaxSupply) external onlyOwner {
        // Update all pools to ensure rewards are based on the current supply before changing it.
        massUpdatePools();

        uint256 currentMaxSupply = five.maxSupply();
        uint256 currentTotalSupply = five.totalSupply();

        require(newMaxSupply < currentMaxSupply, "New max supply must be less than the current max supply");
        require(newMaxSupply >= currentTotalSupply, "New max supply cannot be less than the current total supply");

        // Update the max supply in the FIVE token contract.
        five.decreaseMaxSupply(newMaxSupply);
    }

    /**
     * @notice Updates the emission rate for reward distribution.
     * @param _emission The new emission rate, must not exceed the MAX_EMISSION limit.
     */
    function setEmission(uint256 _emission) external onlyOwner {
        require(_emission <= MAX_EMISSION, "Emission rate exceeds maximum limit");

        // Update all pools to apply the new emission rate.
        massUpdatePools();

        emission = _emission;
        emit EmissionUpdated(_emission);
    }

    /**
     * @notice Updates the staking allocation percentage.
     * @param _percentage The new staking percentage, must not exceed MAX_STAKING_PERCENTAGE.
     */
    function setStakingPercentage(uint256 _percentage) external onlyOwner {
        require(_percentage <= MAX_STAKING_PERCENTAGE, "Staking percentage exceeds maximum limit");

        // Update all pools to apply the new staking percentage.
        massUpdatePools();

        stakingPercentage = _percentage;
        emit StakingPercentageUpdated(_percentage);

        // Recalculate allocation points for the staking pool.
        updateStakingPool();
    }

    /**
     * @notice Updates the steepness parameter of the reward decay curve.
     * @param newK The new steepness value, must be within the allowed range (1 to 6, scaled by 1e18).
     */
    function updateK(uint256 newK) external onlyOwner {
        require(newK >= 1e18 && newK <= 6 * 1e18, "Steepness value out of range");

        // Update all pools to ensure rewards are calculated based on the old k value before the change.
        massUpdatePools();

        emit KUpdated(k, newK);
        k = newK;
    }

    /**
     * @notice Adds a new liquidity pool for reward distribution.
     * @param _allocPoint Allocation points for the pool.
     * @param _lpToken Address of the LP token for the pool.
     * @param _withUpdate Whether to update all pools before adding this one.
     */
    function add(uint256 _allocPoint, IERC20 _lpToken, bool _withUpdate) public onlyOwner nonDuplicated(_lpToken) {
        if (_withUpdate) {
            massUpdatePools();
        }
        uint256 lastRewardBlockTime = block.timestamp > startBlockTime ? block.timestamp : startBlockTime;
        totalAllocPoint += _allocPoint;
        poolInfo.push(
            PoolInfo({
                lpToken: _lpToken,
                allocPoint: _allocPoint,
                lastRewardBlockTime: lastRewardBlockTime,
                accFivePerShare: 0
            })
        );
        poolExistence[_lpToken] = true;
        updateStakingPool();
        emit Add(msg.sender, _lpToken, _allocPoint);
    }

    /**
     * @notice Updates allocation points for an existing pool.
     * @param _pid Pool ID to update.
     * @param _allocPoint New allocation points for the pool.
     * @param _withUpdate Whether to update all pools before making the change.
     */
    function set(uint256 _pid, uint256 _allocPoint, bool _withUpdate) public onlyOwner {
        require(_pid != 0, "Cannot set allocation points for the staking pool");
        if (_withUpdate) {
            massUpdatePools();
        }
        if (poolInfo[_pid].allocPoint != _allocPoint) {
            uint256 prevAllocPoint = poolInfo[_pid].allocPoint;
            poolInfo[_pid].allocPoint = _allocPoint;
            totalAllocPoint = totalAllocPoint - prevAllocPoint + _allocPoint;
            updateStakingPool();
            emit Set(msg.sender, _pid, _allocPoint);
        }
    }

    /**
     * @dev Updates the allocation points for the staking pool (PID[0]) based on the current staking percentage.
     *
     * @notice The staking pool is treated as a special pool (PID[0]) where users stake FIVE tokens to earn rewards.
     *         The allocation points for this pool are recalculated to maintain the specified staking percentage relative
     *         to all other pools' total allocation points.
     *
     * @notice This function ensures that the staking pool always gets the correct proportion of rewards
     *         based on the `stakingPercentage` parameter, without requiring manual adjustments when other pools are added or updated.
     */
    function updateStakingPool() internal {
        // Get the total number of pools in the system.
        uint256 length = poolLength();

        uint256 points = 0;

        // Iterate over all pools except the staking pool (PID[0]) to sum their allocation points.
        for (uint256 pid = 1; pid < length; ++pid) {
            points += poolInfo[pid].allocPoint;
        }

        if (points != 0) {
            // Calculate the new allocation points for the staking pool based on the staking percentage.
            // The formula ensures the staking pool gets a share proportional to the total allocation points of other pools:
            // stakingAlloc = (points * stakingPercentage) / (100 - stakingPercentage)
            uint256 numerator = points * stakingPercentage * 1e18; // Scale to 1e18 for precision.
            uint256 denominator = 100 - stakingPercentage; // Remaining percentage allocated to non-staking pools.
            uint256 stakingAlloc = numerator / denominator / 1e18; // Final scaled allocation for the staking pool.

            totalAllocPoint = totalAllocPoint - poolInfo[0].allocPoint + stakingAlloc;
            poolInfo[0].allocPoint = stakingAlloc;
        }
    }

    /**
     * @dev Calculates the maximum amount of FIVE tokens that can be minted based on the remaining supply.
     * @param _amount Requested mint amount.
     * @return fiveReward Actual amount of FIVE tokens that can be minted.
     */
    function fiveCanMint(uint256 _amount) internal view returns (uint256 fiveReward) {
        uint256 canMint = five.maxSupply() - five.totalSupply();
        return _amount > canMint ? canMint : _amount;
    }

    /**
     * @notice Calculates pending rewards for a user in a specific pool.
     * @param _pid Pool ID.
     * @param _user Address of the user.
     * @return Pending reward amount in FIVE tokens.
     */
    function pendingFive(uint256 _pid, address _user) public view onlyValidPool(_pid) returns (uint256) {
        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][_user];
        uint256 accFivePerShare = pool.accFivePerShare;
        uint256 supply = _pid > 0 ? pool.lpToken.balanceOf(address(this)) : totalLockedAmount;

        if (block.timestamp > pool.lastRewardBlockTime && supply != 0) {
            uint256 timeElapsed = block.timestamp - pool.lastRewardBlockTime;
            uint256 rewardAmount = (timeElapsed * emission * pool.allocPoint) / totalAllocPoint;
            uint256 fiveReward = fiveCanMint(rewardAmount);
            accFivePerShare += (fiveReward * 1e18) / supply;
        }

        return (user.amount * accFivePerShare) / 1e18 - user.rewardDebt;
    }

    /**
     * @notice Calculates decayed pending rewards for a user based on veFIVE balance.
     * @param _user Address of the user.
     * @return Decayed pending reward amount in FIVE tokens.
     */
    function decayedPendingFive(address _user) external view returns (uint256) {
        UserInfo storage user = userInfo[0][_user];
        uint256 pending = pendingFive(0, _user);

        uint256 scaledVeFIVE = (getVeFIVE(_user) * 1e18) / user.amount;
        return (pending * scaledVeFIVE) / 1e18;
    }

    /**
     * @notice Updates all pools to ensure rewards are distributed accurately.
     */
    function massUpdatePools() public {
        uint256 length = poolLength();
        for (uint256 pid = 0; pid < length; ++pid) {
            updatePool(pid);
        }
    }

    /**
     * @notice Updates a specific pool to ensure rewards are distributed accurately.
     * @param _pid Pool ID to update.
     */
    function updatePool(uint256 _pid) public onlyValidPool(_pid) {
        PoolInfo storage pool = poolInfo[_pid];
        if (block.timestamp <= pool.lastRewardBlockTime) {
            return;
        }
        uint256 supply = _pid > 0 ? pool.lpToken.balanceOf(address(this)) : totalLockedAmount;

        if (supply == 0) {
            pool.lastRewardBlockTime = block.timestamp;
            return;
        }

        uint256 timeElapsed = block.timestamp - pool.lastRewardBlockTime;
        uint256 rewardAmount = (timeElapsed * emission * pool.allocPoint) / totalAllocPoint;
        uint256 fiveReward = fiveCanMint(rewardAmount);
        if (fiveReward > 0) {
            five.mint(address(this), fiveReward);
        }
        pool.accFivePerShare += (fiveReward * 1e18) / supply;
        pool.lastRewardBlockTime = block.timestamp;
    }
    /**
     * @notice Allows users to deposit LP tokens into a pool to earn rewards.
     * @param _pid Pool ID where the deposit will occur.
     * @param _amount Amount of LP tokens to deposit.
     */
    function deposit(uint256 _pid, uint256 _amount) public nonReentrant onlyValidPool(_pid) {
        require(_pid != 0, "Deposit FIVE tokens via staking pool (PID[0])");
        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        // Update pool rewards before processing deposit
        updatePool(_pid);

        // Distribute pending rewards to the user
        if (user.amount > 0) {
            uint256 pending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt;
            if (pending > 0) {
                safeFiveTransfer(msg.sender, pending);
            }
        }

        // Update user balance and transfer LP tokens to the contract
        if (_amount > 0) {
            pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);
            user.amount += _amount;
        }

        user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18;
        emit Deposit(msg.sender, _pid, _amount);
    }

    /**
     * @notice Allows users to withdraw LP tokens from a pool and claim pending rewards.
     * @param _pid Pool ID where the withdrawal will occur.
     * @param _amount Amount of LP tokens to withdraw.
     */
    function withdraw(uint256 _pid, uint256 _amount) public nonReentrant onlyValidPool(_pid) {
        require(_pid != 0, "Withdraw FIVE tokens via staking pool (PID[0])");
        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        require(user.amount >= _amount, "Insufficient balance to withdraw");

        // Update pool rewards before processing withdrawal
        updatePool(_pid);

        // Distribute pending rewards to the user
        uint256 pending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt;
        if (pending > 0) {
            safeFiveTransfer(msg.sender, pending);
        }

        // Update user balance and transfer LP tokens back to the user
        if (_amount > 0) {
            user.amount -= _amount;
            pool.lpToken.safeTransfer(address(msg.sender), _amount);
        }

        user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18;
        emit Withdraw(msg.sender, _pid, _amount);
    }

    /**
     * @notice Allows users to stake and lock FIVE tokens in the staking pool (PID[0]).
     * @param _amount Amount of FIVE tokens to stake.
     * @param _lockDuration Lock duration for the staked tokens, must be within allowed limits.
     */
    function enterStaking(uint256 _amount, uint256 _lockDuration) public nonReentrant {
        PoolInfo storage pool = poolInfo[0];
        UserInfo storage user = userInfo[0][msg.sender];
        LockInfo storage lock = lockInfo[msg.sender];

        require(_lockDuration >= MIN_LOCK_TIME && _lockDuration <= MAX_LOCK_TIME, "Invalid lock duration");

        // Update pool rewards before processing staking
        updatePool(0);

        // Handle pending rewards for previously staked tokens
        if (user.amount > 0 && block.timestamp <= lock.unlockTime) {
            uint256 maxPending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt;
            uint256 pending = (maxPending * ((getVeFIVE(msg.sender) * 1e18) / user.amount)) / 1e18;
            if (pending > 0) {
                safeFiveTransfer(msg.sender, pending);
                if (maxPending > pending) {
                    five.burn(maxPending - pending);
                }
            }
        }

        // Process staking and update lock details
        if (_amount > 0) {
            five.transferFrom(msg.sender, address(this), _amount);
            user.amount += _amount;
            lock.lockAmount += _amount;

            // Extend lock time if applicable
            uint256 newUnlockTime = block.timestamp + _lockDuration;
            if (newUnlockTime > lock.unlockTime) {
                lock.unlockTime = newUnlockTime;
            }

            totalLockedAmount += _amount;

            // Increment user count if this is the first time locking
            if (lock.lockAmount == _amount) {
                totalLockedUsers++;
            }
        }

        user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18;
        emit EnterStaking(msg.sender, _amount, _lockDuration);
    }

    /**
     * @notice Allows users to unstake and withdraw their staked FIVE tokens from PID[0].
     */
    function leaveStaking() public nonReentrant {
        PoolInfo storage pool = poolInfo[0];
        UserInfo storage user = userInfo[0][msg.sender];
        LockInfo storage lock = lockInfo[msg.sender];

        require(user.amount > 0 && lock.lockAmount > 0, "No staked tokens to withdraw");

        // Update pool rewards before processing unstaking
        updatePool(0);

        if (block.timestamp <= lock.unlockTime) {
            uint256 maxPending = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt;
            uint256 pending = (maxPending * ((getVeFIVE(msg.sender) * 1e18) / user.amount)) / 1e18;
            if (pending > 0) {
                safeFiveTransfer(msg.sender, pending);
                if (maxPending > pending) {
                    five.burn(maxPending - pending);
                }
            }
        } else {
            // Burn unclaimed rewards if lock has expired
            uint256 unclaimedRewards = (user.amount * pool.accFivePerShare) / 1e18 - user.rewardDebt;
            if (unclaimedRewards > 0) {
                five.burn(unclaimedRewards);
            }

            // Reset user and lock data, transfer staked tokens back to the user
            uint256 amountToTransfer = user.amount;
            user.amount = 0;
            lock.lockAmount = 0;
            lock.unlockTime = 0;
            totalLockedAmount -= amountToTransfer;
            totalLockedUsers--;

            safeFiveTransfer(msg.sender, amountToTransfer);
            emit LeaveStaking(msg.sender, amountToTransfer);
        }

        user.rewardDebt = (user.amount * pool.accFivePerShare) / 1e18;
    }

    /**
     * @notice Allows users to extend the lock duration for their staked tokens.
     * @param _extraLockDuration Additional lock duration to add to the existing lock.
     */
    function extendLockTime(uint256 _extraLockDuration) public nonReentrant {
        LockInfo storage lock = lockInfo[msg.sender];

        require(lock.lockAmount > 0, "No active lock to extend");

        uint256 currentTime = block.timestamp;

        // Determine the new unlock time
        uint256 newUnlockTime;
        if (currentTime > lock.unlockTime) {
            // If the current time is after the existing unlock time, start from the current time
            newUnlockTime = currentTime + _extraLockDuration;
        } else {
            // If still within the lock period, extend from the current unlock time
            newUnlockTime = lock.unlockTime + _extraLockDuration;
        }

        // Ensure the new unlock time does not exceed the maximum lock duration
        require(newUnlockTime <= currentTime + MAX_LOCK_TIME, "Exceeds maximum lock duration");

        // Ensure the new unlock time is not less than the minimum lock duration
        require(newUnlockTime >= currentTime + MIN_LOCK_TIME, "New unlock time too short");

        // Update the unlock time
        lock.unlockTime = newUnlockTime;

        emit LockTimeExtended(msg.sender, _extraLockDuration, lock.unlockTime);
    }

    /**
     * @notice Allows users to withdraw their LP tokens in an emergency without receiving rewards.
     * @param _pid Pool ID where the emergency withdrawal will occur.
     */
    function emergencyWithdraw(uint256 _pid) public nonReentrant onlyValidPool(_pid) {
        require(_pid != 0, "Emergency withdrawal unavailable for staking pool");
        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        require(user.amount > 0, "No tokens to withdraw");

        uint256 amount = user.amount;
        user.amount = 0;
        user.rewardDebt = 0;

        pool.lpToken.safeTransfer(msg.sender, amount);
        emit EmergencyWithdraw(msg.sender, _pid, amount);
    }

    /**
     * @notice Calculates the veFIVE (vote-escrowed FIVE) balance of a user.
     * @param _user The address of the user whose veFIVE balance is being calculated.
     * @return veFIVE The calculated veFIVE balance based on the user's locked amount and remaining lock time.
     *
     * @dev This function calculates veFIVE using a normalized decay curve:
     *      - The longer the remaining lock time, the higher the veFIVE.
     *      - The amount of locked tokens directly influences the veFIVE balance.
     *      - A decay formula is used to ensure diminishing returns as lock time increases.
     */
    function getVeFIVE(address _user) public view returns (uint256) {
        LockInfo storage lock = lockInfo[_user];

        // If the user's lock has expired or they have no locked tokens, return 0.
        if (block.timestamp > lock.unlockTime || lock.lockAmount == 0) {
            return 0;
        }

        // Remaining lock time is the difference between the unlock time and the current block timestamp.
        uint256 remainingTime = lock.unlockTime - block.timestamp;

        // Maximum veFIVE is directly proportional to the amount of locked tokens.
        uint256 maxVeFIVE = lock.lockAmount;

        // Normalize the remaining time as a fraction of the maximum lock duration (scaled to 1e18 for precision).
        // Example: If the remaining time is 3 months and MAX_LOCK_TIME is 6 months, scaledRemainingTime = 0.5 * 1e18.
        uint256 scaledRemainingTime = PRBMathUD60x18.div(PRBMathUD60x18.mul(remainingTime, 1e18), MAX_LOCK_TIME);

        // Multiply the normalized remaining time by the steepness parameter `k`.
        // This determines how sharply the veFIVE value decays as the remaining time decreases.
        uint256 scaledX = PRBMathUD60x18.mul(k, scaledRemainingTime);

        // Calculate the exponential decay factor `exp(-k * scaledRemainingTime)` using PRBMath.
        // This results in a value between 0 and 1, with higher values for longer remaining times.
        uint256 expValue = PRBMathUD60x18.div(1e18, PRBMathUD60x18.exp(scaledX));

        // Calculate the normalization factor to ensure that veFIVE reaches 100% when the remaining time equals MAX_LOCK_TIME.
        // The normalization factor is derived as `1 - exp(-k)`, where `k` represents the steepness of the curve.
        uint256 normalizationFactor = 1e18 - PRBMathUD60x18.div(1e18, PRBMathUD60x18.exp(k));

        // Use the normalized decay formula to calculate the veFIVE value:
        // veFIVE = maxVeFIVE * (1 - exp(-k * scaledRemainingTime)) / normalizationFactor
        // This ensures veFIVE grows asymptotically with lock time and maxVeFIVE.
        uint256 veFIVE = PRBMathUD60x18.mul(maxVeFIVE, PRBMathUD60x18.div(1e18 - expValue, normalizationFactor));

        return veFIVE;
    }

    /**
     * @notice Returns the total number of pools in the contract.
     * @return Total pool count.
     */
    function poolLength() public view returns (uint256) {
        return poolInfo.length;
    }

    /**
     * @dev Safely transfers FIVE tokens, ensuring no transfer exceeds the available balance.
     * @param _to Recipient address.
     * @param _amount Amount to transfer.
     */
    function safeFiveTransfer(address _to, uint256 _amount) internal {
        uint256 fiveBalance = five.balanceOf(address(this));
        uint256 transferAmount = _amount > fiveBalance ? fiveBalance : _amount;

        five.transfer(_to, transferAmount);
    }
}

File 2 of 30 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 30 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 4 of 30 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 5 of 30 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 6 of 30 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 7 of 30 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 8 of 30 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 9 of 30 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 10 of 30 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 11 of 30 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 12 of 30 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 13 of 30 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 14 of 30 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 15 of 30 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 16 of 30 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 17 of 30 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 18 of 30 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 19 of 30 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 20 of 30 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 21 of 30 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 22 of 30 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 23 of 30 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 24 of 30 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 25 of 30 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 26 of 30 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 27 of 30 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 28 of 30 : Five.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.20;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";

/// @title FIVE Token Contract
/// @notice ERC20 token with a capped supply, minting, burning, and gasless approvals using EIP-2612.
/// @dev Inherits from OpenZeppelin's ERC20, ERC20Permit, and Ownable contracts.
contract FIVE is ERC20, Ownable, ERC20Permit {
    uint256 private _maxSupply;
    uint256 public totalMinted;
    uint256 public totalBurned;
    address public treasuryAddr;

    /// @notice Event emitted when tokens are minted.
    event Mint(address indexed minter, address indexed recipient, uint256 amount);
    /// @notice Event emitted when tokens are burned.
    event Burn(address indexed burner, uint256 amount);
    /// @notice Event emitted when the max supply is decreased.
    event MaxSupplyDecreased(uint256 oldMaxSupply, uint256 newMaxSupply);

    /// @dev Constructor to initialize the token with its name, symbol, and treasury address.
    /// @param initialOwner The address of the treasury to receive the initial minted tokens.
    constructor(
        address initialOwner,
        uint256 initialMint
    ) ERC20("DeFive", "FIVE") Ownable(initialOwner) ERC20Permit("DeFive") {
        _maxSupply = 2000000000e18; // Set initial max supply
        treasuryAddr = initialOwner;

        require(initialOwner != address(0), "Initial Owner address cannot be zero");
        require(initialMint <= _maxSupply, "Initial mint exceeds max supply");
        _mint(treasuryAddr, initialMint);
        totalMinted = initialMint;

        emit Mint(msg.sender, treasuryAddr, initialMint);
    }

    /// @notice Mint new tokens, restricted to the MasterFarmer.
    /// @param recipient The address to receive the minted tokens.
    /// @param amount The amount of tokens to mint.
    function mint(address recipient, uint256 amount) external onlyOwner {
        require(recipient != address(0), "Mint to zero address");
        require(totalSupply() + amount <= _maxSupply, "ERC20: minting exceeds max supply");
        _mint(recipient, amount);
        totalMinted += amount;

        emit Mint(msg.sender, recipient, amount);
    }

    /// @notice Burn tokens from the caller's balance.
    /// @param amount The amount of tokens to burn.
    function burn(uint256 amount) external {
        require(balanceOf(msg.sender) >= amount, "Insufficient balance to burn");
        _burn(msg.sender, amount);
        totalBurned += amount;

        emit Burn(msg.sender, amount);
    }

    /// @notice Reduce the maximum token supply. Only decreases are allowed.
    /// @param newMaxSupply The new maximum supply, which must be less than the current max supply.
    function decreaseMaxSupply(uint256 newMaxSupply) external onlyOwner {
        require(newMaxSupply < _maxSupply, "New max supply must be less than the current max supply");
        require(newMaxSupply >= totalSupply(), "New max supply must not be less than the total supply");

        uint256 oldMaxSupply = _maxSupply;
        _maxSupply = newMaxSupply;

        emit MaxSupplyDecreased(oldMaxSupply, newMaxSupply);
    }

    /// @notice Get the current maximum token supply.
    /// @return The current maximum supply of the token.
    function maxSupply() external view returns (uint256) {
        return _maxSupply;
    }
}

File 29 of 30 : PRBMath.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivFixedPointOverflow(uint256 prod1);

/// @notice Emitted when the result overflows uint256.
error PRBMath__MulDivOverflow(uint256 prod1, uint256 denominator);

/// @notice Emitted when one of the inputs is type(int256).min.
error PRBMath__MulDivSignedInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows int256.
error PRBMath__MulDivSignedOverflow(uint256 rAbs);

/// @notice Emitted when the input is MIN_SD59x18.
error PRBMathSD59x18__AbsInputTooSmall();

/// @notice Emitted when ceiling a number overflows SD59x18.
error PRBMathSD59x18__CeilOverflow(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__DivInputTooSmall();

/// @notice Emitted when one of the intermediary unsigned results overflows SD59x18.
error PRBMathSD59x18__DivOverflow(uint256 rAbs);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathSD59x18__ExpInputTooBig(int256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathSD59x18__Exp2InputTooBig(int256 x);

/// @notice Emitted when flooring a number underflows SD59x18.
error PRBMathSD59x18__FloorUnderflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMathSD59x18__FromIntOverflow(int256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMathSD59x18__FromIntUnderflow(int256 x);

/// @notice Emitted when the product of the inputs is negative.
error PRBMathSD59x18__GmNegativeProduct(int256 x, int256 y);

/// @notice Emitted when multiplying the inputs overflows SD59x18.
error PRBMathSD59x18__GmOverflow(int256 x, int256 y);

/// @notice Emitted when the input is less than or equal to zero.
error PRBMathSD59x18__LogInputTooSmall(int256 x);

/// @notice Emitted when one of the inputs is MIN_SD59x18.
error PRBMathSD59x18__MulInputTooSmall();

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__MulOverflow(uint256 rAbs);

/// @notice Emitted when the intermediary absolute result overflows SD59x18.
error PRBMathSD59x18__PowuOverflow(uint256 rAbs);

/// @notice Emitted when the input is negative.
error PRBMathSD59x18__SqrtNegativeInput(int256 x);

/// @notice Emitted when the calculating the square root overflows SD59x18.
error PRBMathSD59x18__SqrtOverflow(int256 x);

/// @notice Emitted when addition overflows UD60x18.
error PRBMathUD60x18__AddOverflow(uint256 x, uint256 y);

/// @notice Emitted when ceiling a number overflows UD60x18.
error PRBMathUD60x18__CeilOverflow(uint256 x);

/// @notice Emitted when the input is greater than 133.084258667509499441.
error PRBMathUD60x18__ExpInputTooBig(uint256 x);

/// @notice Emitted when the input is greater than 192.
error PRBMathUD60x18__Exp2InputTooBig(uint256 x);

/// @notice Emitted when converting a basic integer to the fixed-point format format overflows UD60x18.
error PRBMathUD60x18__FromUintOverflow(uint256 x);

/// @notice Emitted when multiplying the inputs overflows UD60x18.
error PRBMathUD60x18__GmOverflow(uint256 x, uint256 y);

/// @notice Emitted when the input is less than 1.
error PRBMathUD60x18__LogInputTooSmall(uint256 x);

/// @notice Emitted when the calculating the square root overflows UD60x18.
error PRBMathUD60x18__SqrtOverflow(uint256 x);

/// @notice Emitted when subtraction underflows UD60x18.
error PRBMathUD60x18__SubUnderflow(uint256 x, uint256 y);

/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
/// representation. When it does not, it is explicitly mentioned in the NatSpec documentation.
library PRBMath {
    /// STRUCTS ///

    struct SD59x18 {
        int256 value;
    }

    struct UD60x18 {
        uint256 value;
    }

    /// STORAGE ///

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @dev Largest power of two divisor of SCALE.
    uint256 internal constant SCALE_LPOTD = 262144;

    /// @dev SCALE inverted mod 2^256.
    uint256 internal constant SCALE_INVERSE =
        78156646155174841979727994598816262306175212592076161876661_508869554232690281;

    /// FUNCTIONS ///

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    /// @dev Has to use 192.64-bit fixed-point numbers.
    /// See https://ethereum.stackexchange.com/a/96594/24693.
    /// @param x The exponent as an unsigned 192.64-bit fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // Start from 0.5 in the 192.64-bit fixed-point format.
            result = 0x800000000000000000000000000000000000000000000000;

            // Multiply the result by root(2, 2^-i) when the bit at position i is 1. None of the intermediary results overflows
            // because the initial result is 2^191 and all magic factors are less than 2^65.
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }

            // We're doing two things at the same time:
            //
            //   1. Multiply the result by 2^n + 1, where "2^n" is the integer part and the one is added to account for
            //      the fact that we initially set the result to 0.5. This is accomplished by subtracting from 191
            //      rather than 192.
            //   2. Convert the result to the unsigned 60.18-decimal fixed-point format.
            //
            // This works because 2^(191-ip) = 2^ip / 2^191, where "ip" is the integer part "2^n".
            result *= SCALE;
            result >>= (191 - (x >> 64));
        }
    }

    /// @notice Finds the zero-based index of the first one in the binary representation of x.
    /// @dev See the note on msb in the "Find First Set" Wikipedia article https://en.wikipedia.org/wiki/Find_first_set
    /// @param x The uint256 number for which to find the index of the most significant bit.
    /// @return msb The index of the most significant bit as an uint256.
    function mostSignificantBit(uint256 x) internal pure returns (uint256 msb) {
        if (x >= 2**128) {
            x >>= 128;
            msb += 128;
        }
        if (x >= 2**64) {
            x >>= 64;
            msb += 64;
        }
        if (x >= 2**32) {
            x >>= 32;
            msb += 32;
        }
        if (x >= 2**16) {
            x >>= 16;
            msb += 16;
        }
        if (x >= 2**8) {
            x >>= 8;
            msb += 8;
        }
        if (x >= 2**4) {
            x >>= 4;
            msb += 4;
        }
        if (x >= 2**2) {
            x >>= 2;
            msb += 2;
        }
        if (x >= 2**1) {
            // No need to shift x any more.
            msb += 1;
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The multiplicand as an uint256.
    /// @param y The multiplier as an uint256.
    /// @param denominator The divisor as an uint256.
    /// @return result The result as an uint256.
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
        // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = prod1 * 2^256 + prod0.
        uint256 prod0; // Least significant 256 bits of the product
        uint256 prod1; // Most significant 256 bits of the product
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        // Handle non-overflow cases, 256 by 256 division.
        if (prod1 == 0) {
            unchecked {
                result = prod0 / denominator;
            }
            return result;
        }

        // Make sure the result is less than 2^256. Also prevents denominator == 0.
        if (prod1 >= denominator) {
            revert PRBMath__MulDivOverflow(prod1, denominator);
        }

        ///////////////////////////////////////////////
        // 512 by 256 division.
        ///////////////////////////////////////////////

        // Make division exact by subtracting the remainder from [prod1 prod0].
        uint256 remainder;
        assembly {
            // Compute remainder using mulmod.
            remainder := mulmod(x, y, denominator)

            // Subtract 256 bit number from 512 bit number.
            prod1 := sub(prod1, gt(remainder, prod0))
            prod0 := sub(prod0, remainder)
        }

        // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
        // See https://cs.stackexchange.com/q/138556/92363.
        unchecked {
            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 lpotdod = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by lpotdod.
                denominator := div(denominator, lpotdod)

                // Divide [prod1 prod0] by lpotdod.
                prod0 := div(prod0, lpotdod)

                // Flip lpotdod such that it is 2^256 / lpotdod. If lpotdod is zero, then it becomes one.
                lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * lpotdod;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /// @notice Calculates floor(x*y÷1e18) with full precision.
    ///
    /// @dev Variant of "mulDiv" with constant folding, i.e. in which the denominator is always 1e18. Before returning the
    /// final result, we add 1 if (x * y) % SCALE >= HALF_SCALE. Without this, 6.6e-19 would be truncated to 0 instead of
    /// being rounded to 1e-18.  See "Listing 6" and text above it at https://accu.org/index.php/journals/1717.
    ///
    /// Requirements:
    /// - The result must fit within uint256.
    ///
    /// Caveats:
    /// - The body is purposely left uncommented; see the NatSpec comments in "PRBMath.mulDiv" to understand how this works.
    /// - It is assumed that the result can never be type(uint256).max when x and y solve the following two equations:
    ///     1. x * y = type(uint256).max * SCALE
    ///     2. (x * y) % SCALE >= SCALE / 2
    ///
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function mulDivFixedPoint(uint256 x, uint256 y) internal pure returns (uint256 result) {
        uint256 prod0;
        uint256 prod1;
        assembly {
            let mm := mulmod(x, y, not(0))
            prod0 := mul(x, y)
            prod1 := sub(sub(mm, prod0), lt(mm, prod0))
        }

        if (prod1 >= SCALE) {
            revert PRBMath__MulDivFixedPointOverflow(prod1);
        }

        uint256 remainder;
        uint256 roundUpUnit;
        assembly {
            remainder := mulmod(x, y, SCALE)
            roundUpUnit := gt(remainder, 499999999999999999)
        }

        if (prod1 == 0) {
            unchecked {
                result = (prod0 / SCALE) + roundUpUnit;
                return result;
            }
        }

        assembly {
            result := add(
                mul(
                    or(
                        div(sub(prod0, remainder), SCALE_LPOTD),
                        mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, SCALE_LPOTD), SCALE_LPOTD), 1))
                    ),
                    SCALE_INVERSE
                ),
                roundUpUnit
            )
        }
    }

    /// @notice Calculates floor(x*y÷denominator) with full precision.
    ///
    /// @dev An extension of "mulDiv" for signed numbers. Works by computing the signs and the absolute values separately.
    ///
    /// Requirements:
    /// - None of the inputs can be type(int256).min.
    /// - The result must fit within int256.
    ///
    /// @param x The multiplicand as an int256.
    /// @param y The multiplier as an int256.
    /// @param denominator The divisor as an int256.
    /// @return result The result as an int256.
    function mulDivSigned(
        int256 x,
        int256 y,
        int256 denominator
    ) internal pure returns (int256 result) {
        if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
            revert PRBMath__MulDivSignedInputTooSmall();
        }

        // Get hold of the absolute values of x, y and the denominator.
        uint256 ax;
        uint256 ay;
        uint256 ad;
        unchecked {
            ax = x < 0 ? uint256(-x) : uint256(x);
            ay = y < 0 ? uint256(-y) : uint256(y);
            ad = denominator < 0 ? uint256(-denominator) : uint256(denominator);
        }

        // Compute the absolute value of (x*y)÷denominator. The result must fit within int256.
        uint256 rAbs = mulDiv(ax, ay, ad);
        if (rAbs > uint256(type(int256).max)) {
            revert PRBMath__MulDivSignedOverflow(rAbs);
        }

        // Get the signs of x, y and the denominator.
        uint256 sx;
        uint256 sy;
        uint256 sd;
        assembly {
            sx := sgt(x, sub(0, 1))
            sy := sgt(y, sub(0, 1))
            sd := sgt(denominator, sub(0, 1))
        }

        // XOR over sx, sy and sd. This is checking whether there are one or three negative signs in the inputs.
        // If yes, the result should be negative.
        result = sx ^ sy ^ sd == 0 ? -int256(rAbs) : int256(rAbs);
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Caveats:
    /// - This function does not work with fixed-point numbers.
    ///
    /// @param x The uint256 number for which to calculate the square root.
    /// @return result The result as an uint256.
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        // Set the initial guess to the least power of two that is greater than or equal to sqrt(x).
        uint256 xAux = uint256(x);
        result = 1;
        if (xAux >= 0x100000000000000000000000000000000) {
            xAux >>= 128;
            result <<= 64;
        }
        if (xAux >= 0x10000000000000000) {
            xAux >>= 64;
            result <<= 32;
        }
        if (xAux >= 0x100000000) {
            xAux >>= 32;
            result <<= 16;
        }
        if (xAux >= 0x10000) {
            xAux >>= 16;
            result <<= 8;
        }
        if (xAux >= 0x100) {
            xAux >>= 8;
            result <<= 4;
        }
        if (xAux >= 0x10) {
            xAux >>= 4;
            result <<= 2;
        }
        if (xAux >= 0x8) {
            result <<= 1;
        }

        // The operations can never overflow because the result is max 2^127 when it enters this block.
        unchecked {
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1;
            result = (result + x / result) >> 1; // Seven iterations should be enough
            uint256 roundedDownResult = x / result;
            return result >= roundedDownResult ? roundedDownResult : result;
        }
    }
}

File 30 of 30 : PRBMathUD60x18.sol
// SPDX-License-Identifier: Unlicense
pragma solidity >=0.8.4;

import "./PRBMath.sol";

/// @title PRBMathUD60x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math that works with uint256 numbers considered to have 18
/// trailing decimals. We call this number representation unsigned 60.18-decimal fixed-point, since there can be up to 60
/// digits in the integer part and up to 18 decimals in the fractional part. The numbers are bound by the minimum and the
/// maximum values permitted by the Solidity type uint256.
library PRBMathUD60x18 {
    /// @dev Half the SCALE number.
    uint256 internal constant HALF_SCALE = 5e17;

    /// @dev log2(e) as an unsigned 60.18-decimal fixed-point number.
    uint256 internal constant LOG2_E = 1_442695040888963407;

    /// @dev The maximum value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_584007913129639935;

    /// @dev The maximum whole value an unsigned 60.18-decimal fixed-point number can have.
    uint256 internal constant MAX_WHOLE_UD60x18 =
        115792089237316195423570985008687907853269984665640564039457_000000000000000000;

    /// @dev How many trailing decimals can be represented.
    uint256 internal constant SCALE = 1e18;

    /// @notice Calculates the arithmetic average of x and y, rounding down.
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The arithmetic average as an unsigned 60.18-decimal fixed-point number.
    function avg(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // The operations can never overflow.
        unchecked {
            // The last operand checks if both x and y are odd and if that is the case, we add 1 to the result. We need
            // to do this because if both numbers are odd, the 0.5 remainder gets truncated twice.
            result = (x >> 1) + (y >> 1) + (x & y & 1);
        }
    }

    /// @notice Yields the least unsigned 60.18 decimal fixed-point number greater than or equal to x.
    ///
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    ///
    /// Requirements:
    /// - x must be less than or equal to MAX_WHOLE_UD60x18.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number to ceil.
    /// @param result The least integer greater than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function ceil(uint256 x) internal pure returns (uint256 result) {
        if (x > MAX_WHOLE_UD60x18) {
            revert PRBMathUD60x18__CeilOverflow(x);
        }
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "SCALE - remainder" but faster.
            let delta := sub(SCALE, remainder)

            // Equivalent to "x + delta * (remainder > 0 ? 1 : 0)" but faster.
            result := add(x, mul(delta, gt(remainder, 0)))
        }
    }

    /// @notice Divides two unsigned 60.18-decimal fixed-point numbers, returning a new unsigned 60.18-decimal fixed-point number.
    ///
    /// @dev Uses mulDiv to enable overflow-safe multiplication and division.
    ///
    /// Requirements:
    /// - The denominator cannot be zero.
    ///
    /// @param x The numerator as an unsigned 60.18-decimal fixed-point number.
    /// @param y The denominator as an unsigned 60.18-decimal fixed-point number.
    /// @param result The quotient as an unsigned 60.18-decimal fixed-point number.
    function div(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDiv(x, SCALE, y);
    }

    /// @notice Returns Euler's number as an unsigned 60.18-decimal fixed-point number.
    /// @dev See https://en.wikipedia.org/wiki/E_(mathematical_constant).
    function e() internal pure returns (uint256 result) {
        result = 2_718281828459045235;
    }

    /// @notice Calculates the natural exponent of x.
    ///
    /// @dev Based on the insight that e^x = 2^(x * log2(e)).
    ///
    /// Requirements:
    /// - All from "log2".
    /// - x must be less than 133.084258667509499441.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp(uint256 x) internal pure returns (uint256 result) {
        // Without this check, the value passed to "exp2" would be greater than 192.
        if (x >= 133_084258667509499441) {
            revert PRBMathUD60x18__ExpInputTooBig(x);
        }

        // Do the fixed-point multiplication inline to save gas.
        unchecked {
            uint256 doubleScaleProduct = x * LOG2_E;
            result = exp2((doubleScaleProduct + HALF_SCALE) / SCALE);
        }
    }

    /// @notice Calculates the binary exponent of x using the binary fraction method.
    ///
    /// @dev See https://ethereum.stackexchange.com/q/79903/24693.
    ///
    /// Requirements:
    /// - x must be 192 or less.
    /// - The result must fit within MAX_UD60x18.
    ///
    /// @param x The exponent as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function exp2(uint256 x) internal pure returns (uint256 result) {
        // 2^192 doesn't fit within the 192.64-bit format used internally in this function.
        if (x >= 192e18) {
            revert PRBMathUD60x18__Exp2InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x192x64 = (x << 64) / SCALE;

            // Pass x to the PRBMath.exp2 function, which uses the 192.64-bit fixed-point number representation.
            result = PRBMath.exp2(x192x64);
        }
    }

    /// @notice Yields the greatest unsigned 60.18 decimal fixed-point number less than or equal to x.
    /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional counterparts.
    /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
    /// @param x The unsigned 60.18-decimal fixed-point number to floor.
    /// @param result The greatest integer less than or equal to x, as an unsigned 60.18-decimal fixed-point number.
    function floor(uint256 x) internal pure returns (uint256 result) {
        assembly {
            // Equivalent to "x % SCALE" but faster.
            let remainder := mod(x, SCALE)

            // Equivalent to "x - remainder * (remainder > 0 ? 1 : 0)" but faster.
            result := sub(x, mul(remainder, gt(remainder, 0)))
        }
    }

    /// @notice Yields the excess beyond the floor of x.
    /// @dev Based on the odd function definition https://en.wikipedia.org/wiki/Fractional_part.
    /// @param x The unsigned 60.18-decimal fixed-point number to get the fractional part of.
    /// @param result The fractional part of x as an unsigned 60.18-decimal fixed-point number.
    function frac(uint256 x) internal pure returns (uint256 result) {
        assembly {
            result := mod(x, SCALE)
        }
    }

    /// @notice Converts a number from basic integer form to unsigned 60.18-decimal fixed-point representation.
    ///
    /// @dev Requirements:
    /// - x must be less than or equal to MAX_UD60x18 divided by SCALE.
    ///
    /// @param x The basic integer to convert.
    /// @param result The same number in unsigned 60.18-decimal fixed-point representation.
    function fromUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__FromUintOverflow(x);
            }
            result = x * SCALE;
        }
    }

    /// @notice Calculates geometric mean of x and y, i.e. sqrt(x * y), rounding down.
    ///
    /// @dev Requirements:
    /// - x * y must fit within MAX_UD60x18, lest it overflows.
    ///
    /// @param x The first operand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The second operand as an unsigned 60.18-decimal fixed-point number.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function gm(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            return 0;
        }

        unchecked {
            // Checking for overflow this way is faster than letting Solidity do it.
            uint256 xy = x * y;
            if (xy / x != y) {
                revert PRBMathUD60x18__GmOverflow(x, y);
            }

            // We don't need to multiply by the SCALE here because the x*y product had already picked up a factor of SCALE
            // during multiplication. See the comments within the "sqrt" function.
            result = PRBMath.sqrt(xy);
        }
    }

    /// @notice Calculates 1 / x, rounding toward zero.
    ///
    /// @dev Requirements:
    /// - x cannot be zero.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the inverse.
    /// @return result The inverse as an unsigned 60.18-decimal fixed-point number.
    function inv(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            // 1e36 is SCALE * SCALE.
            result = 1e36 / x;
        }
    }

    /// @notice Calculates the natural logarithm of x.
    ///
    /// @dev Based on the insight that ln(x) = log2(x) / log2(e).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    /// - This doesn't return exactly 1 for 2.718281828459045235, for that we would need more fine-grained precision.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the natural logarithm.
    /// @return result The natural logarithm as an unsigned 60.18-decimal fixed-point number.
    function ln(uint256 x) internal pure returns (uint256 result) {
        // Do the fixed-point multiplication inline to save gas. This is overflow-safe because the maximum value that log2(x)
        // can return is 196205294292027477728.
        unchecked {
            result = (log2(x) * SCALE) / LOG2_E;
        }
    }

    /// @notice Calculates the common logarithm of x.
    ///
    /// @dev First checks if x is an exact power of ten and it stops if yes. If it's not, calculates the common
    /// logarithm based on the insight that log10(x) = log2(x) / log2(10).
    ///
    /// Requirements:
    /// - All from "log2".
    ///
    /// Caveats:
    /// - All from "log2".
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the common logarithm.
    /// @return result The common logarithm as an unsigned 60.18-decimal fixed-point number.
    function log10(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }

        // Note that the "mul" in this block is the assembly multiplication operation, not the "mul" function defined
        // in this contract.
        // prettier-ignore
        assembly {
            switch x
            case 1 { result := mul(SCALE, sub(0, 18)) }
            case 10 { result := mul(SCALE, sub(1, 18)) }
            case 100 { result := mul(SCALE, sub(2, 18)) }
            case 1000 { result := mul(SCALE, sub(3, 18)) }
            case 10000 { result := mul(SCALE, sub(4, 18)) }
            case 100000 { result := mul(SCALE, sub(5, 18)) }
            case 1000000 { result := mul(SCALE, sub(6, 18)) }
            case 10000000 { result := mul(SCALE, sub(7, 18)) }
            case 100000000 { result := mul(SCALE, sub(8, 18)) }
            case 1000000000 { result := mul(SCALE, sub(9, 18)) }
            case 10000000000 { result := mul(SCALE, sub(10, 18)) }
            case 100000000000 { result := mul(SCALE, sub(11, 18)) }
            case 1000000000000 { result := mul(SCALE, sub(12, 18)) }
            case 10000000000000 { result := mul(SCALE, sub(13, 18)) }
            case 100000000000000 { result := mul(SCALE, sub(14, 18)) }
            case 1000000000000000 { result := mul(SCALE, sub(15, 18)) }
            case 10000000000000000 { result := mul(SCALE, sub(16, 18)) }
            case 100000000000000000 { result := mul(SCALE, sub(17, 18)) }
            case 1000000000000000000 { result := 0 }
            case 10000000000000000000 { result := SCALE }
            case 100000000000000000000 { result := mul(SCALE, 2) }
            case 1000000000000000000000 { result := mul(SCALE, 3) }
            case 10000000000000000000000 { result := mul(SCALE, 4) }
            case 100000000000000000000000 { result := mul(SCALE, 5) }
            case 1000000000000000000000000 { result := mul(SCALE, 6) }
            case 10000000000000000000000000 { result := mul(SCALE, 7) }
            case 100000000000000000000000000 { result := mul(SCALE, 8) }
            case 1000000000000000000000000000 { result := mul(SCALE, 9) }
            case 10000000000000000000000000000 { result := mul(SCALE, 10) }
            case 100000000000000000000000000000 { result := mul(SCALE, 11) }
            case 1000000000000000000000000000000 { result := mul(SCALE, 12) }
            case 10000000000000000000000000000000 { result := mul(SCALE, 13) }
            case 100000000000000000000000000000000 { result := mul(SCALE, 14) }
            case 1000000000000000000000000000000000 { result := mul(SCALE, 15) }
            case 10000000000000000000000000000000000 { result := mul(SCALE, 16) }
            case 100000000000000000000000000000000000 { result := mul(SCALE, 17) }
            case 1000000000000000000000000000000000000 { result := mul(SCALE, 18) }
            case 10000000000000000000000000000000000000 { result := mul(SCALE, 19) }
            case 100000000000000000000000000000000000000 { result := mul(SCALE, 20) }
            case 1000000000000000000000000000000000000000 { result := mul(SCALE, 21) }
            case 10000000000000000000000000000000000000000 { result := mul(SCALE, 22) }
            case 100000000000000000000000000000000000000000 { result := mul(SCALE, 23) }
            case 1000000000000000000000000000000000000000000 { result := mul(SCALE, 24) }
            case 10000000000000000000000000000000000000000000 { result := mul(SCALE, 25) }
            case 100000000000000000000000000000000000000000000 { result := mul(SCALE, 26) }
            case 1000000000000000000000000000000000000000000000 { result := mul(SCALE, 27) }
            case 10000000000000000000000000000000000000000000000 { result := mul(SCALE, 28) }
            case 100000000000000000000000000000000000000000000000 { result := mul(SCALE, 29) }
            case 1000000000000000000000000000000000000000000000000 { result := mul(SCALE, 30) }
            case 10000000000000000000000000000000000000000000000000 { result := mul(SCALE, 31) }
            case 100000000000000000000000000000000000000000000000000 { result := mul(SCALE, 32) }
            case 1000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 33) }
            case 10000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 34) }
            case 100000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 35) }
            case 1000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 36) }
            case 10000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 37) }
            case 100000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 38) }
            case 1000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 39) }
            case 10000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 40) }
            case 100000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 41) }
            case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 42) }
            case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 43) }
            case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 44) }
            case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 45) }
            case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 46) }
            case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 47) }
            case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 48) }
            case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 49) }
            case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 50) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 51) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 52) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 53) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 54) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 55) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 56) }
            case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 57) }
            case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 58) }
            case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(SCALE, 59) }
            default {
                result := MAX_UD60x18
            }
        }

        if (result == MAX_UD60x18) {
            // Do the fixed-point division inline to save gas. The denominator is log2(10).
            unchecked {
                result = (log2(x) * SCALE) / 3_321928094887362347;
            }
        }
    }

    /// @notice Calculates the binary logarithm of x.
    ///
    /// @dev Based on the iterative approximation algorithm.
    /// https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
    ///
    /// Requirements:
    /// - x must be greater than or equal to SCALE, otherwise the result would be negative.
    ///
    /// Caveats:
    /// - The results are nor perfectly accurate to the last decimal, due to the lossy precision of the iterative approximation.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the binary logarithm.
    /// @return result The binary logarithm as an unsigned 60.18-decimal fixed-point number.
    function log2(uint256 x) internal pure returns (uint256 result) {
        if (x < SCALE) {
            revert PRBMathUD60x18__LogInputTooSmall(x);
        }
        unchecked {
            // Calculate the integer part of the logarithm and add it to the result and finally calculate y = x * 2^(-n).
            uint256 n = PRBMath.mostSignificantBit(x / SCALE);

            // The integer part of the logarithm as an unsigned 60.18-decimal fixed-point number. The operation can't overflow
            // because n is maximum 255 and SCALE is 1e18.
            result = n * SCALE;

            // This is y = x * 2^(-n).
            uint256 y = x >> n;

            // If y = 1, the fractional part is zero.
            if (y == SCALE) {
                return result;
            }

            // Calculate the fractional part via the iterative approximation.
            // The "delta >>= 1" part is equivalent to "delta /= 2", but shifting bits is faster.
            for (uint256 delta = HALF_SCALE; delta > 0; delta >>= 1) {
                y = (y * y) / SCALE;

                // Is y^2 > 2 and so in the range [2,4)?
                if (y >= 2 * SCALE) {
                    // Add the 2^(-m) factor to the logarithm.
                    result += delta;

                    // Corresponds to z/2 on Wikipedia.
                    y >>= 1;
                }
            }
        }
    }

    /// @notice Multiplies two unsigned 60.18-decimal fixed-point numbers together, returning a new unsigned 60.18-decimal
    /// fixed-point number.
    /// @dev See the documentation for the "PRBMath.mulDivFixedPoint" function.
    /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
    /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
    /// @return result The product as an unsigned 60.18-decimal fixed-point number.
    function mul(uint256 x, uint256 y) internal pure returns (uint256 result) {
        result = PRBMath.mulDivFixedPoint(x, y);
    }

    /// @notice Returns PI as an unsigned 60.18-decimal fixed-point number.
    function pi() internal pure returns (uint256 result) {
        result = 3_141592653589793238;
    }

    /// @notice Raises x to the power of y.
    ///
    /// @dev Based on the insight that x^y = 2^(log2(x) * y).
    ///
    /// Requirements:
    /// - All from "exp2", "log2" and "mul".
    ///
    /// Caveats:
    /// - All from "exp2", "log2" and "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x Number to raise to given power y, as an unsigned 60.18-decimal fixed-point number.
    /// @param y Exponent to raise x to, as an unsigned 60.18-decimal fixed-point number.
    /// @return result x raised to power y, as an unsigned 60.18-decimal fixed-point number.
    function pow(uint256 x, uint256 y) internal pure returns (uint256 result) {
        if (x == 0) {
            result = y == 0 ? SCALE : uint256(0);
        } else {
            result = exp2(mul(log2(x), y));
        }
    }

    /// @notice Raises x (unsigned 60.18-decimal fixed-point number) to the power of y (basic unsigned integer) using the
    /// famous algorithm "exponentiation by squaring".
    ///
    /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring
    ///
    /// Requirements:
    /// - The result must fit within MAX_UD60x18.
    ///
    /// Caveats:
    /// - All from "mul".
    /// - Assumes 0^0 is 1.
    ///
    /// @param x The base as an unsigned 60.18-decimal fixed-point number.
    /// @param y The exponent as an uint256.
    /// @return result The result as an unsigned 60.18-decimal fixed-point number.
    function powu(uint256 x, uint256 y) internal pure returns (uint256 result) {
        // Calculate the first iteration of the loop in advance.
        result = y & 1 > 0 ? x : SCALE;

        // Equivalent to "for(y /= 2; y > 0; y /= 2)" but faster.
        for (y >>= 1; y > 0; y >>= 1) {
            x = PRBMath.mulDivFixedPoint(x, x);

            // Equivalent to "y % 2 == 1" but faster.
            if (y & 1 > 0) {
                result = PRBMath.mulDivFixedPoint(result, x);
            }
        }
    }

    /// @notice Returns 1 as an unsigned 60.18-decimal fixed-point number.
    function scale() internal pure returns (uint256 result) {
        result = SCALE;
    }

    /// @notice Calculates the square root of x, rounding down.
    /// @dev Uses the Babylonian method https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
    ///
    /// Requirements:
    /// - x must be less than MAX_UD60x18 / SCALE.
    ///
    /// @param x The unsigned 60.18-decimal fixed-point number for which to calculate the square root.
    /// @return result The result as an unsigned 60.18-decimal fixed-point .
    function sqrt(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            if (x > MAX_UD60x18 / SCALE) {
                revert PRBMathUD60x18__SqrtOverflow(x);
            }
            // Multiply x by the SCALE to account for the factor of SCALE that is picked up when multiplying two unsigned
            // 60.18-decimal fixed-point numbers together (in this case, those two numbers are both the square root).
            result = PRBMath.sqrt(x * SCALE);
        }
    }

    /// @notice Converts a unsigned 60.18-decimal fixed-point number to basic integer form, rounding down in the process.
    /// @param x The unsigned 60.18-decimal fixed-point number to convert.
    /// @return result The same number in basic integer form.
    function toUint(uint256 x) internal pure returns (uint256 result) {
        unchecked {
            result = x / SCALE;
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 9999
  },
  "metadata": {
    "bytecodeHash": "none",
    "useLiteralContent": true
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"initialOwner","type":"address"},{"internalType":"contract FIVE","name":"_five","type":"address"},{"internalType":"uint256","name":"_startBlockTime","type":"uint256"},{"internalType":"uint256","name":"initialK","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__Exp2InputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMathUD60x18__ExpInputTooBig","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"}],"name":"PRBMath__MulDivFixedPointOverflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"prod1","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath__MulDivOverflow","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"contract IERC20","name":"pair","type":"address"},{"indexed":true,"internalType":"uint256","name":"point","type":"uint256"}],"name":"Add","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"EmergencyWithdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newRate","type":"uint256"}],"name":"EmissionUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockTime","type":"uint256"}],"name":"EnterStaking","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldK","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newK","type":"uint256"}],"name":"KUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"LeaveStaking","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"extraLockTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newUnlockTime","type":"uint256"}],"name":"LockTimeExtended","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"point","type":"uint256"}],"name":"Set","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newDev","type":"address"}],"name":"SetDev","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newTreasury","type":"address"}],"name":"SetTreasury","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"StakingPercentageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"pid","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"MAX_EMISSION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_LOCK_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_STAKING_PERCENTAGE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_LOCK_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"contract IERC20","name":"_lpToken","type":"address"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"add","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"decayedPendingFive","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"decreaseFiveMaxSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emission","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_lockDuration","type":"uint256"}],"name":"enterStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_extraLockDuration","type":"uint256"}],"name":"extendLockTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"five","outputs":[{"internalType":"contract FIVE","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"getVeFIVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"k","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"leaveStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lockInfo","outputs":[{"internalType":"uint256","name":"lockAmount","type":"uint256"},{"internalType":"uint256","name":"unlockTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"massUpdatePools","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"address","name":"_user","type":"address"}],"name":"pendingFive","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolInfo","outputs":[{"internalType":"contract IERC20","name":"lpToken","type":"address"},{"internalType":"uint256","name":"allocPoint","type":"uint256"},{"internalType":"uint256","name":"lastRewardBlockTime","type":"uint256"},{"internalType":"uint256","name":"accFivePerShare","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_allocPoint","type":"uint256"},{"internalType":"bool","name":"_withUpdate","type":"bool"}],"name":"set","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_emission","type":"uint256"}],"name":"setEmission","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"setStakingPercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakingPercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"startBlockTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLockedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLockedUsers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newK","type":"uint256"}],"name":"updateK","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"updatePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"userInfo","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"rewardDebt","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6080604052674563918244f40000600755601e60085560006009553480156200002757600080fd5b5060405162003aea38038062003aea8339810160408190526200004a916200030c565b836001600160a01b0381166200007b57604051631e4fbdf760e01b8152600060048201526024015b60405180910390fd5b6200008681620002a3565b5060018055670de0b6b3a76400008110801590620000ac57506753444835ec5800008111155b620001145760405162461bcd60e51b815260206004820152603160248201527f696e697469616c4b206d757374206265206265747765656e203120616e64203660448201527020287363616c656420627920316531382960781b606482015260840162000072565b428211620001735760405162461bcd60e51b815260206004820152602560248201527f5f7374617274426c6f636b54696d65206d75737420626520696e207468652066604482015264757475726560d81b606482015260840162000072565b600680546001600160a01b03199081166001600160a01b03958616908117909255600a849055600d92909255604080516080810182528281526103e86020808301828152838501978852600060608501818152600280546001818101835591845296517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace60049098029788018054909b169c169b909b1790985590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf85015596517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad084015594517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad19092019190915591845260039092529120805460ff19169092179091556009555062000359565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b03811681146200030957600080fd5b50565b600080600080608085870312156200032357600080fd5b84516200033081620002f3565b60208601519094506200034381620002f3565b6040860151606090960151949790965092505050565b61378180620003696000396000f3fe608060405234801561001057600080fd5b506004361061025c5760003560e01c8063715018a611610145578063af11c34c116100bd578063e0395c1e1161008c578063f2fde38b11610071578063f2fde38b14610522578063fa78668f14610535578063fde042811461053f57600080fd5b8063e0395c1e14610506578063e2bbb1581461050f57600080fd5b8063af11c34c146104b7578063b4f40c61146104d7578063dc6fe235146104e0578063ddce102f146104f357600080fd5b80638da5cb5b1161011457806394e382c0116100f957806394e382c01461048d57806399fcfccb1461049c578063a81d4658146104a457600080fd5b80638da5cb5b1461041c57806393f1a40b1461045b57600080fd5b8063715018a6146103ef57806381e1ccba146103f7578063827c049e14610400578063828047a51461040957600080fd5b80632ab97b9d116101d85780635312ea8e116101a757806364482f791161018c57806364482f791461038d5780636552374a146103a05780636bd3b87c146103b357600080fd5b80635312ea8e14610372578063630b5ba11461038557600080fd5b80632ab97b9d1461032f5780633ff0320714610342578063441a3e701461034c57806351eb05a61461035f57600080fd5b80630f44b5a91161022f57806316a6d94a1161021457806316a6d94a1461030057806317caf6f1146103135780631eaaa0451461031c57600080fd5b80630f44b5a9146102a35780631526fe27146102b657600080fd5b806305a9f27414610261578063081e3eda1461027d5780630c18d4ce146102855780630e38c32b1461028e575b600080fd5b61026a600b5481565b6040519081526020015b60405180910390f35b60025461026a565b61026a600a5481565b6102a161029c3660046134a4565b610547565b005b61026a6102b13660046134df565b610616565b6102c96102c43660046134a4565b6106bb565b6040805173ffffffffffffffffffffffffffffffffffffffff90951685526020850193909352918301526060820152608001610274565b6102a161030e3660046134fc565b61070c565b61026a60095481565b6102a161032a36600461352c565b610ab8565b6102a161033d3660046134a4565b610d12565b61026a6212750081565b6102a161035a3660046134fc565b610dcf565b6102a161036d3660046134a4565b611037565b6102a16103803660046134a4565b6112a3565b6102a1611479565b6102a161039b36600461356e565b6114aa565b61026a6103ae3660046134df565b61160d565b6103da6103c13660046134df565b6005602052600090815260409020805460019091015482565b60408051928352602083019190915201610274565b6102a1611719565b61026a60085481565b61026a60075481565b6102a16104173660046134a4565b61172d565b60005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610274565b6103da61046936600461359c565b60046020908152600092835260408084209091529082529020805460019091015482565b61026a674563918244f4000081565b6102a16118cc565b61026a6104b236600461359c565b611c35565b6006546104369073ffffffffffffffffffffffffffffffffffffffff1681565b61026a600d5481565b6102a16104ee3660046134a4565b611e58565b6102a16105013660046134a4565b612107565b61026a600c5481565b6102a161051d3660046134fc565b6121d0565b6102a16105303660046134df565b6123ef565b61026a62ed4e0081565b61026a601e81565b61054f612450565b601e8111156105cb5760405162461bcd60e51b815260206004820152602860248201527f5374616b696e672070657263656e746167652065786365656473206d6178696d60448201527f756d206c696d697400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6105d3611479565b60088190556040518181527fe85e3e0b319540f3d1e14a6900e5f1005bf953ea549c6c41e3428224d8898de69060200160405180910390a16106136124a3565b50565b73ffffffffffffffffffffffffffffffffffffffff811660009081527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec60205260408120816106658185611c35565b9050600082600001546106778661160d565b61068990670de0b6b3a76400006135fb565b6106939190613641565b9050670de0b6b3a76400006106a882846135fb565b6106b29190613641565b95945050505050565b600281815481106106cb57600080fd5b6000918252602090912060049091020180546001820154600283015460039093015473ffffffffffffffffffffffffffffffffffffffff9092169350919084565b6107146125d3565b6000600260008154811061072a5761072a61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec82526040808520600590935290932060049092029092019250621275008410801590610787575062ed4e008411155b6107d35760405162461bcd60e51b815260206004820152601560248201527f496e76616c6964206c6f636b206475726174696f6e000000000000000000000060448201526064016105c2565b6107dd6000611037565b8154158015906107f1575080600101544211155b1561090f5760008260010154670de0b6b3a76400008560030154856000015461081a91906135fb565b6108249190613641565b61082e91906136ab565b90506000670de0b6b3a764000084600001546108493361160d565b61085b90670de0b6b3a76400006135fb565b6108659190613641565b61086f90846135fb565b6108799190613641565b9050801561090c5761088b3382612616565b8082111561090c5760065473ffffffffffffffffffffffffffffffffffffffff166342966c686108bb83856136ab565b6040518263ffffffff1660e01b81526004016108d991815260200190565b600060405180830381600087803b1580156108f357600080fd5b505af1158015610907573d6000803e3d6000fd5b505050505b50505b8415610a44576006546040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201523060248201526044810187905273ffffffffffffffffffffffffffffffffffffffff909116906323b872dd906064016020604051808303816000875af1158015610992573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b691906136be565b50848260000160008282546109cb91906136db565b90915550508054859082906000906109e49084906136db565b90915550600090506109f685426136db565b90508160010154811115610a0c57600182018190555b85600b6000828254610a1e91906136db565b90915550508154869003610a4257600c8054906000610a3c836136ee565b91905055505b505b60038301548254670de0b6b3a764000091610a5e916135fb565b610a689190613641565b6001830155604080518681526020810186905233917f8022d0cd856e916e535bdaaf7c0674e7b2e2f0231ffef91f47d0214b8b801579910160405180910390a2505050610ab460018055565b5050565b610ac0612450565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040902054829060ff1615610b385760405162461bcd60e51b815260206004820152601960248201527f4164643a20706f6f6c20616c726561647920657869737473210000000000000060448201526064016105c2565b8115610b4657610b46611479565b6000600a544211610b5957600a54610b5b565b425b90508460096000828254610b6f91906136db565b90915550506040805160808101825273ffffffffffffffffffffffffffffffffffffffff86811680835260208084018a8152848601878152600060608701818152600280546001808201835591845298517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace6004909a02998a0180547fffffffffffffffffffffffff000000000000000000000000000000000000000016919099161790975592517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf88015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad087015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad1909501949094559083526003905291902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169091179055610cc66124a3565b604051859073ffffffffffffffffffffffffffffffffffffffff86169033907f5f43b6be860b00b28d44981331005a0503e6b566155ca1423af4299a6bde1f4690600090a45050505050565b610d1a612450565b670de0b6b3a76400008110158015610d3a57506753444835ec5800008111155b610d865760405162461bcd60e51b815260206004820152601c60248201527f53746565706e6573732076616c7565206f7574206f662072616e67650000000060448201526064016105c2565b610d8e611479565b600d5460408051918252602082018390527fbd75af1b16e208f9d05e71a979a9d85e61791ef6537c46f819b0b443ab8baa38910160405180910390a1600d55565b610dd76125d3565b81610de160025490565b8110610e2f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b82600003610ea55760405162461bcd60e51b815260206004820152602e60248201527f5769746864726177204649564520746f6b656e7320766961207374616b696e6760448201527f20706f6f6c20285049445b305d2900000000000000000000000000000000000060648201526084016105c2565b600060028481548110610eba57610eba61367c565b6000918252602080832087845260048083526040808620338752909352919093208054929091029092019250841115610f355760405162461bcd60e51b815260206004820181905260248201527f496e73756666696369656e742062616c616e636520746f20776974686472617760448201526064016105c2565b610f3e85611037565b60008160010154670de0b6b3a764000084600301548460000154610f6291906135fb565b610f6c9190613641565b610f7691906136ab565b90508015610f8857610f883382612616565b8415610fca5784826000016000828254610fa291906136ab565b90915550508254610fca9073ffffffffffffffffffffffffffffffffffffffff163387612762565b60038301548254670de0b6b3a764000091610fe4916135fb565b610fee9190613641565b6001830155604051858152869033907ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b5689060200160405180910390a350505050610ab460018055565b8061104160025490565b811061108f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b6000600283815481106110a4576110a461367c565b90600052602060002090600402019050806002015442116110c457505050565b60008084116110d557600b54611166565b81546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611142573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111669190613726565b90508060000361117c5750426002909101555050565b600082600201544261118e91906136ab565b905060006009548460010154600754846111a891906135fb565b6111b291906135fb565b6111bc9190613641565b905060006111c9826127e3565b9050801561125c576006546040517f40c10f190000000000000000000000000000000000000000000000000000000081523060048201526024810183905273ffffffffffffffffffffffffffffffffffffffff909116906340c10f1990604401600060405180830381600087803b15801561124357600080fd5b505af1158015611257573d6000803e3d6000fd5b505050505b8361126f82670de0b6b3a76400006135fb565b6112799190613641565b85600301600082825461128c91906136db565b909155505042600290950194909455505050505050565b6112ab6125d3565b806112b560025490565b81106113035760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b816000036113795760405162461bcd60e51b815260206004820152603160248201527f456d657267656e6379207769746864726177616c20756e617661696c61626c6560448201527f20666f72207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b60006002838154811061138e5761138e61367c565b60009182526020808320868452600480835260408086203387529093529190932080549290910290920192506114065760405162461bcd60e51b815260206004820152601560248201527f4e6f20746f6b656e7320746f207769746864726177000000000000000000000060448201526064016105c2565b80546000808355600183015582546114359073ffffffffffffffffffffffffffffffffffffffff163383612762565b604051818152859033907fbb757047c2b5f3974fe26b7c10f732e7bce710b0952a71082702781e62ae05959060200160405180910390a35050505061061360018055565b600061148460025490565b905060005b81811015610ab45761149a81611037565b6114a3816136ee565b9050611489565b6114b2612450565b826000036115285760405162461bcd60e51b815260206004820152603160248201527f43616e6e6f742073657420616c6c6f636174696f6e20706f696e747320666f7260448201527f20746865207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b801561153657611536611479565b816002848154811061154a5761154a61367c565b90600052602060002090600402016001015414611608576000600284815481106115765761157661367c565b9060005260206000209060040201600101549050826002858154811061159e5761159e61367c565b90600052602060002090600402016001018190555082816009546115c291906136ab565b6115cc91906136db565b6009556115d76124a3565b6040518390859033907f9eca8f7bcfb868d72b4ed95b71c627c194ab6bcb9b83adb2280e8a0320bb847690600090a4505b505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600560205260408120600181015442118061164357508054155b156116515750600092915050565b600042826001015461166391906136ab565b8254909150600061168861167f84670de0b6b3a764000061292a565b62ed4e00612936565b90506000611698600d548361292a565b905060006116b6670de0b6b3a76400006116b18461294b565b612936565b905060006116d1670de0b6b3a76400006116b1600d5461294b565b6116e390670de0b6b3a76400006136ab565b9050600061170b8661170661170086670de0b6b3a76400006136ab565b85612936565b61292a565b9a9950505050505050505050565b611721612450565b61172b60006129ba565b565b6117356125d3565b33600090815260056020526040902080546117925760405162461bcd60e51b815260206004820152601860248201527f4e6f20616374697665206c6f636b20746f20657874656e64000000000000000060448201526064016105c2565b600181015442906000908211156117b4576117ad84836136db565b90506117c7565b8383600101546117c491906136db565b90505b6117d462ed4e00836136db565b8111156118235760405162461bcd60e51b815260206004820152601d60248201527f45786365656473206d6178696d756d206c6f636b206475726174696f6e00000060448201526064016105c2565b61183062127500836136db565b81101561187f5760405162461bcd60e51b815260206004820152601960248201527f4e657720756e6c6f636b2074696d6520746f6f2073686f72740000000000000060448201526064016105c2565b60018301819055604080518581526020810183905233917e3b7d2ad3b9d4b540c9231c2d2302e09268ce8fbb59d4005bf049893beffa2e910160405180910390a250505061061360018055565b6118d46125d3565b600060026000815481106118ea576118ea61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec8252604080852060059093529093208154600490930290930193509190158015906119435750805415155b61198f5760405162461bcd60e51b815260206004820152601c60248201527f4e6f207374616b656420746f6b656e7320746f2077697468647261770000000060448201526064016105c2565b6119996000611037565b80600101544211611ac15760008260010154670de0b6b3a7640000856003015485600001546119c891906135fb565b6119d29190613641565b6119dc91906136ab565b90506000670de0b6b3a764000084600001546119f73361160d565b611a0990670de0b6b3a76400006135fb565b611a139190613641565b611a1d90846135fb565b611a279190613641565b90508015611aba57611a393382612616565b80821115611aba5760065473ffffffffffffffffffffffffffffffffffffffff166342966c68611a6983856136ab565b6040518263ffffffff1660e01b8152600401611a8791815260200190565b600060405180830381600087803b158015611aa157600080fd5b505af1158015611ab5573d6000803e3d6000fd5b505050505b5050611c05565b60008260010154670de0b6b3a764000085600301548560000154611ae591906135fb565b611aef9190613641565b611af991906136ab565b90508015611b86576006546040517f42966c680000000000000000000000000000000000000000000000000000000081526004810183905273ffffffffffffffffffffffffffffffffffffffff909116906342966c6890602401600060405180830381600087803b158015611b6d57600080fd5b505af1158015611b81573d6000803e3d6000fd5b505050505b8254600080855580845560018401819055600b8054839290611ba99084906136ab565b9091555050600c8054906000611bbe8361373f565b9190505550611bcd3382612616565b60405181815233907fbeeac20c93f16ecc5d2707dffeb3263a7f99053ac0aa548803e9e8b5a00074389060200160405180910390a250505b60038301548254670de0b6b3a764000091611c1f916135fb565b611c299190613641565b60019283015550805550565b600082611c4160025490565b8110611c8f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b600060028581548110611ca457611ca461367c565b600091825260208083208884526004808352604080862073ffffffffffffffffffffffffffffffffffffffff8b16875290935291842092909102016003810154909350909187611cf657600b54611d87565b83546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611d63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d879190613726565b9050836002015442118015611d9b57508015155b15611e1c576000846002015442611db291906136ab565b90506000600954866001015460075484611dcc91906135fb565b611dd691906135fb565b611de09190613641565b90506000611ded826127e3565b905083611e0282670de0b6b3a76400006135fb565b611e0c9190613641565b611e1690866136db565b94505050505b60018301548354670de0b6b3a764000090611e389085906135fb565b611e429190613641565b611e4c91906136ab565b98975050505050505050565b611e60612450565b611e68611479565b600654604080517fd5abeb01000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163d5abeb019160048083019260209291908290030181865afa158015611ed8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611efc9190613726565b90506000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f6d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611f919190613726565b90508183106120085760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c7900000000000000000060648201526084016105c2565b8083101561207e5760405162461bcd60e51b815260206004820152603b60248201527f4e6577206d617820737570706c792063616e6e6f74206265206c65737320746860448201527f616e207468652063757272656e7420746f74616c20737570706c79000000000060648201526084016105c2565b6006546040517f91ff4a730000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff909116906391ff4a7390602401600060405180830381600087803b1580156120ea57600080fd5b505af11580156120fe573d6000803e3d6000fd5b50505050505050565b61210f612450565b674563918244f4000081111561218d5760405162461bcd60e51b815260206004820152602360248201527f456d697373696f6e20726174652065786365656473206d6178696d756d206c6960448201527f6d6974000000000000000000000000000000000000000000000000000000000060648201526084016105c2565b612195611479565b60078190556040518181527fb114240d54ce08081cbd18870dc3b6cd4091bb86ff29d2ad41906c2a2d6723d49060200160405180910390a150565b6121d86125d3565b816121e260025490565b81106122305760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b826000036122a65760405162461bcd60e51b815260206004820152602d60248201527f4465706f736974204649564520746f6b656e7320766961207374616b696e672060448201527f706f6f6c20285049445b305d290000000000000000000000000000000000000060648201526084016105c2565b6000600284815481106122bb576122bb61367c565b600091825260208083208784526004808352604080862033875290935291909320910290910191506122ec85611037565b80541561233f5760008160010154670de0b6b3a76400008460030154846000015461231791906135fb565b6123219190613641565b61232b91906136ab565b9050801561233d5761233d3382612616565b505b83156123835781546123699073ffffffffffffffffffffffffffffffffffffffff16333087612a2f565b8381600001600082825461237d91906136db565b90915550505b60038201548154670de0b6b3a76400009161239d916135fb565b6123a79190613641565b6001820155604051848152859033907f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a159060200160405180910390a3505050610ab460018055565b6123f7612450565b73ffffffffffffffffffffffffffffffffffffffff8116612447576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016105c2565b610613816129ba565b60005473ffffffffffffffffffffffffffffffffffffffff16331461172b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105c2565b60006124ae60025490565b9050600060015b828110156124ff57600281815481106124d0576124d061367c565b906000526020600020906004020160010154826124ed91906136db565b91506124f8816136ee565b90506124b5565b508015610ab45760006008548261251691906135fb565b61252890670de0b6b3a76400006135fb565b90506000600854606461253b91906136ab565b90506000670de0b6b3a76400006125528385613641565b61255c9190613641565b90508060026000815481106125735761257361367c565b90600052602060002090600402016001015460095461259291906136ab565b61259c91906136db565b6009819055508060026000815481106125b7576125b761367c565b9060005260206000209060040201600101819055505050505050565b60026001540361260f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600155565b6006546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009173ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa158015612685573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906126a99190613726565b905060008183116126ba57826126bc565b815b6006546040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff87811660048301526024820184905292935091169063a9059cbb906044016020604051808303816000875af1158015612737573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061275b91906136be565b5050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83811660248301526044820183905261160891859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612a7b565b600080600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612853573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906128779190613726565b600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128e4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129089190613726565b61291291906136ab565b90508083116129215782612923565b805b9392505050565b60006129238383612b1f565b600061292383670de0b6b3a764000084612c37565b6000680736ea4425c11ac6318210612992576040517f315da068000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b6714057b7ef767814f8202612923670de0b6b3a76400006706f05b59d3b20000830104612d3a565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60405173ffffffffffffffffffffffffffffffffffffffff8481166024830152838116604483015260648201839052612a759186918216906323b872dd9060840161279c565b50505050565b600080602060008451602086016000885af180612a9e576040513d6000823e3d81fd5b50506000513d91508115612ab6578060011415612ad0565b73ffffffffffffffffffffffffffffffffffffffff84163b155b15612a75576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016105c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050670de0b6b3a76400008110612b9a576040517fd31b3402000000000000000000000000000000000000000000000000000000008152600481018290526024016105c2565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff8211905082600003612bd85780670de0b6b3a7640000850401945050505050612c31565b6204000082850304939091119091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669020190505b92915050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff85870985870292508281108382030391505080600003612c8f57838281612c8557612c85613612565b0492505050612923565b838110612cd2576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016105c2565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000680a688906bd8b0000008210612d81576040517f4a4f26f1000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b670de0b6b3a7640000604083901b046129238177800000000000000000000000000000000000000000000000678000000000000000821615612dcc5768016a09e667f3bcc9090260401c5b674000000000000000821615612deb576801306fe0a31b7152df0260401c5b672000000000000000821615612e0a576801172b83c7d517adce0260401c5b671000000000000000821615612e295768010b5586cf9890f62a0260401c5b670800000000000000821615612e48576801059b0d31585743ae0260401c5b670400000000000000821615612e6757680102c9a3e778060ee70260401c5b670200000000000000821615612e865768010163da9fb33356d80260401c5b670100000000000000821615612ea557680100b1afa5abcbed610260401c5b6680000000000000821615612ec35768010058c86da1c09ea20260401c5b6640000000000000821615612ee1576801002c605e2e8cec500260401c5b6620000000000000821615612eff57680100162f3904051fa10260401c5b6610000000000000821615612f1d576801000b175effdc76ba0260401c5b6608000000000000821615612f3b57680100058ba01fb9f96d0260401c5b6604000000000000821615612f595768010002c5cc37da94920260401c5b6602000000000000821615612f77576801000162e525ee05470260401c5b6601000000000000821615612f955768010000b17255775c040260401c5b65800000000000821615612fb2576801000058b91b5bc9ae0260401c5b65400000000000821615612fcf57680100002c5c89d5ec6d0260401c5b65200000000000821615612fec5768010000162e43f4f8310260401c5b6510000000000082161561300957680100000b1721bcfc9a0260401c5b650800000000008216156130265768010000058b90cf1e6e0260401c5b65040000000000821615613043576801000002c5c863b73f0260401c5b6502000000000082161561306057680100000162e430e5a20260401c5b6501000000000082161561307d576801000000b1721835510260401c5b64800000000082161561309957680100000058b90c0b490260401c5b6440000000008216156130b55768010000002c5c8601cc0260401c5b6420000000008216156130d1576801000000162e42fff00260401c5b6410000000008216156130ed5768010000000b17217fbb0260401c5b640800000000821615613109576801000000058b90bfce0260401c5b64040000000082161561312557680100000002c5c85fe30260401c5b6402000000008216156131415768010000000162e42ff10260401c5b64010000000082161561315d57680100000000b17217f80260401c5b63800000008216156131785768010000000058b90bfc0260401c5b6340000000821615613193576801000000002c5c85fe0260401c5b63200000008216156131ae57680100000000162e42ff0260401c5b63100000008216156131c9576801000000000b17217f0260401c5b63080000008216156131e457680100000000058b90c00260401c5b63040000008216156131ff5768010000000002c5c8600260401c5b630200000082161561321a576801000000000162e4300260401c5b63010000008216156132355768010000000000b172180260401c5b6280000082161561324f576801000000000058b90c0260401c5b6240000082161561326957680100000000002c5c860260401c5b622000008216156132835768010000000000162e430260401c5b6210000082161561329d57680100000000000b17210260401c5b620800008216156132b75768010000000000058b910260401c5b620400008216156132d1576801000000000002c5c80260401c5b620200008216156132eb57680100000000000162e40260401c5b62010000821615613305576801000000000000b1720260401c5b61800082161561331e57680100000000000058b90260401c5b6140008216156133375768010000000000002c5d0260401c5b612000821615613350576801000000000000162e0260401c5b6110008216156133695768010000000000000b170260401c5b610800821615613382576801000000000000058c0260401c5b61040082161561339b57680100000000000002c60260401c5b6102008216156133b457680100000000000001630260401c5b6101008216156133cd57680100000000000000b10260401c5b60808216156133e557680100000000000000590260401c5b60408216156133fd576801000000000000002c0260401c5b602082161561341557680100000000000000160260401c5b601082161561342d576801000000000000000b0260401c5b600882161561344557680100000000000000060260401c5b600482161561345d57680100000000000000030260401c5b600282161561347557680100000000000000010260401c5b600182161561348d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134b657600080fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff8116811461061357600080fd5b6000602082840312156134f157600080fd5b8135612923816134bd565b6000806040838503121561350f57600080fd5b50508035926020909101359150565b801515811461061357600080fd5b60008060006060848603121561354157600080fd5b833592506020840135613553816134bd565b915060408401356135638161351e565b809150509250925092565b60008060006060848603121561358357600080fd5b833592506020840135915060408401356135638161351e565b600080604083850312156135af57600080fd5b8235915060208301356135c1816134bd565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417612c3157612c316135cc565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613677577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b81810381811115612c3157612c316135cc565b6000602082840312156136d057600080fd5b81516129238161351e565b80820180821115612c3157612c316135cc565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361371f5761371f6135cc565b5060010190565b60006020828403121561373857600080fd5b5051919050565b60008161374e5761374e6135cc565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff019056fea164736f6c6343000814000a0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df0000000000000000000000000000000000000000000000000000000067963a0d00000000000000000000000000000000000000000000000029a2241af62c0000

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061025c5760003560e01c8063715018a611610145578063af11c34c116100bd578063e0395c1e1161008c578063f2fde38b11610071578063f2fde38b14610522578063fa78668f14610535578063fde042811461053f57600080fd5b8063e0395c1e14610506578063e2bbb1581461050f57600080fd5b8063af11c34c146104b7578063b4f40c61146104d7578063dc6fe235146104e0578063ddce102f146104f357600080fd5b80638da5cb5b1161011457806394e382c0116100f957806394e382c01461048d57806399fcfccb1461049c578063a81d4658146104a457600080fd5b80638da5cb5b1461041c57806393f1a40b1461045b57600080fd5b8063715018a6146103ef57806381e1ccba146103f7578063827c049e14610400578063828047a51461040957600080fd5b80632ab97b9d116101d85780635312ea8e116101a757806364482f791161018c57806364482f791461038d5780636552374a146103a05780636bd3b87c146103b357600080fd5b80635312ea8e14610372578063630b5ba11461038557600080fd5b80632ab97b9d1461032f5780633ff0320714610342578063441a3e701461034c57806351eb05a61461035f57600080fd5b80630f44b5a91161022f57806316a6d94a1161021457806316a6d94a1461030057806317caf6f1146103135780631eaaa0451461031c57600080fd5b80630f44b5a9146102a35780631526fe27146102b657600080fd5b806305a9f27414610261578063081e3eda1461027d5780630c18d4ce146102855780630e38c32b1461028e575b600080fd5b61026a600b5481565b6040519081526020015b60405180910390f35b60025461026a565b61026a600a5481565b6102a161029c3660046134a4565b610547565b005b61026a6102b13660046134df565b610616565b6102c96102c43660046134a4565b6106bb565b6040805173ffffffffffffffffffffffffffffffffffffffff90951685526020850193909352918301526060820152608001610274565b6102a161030e3660046134fc565b61070c565b61026a60095481565b6102a161032a36600461352c565b610ab8565b6102a161033d3660046134a4565b610d12565b61026a6212750081565b6102a161035a3660046134fc565b610dcf565b6102a161036d3660046134a4565b611037565b6102a16103803660046134a4565b6112a3565b6102a1611479565b6102a161039b36600461356e565b6114aa565b61026a6103ae3660046134df565b61160d565b6103da6103c13660046134df565b6005602052600090815260409020805460019091015482565b60408051928352602083019190915201610274565b6102a1611719565b61026a60085481565b61026a60075481565b6102a16104173660046134a4565b61172d565b60005473ffffffffffffffffffffffffffffffffffffffff165b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610274565b6103da61046936600461359c565b60046020908152600092835260408084209091529082529020805460019091015482565b61026a674563918244f4000081565b6102a16118cc565b61026a6104b236600461359c565b611c35565b6006546104369073ffffffffffffffffffffffffffffffffffffffff1681565b61026a600d5481565b6102a16104ee3660046134a4565b611e58565b6102a16105013660046134a4565b612107565b61026a600c5481565b6102a161051d3660046134fc565b6121d0565b6102a16105303660046134df565b6123ef565b61026a62ed4e0081565b61026a601e81565b61054f612450565b601e8111156105cb5760405162461bcd60e51b815260206004820152602860248201527f5374616b696e672070657263656e746167652065786365656473206d6178696d60448201527f756d206c696d697400000000000000000000000000000000000000000000000060648201526084015b60405180910390fd5b6105d3611479565b60088190556040518181527fe85e3e0b319540f3d1e14a6900e5f1005bf953ea549c6c41e3428224d8898de69060200160405180910390a16106136124a3565b50565b73ffffffffffffffffffffffffffffffffffffffff811660009081527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec60205260408120816106658185611c35565b9050600082600001546106778661160d565b61068990670de0b6b3a76400006135fb565b6106939190613641565b9050670de0b6b3a76400006106a882846135fb565b6106b29190613641565b95945050505050565b600281815481106106cb57600080fd5b6000918252602090912060049091020180546001820154600283015460039093015473ffffffffffffffffffffffffffffffffffffffff9092169350919084565b6107146125d3565b6000600260008154811061072a5761072a61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec82526040808520600590935290932060049092029092019250621275008410801590610787575062ed4e008411155b6107d35760405162461bcd60e51b815260206004820152601560248201527f496e76616c6964206c6f636b206475726174696f6e000000000000000000000060448201526064016105c2565b6107dd6000611037565b8154158015906107f1575080600101544211155b1561090f5760008260010154670de0b6b3a76400008560030154856000015461081a91906135fb565b6108249190613641565b61082e91906136ab565b90506000670de0b6b3a764000084600001546108493361160d565b61085b90670de0b6b3a76400006135fb565b6108659190613641565b61086f90846135fb565b6108799190613641565b9050801561090c5761088b3382612616565b8082111561090c5760065473ffffffffffffffffffffffffffffffffffffffff166342966c686108bb83856136ab565b6040518263ffffffff1660e01b81526004016108d991815260200190565b600060405180830381600087803b1580156108f357600080fd5b505af1158015610907573d6000803e3d6000fd5b505050505b50505b8415610a44576006546040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201523060248201526044810187905273ffffffffffffffffffffffffffffffffffffffff909116906323b872dd906064016020604051808303816000875af1158015610992573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906109b691906136be565b50848260000160008282546109cb91906136db565b90915550508054859082906000906109e49084906136db565b90915550600090506109f685426136db565b90508160010154811115610a0c57600182018190555b85600b6000828254610a1e91906136db565b90915550508154869003610a4257600c8054906000610a3c836136ee565b91905055505b505b60038301548254670de0b6b3a764000091610a5e916135fb565b610a689190613641565b6001830155604080518681526020810186905233917f8022d0cd856e916e535bdaaf7c0674e7b2e2f0231ffef91f47d0214b8b801579910160405180910390a2505050610ab460018055565b5050565b610ac0612450565b73ffffffffffffffffffffffffffffffffffffffff8216600090815260036020526040902054829060ff1615610b385760405162461bcd60e51b815260206004820152601960248201527f4164643a20706f6f6c20616c726561647920657869737473210000000000000060448201526064016105c2565b8115610b4657610b46611479565b6000600a544211610b5957600a54610b5b565b425b90508460096000828254610b6f91906136db565b90915550506040805160808101825273ffffffffffffffffffffffffffffffffffffffff86811680835260208084018a8152848601878152600060608701818152600280546001808201835591845298517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace6004909a02998a0180547fffffffffffffffffffffffff000000000000000000000000000000000000000016919099161790975592517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5acf88015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad087015590517f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ad1909501949094559083526003905291902080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00169091179055610cc66124a3565b604051859073ffffffffffffffffffffffffffffffffffffffff86169033907f5f43b6be860b00b28d44981331005a0503e6b566155ca1423af4299a6bde1f4690600090a45050505050565b610d1a612450565b670de0b6b3a76400008110158015610d3a57506753444835ec5800008111155b610d865760405162461bcd60e51b815260206004820152601c60248201527f53746565706e6573732076616c7565206f7574206f662072616e67650000000060448201526064016105c2565b610d8e611479565b600d5460408051918252602082018390527fbd75af1b16e208f9d05e71a979a9d85e61791ef6537c46f819b0b443ab8baa38910160405180910390a1600d55565b610dd76125d3565b81610de160025490565b8110610e2f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b82600003610ea55760405162461bcd60e51b815260206004820152602e60248201527f5769746864726177204649564520746f6b656e7320766961207374616b696e6760448201527f20706f6f6c20285049445b305d2900000000000000000000000000000000000060648201526084016105c2565b600060028481548110610eba57610eba61367c565b6000918252602080832087845260048083526040808620338752909352919093208054929091029092019250841115610f355760405162461bcd60e51b815260206004820181905260248201527f496e73756666696369656e742062616c616e636520746f20776974686472617760448201526064016105c2565b610f3e85611037565b60008160010154670de0b6b3a764000084600301548460000154610f6291906135fb565b610f6c9190613641565b610f7691906136ab565b90508015610f8857610f883382612616565b8415610fca5784826000016000828254610fa291906136ab565b90915550508254610fca9073ffffffffffffffffffffffffffffffffffffffff163387612762565b60038301548254670de0b6b3a764000091610fe4916135fb565b610fee9190613641565b6001830155604051858152869033907ff279e6a1f5e320cca91135676d9cb6e44ca8a08c0b88342bcdb1144f6511b5689060200160405180910390a350505050610ab460018055565b8061104160025490565b811061108f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b6000600283815481106110a4576110a461367c565b90600052602060002090600402019050806002015442116110c457505050565b60008084116110d557600b54611166565b81546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611142573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906111669190613726565b90508060000361117c5750426002909101555050565b600082600201544261118e91906136ab565b905060006009548460010154600754846111a891906135fb565b6111b291906135fb565b6111bc9190613641565b905060006111c9826127e3565b9050801561125c576006546040517f40c10f190000000000000000000000000000000000000000000000000000000081523060048201526024810183905273ffffffffffffffffffffffffffffffffffffffff909116906340c10f1990604401600060405180830381600087803b15801561124357600080fd5b505af1158015611257573d6000803e3d6000fd5b505050505b8361126f82670de0b6b3a76400006135fb565b6112799190613641565b85600301600082825461128c91906136db565b909155505042600290950194909455505050505050565b6112ab6125d3565b806112b560025490565b81106113035760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b816000036113795760405162461bcd60e51b815260206004820152603160248201527f456d657267656e6379207769746864726177616c20756e617661696c61626c6560448201527f20666f72207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b60006002838154811061138e5761138e61367c565b60009182526020808320868452600480835260408086203387529093529190932080549290910290920192506114065760405162461bcd60e51b815260206004820152601560248201527f4e6f20746f6b656e7320746f207769746864726177000000000000000000000060448201526064016105c2565b80546000808355600183015582546114359073ffffffffffffffffffffffffffffffffffffffff163383612762565b604051818152859033907fbb757047c2b5f3974fe26b7c10f732e7bce710b0952a71082702781e62ae05959060200160405180910390a35050505061061360018055565b600061148460025490565b905060005b81811015610ab45761149a81611037565b6114a3816136ee565b9050611489565b6114b2612450565b826000036115285760405162461bcd60e51b815260206004820152603160248201527f43616e6e6f742073657420616c6c6f636174696f6e20706f696e747320666f7260448201527f20746865207374616b696e6720706f6f6c00000000000000000000000000000060648201526084016105c2565b801561153657611536611479565b816002848154811061154a5761154a61367c565b90600052602060002090600402016001015414611608576000600284815481106115765761157661367c565b9060005260206000209060040201600101549050826002858154811061159e5761159e61367c565b90600052602060002090600402016001018190555082816009546115c291906136ab565b6115cc91906136db565b6009556115d76124a3565b6040518390859033907f9eca8f7bcfb868d72b4ed95b71c627c194ab6bcb9b83adb2280e8a0320bb847690600090a4505b505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600560205260408120600181015442118061164357508054155b156116515750600092915050565b600042826001015461166391906136ab565b8254909150600061168861167f84670de0b6b3a764000061292a565b62ed4e00612936565b90506000611698600d548361292a565b905060006116b6670de0b6b3a76400006116b18461294b565b612936565b905060006116d1670de0b6b3a76400006116b1600d5461294b565b6116e390670de0b6b3a76400006136ab565b9050600061170b8661170661170086670de0b6b3a76400006136ab565b85612936565b61292a565b9a9950505050505050505050565b611721612450565b61172b60006129ba565b565b6117356125d3565b33600090815260056020526040902080546117925760405162461bcd60e51b815260206004820152601860248201527f4e6f20616374697665206c6f636b20746f20657874656e64000000000000000060448201526064016105c2565b600181015442906000908211156117b4576117ad84836136db565b90506117c7565b8383600101546117c491906136db565b90505b6117d462ed4e00836136db565b8111156118235760405162461bcd60e51b815260206004820152601d60248201527f45786365656473206d6178696d756d206c6f636b206475726174696f6e00000060448201526064016105c2565b61183062127500836136db565b81101561187f5760405162461bcd60e51b815260206004820152601960248201527f4e657720756e6c6f636b2074696d6520746f6f2073686f72740000000000000060448201526064016105c2565b60018301819055604080518581526020810183905233917e3b7d2ad3b9d4b540c9231c2d2302e09268ce8fbb59d4005bf049893beffa2e910160405180910390a250505061061360018055565b6118d46125d3565b600060026000815481106118ea576118ea61367c565b600091825260208083203384527f17ef568e3e12ab5b9c7254a8d58478811de00f9e6eb34345acd53bf8fd09d3ec8252604080852060059093529093208154600490930290930193509190158015906119435750805415155b61198f5760405162461bcd60e51b815260206004820152601c60248201527f4e6f207374616b656420746f6b656e7320746f2077697468647261770000000060448201526064016105c2565b6119996000611037565b80600101544211611ac15760008260010154670de0b6b3a7640000856003015485600001546119c891906135fb565b6119d29190613641565b6119dc91906136ab565b90506000670de0b6b3a764000084600001546119f73361160d565b611a0990670de0b6b3a76400006135fb565b611a139190613641565b611a1d90846135fb565b611a279190613641565b90508015611aba57611a393382612616565b80821115611aba5760065473ffffffffffffffffffffffffffffffffffffffff166342966c68611a6983856136ab565b6040518263ffffffff1660e01b8152600401611a8791815260200190565b600060405180830381600087803b158015611aa157600080fd5b505af1158015611ab5573d6000803e3d6000fd5b505050505b5050611c05565b60008260010154670de0b6b3a764000085600301548560000154611ae591906135fb565b611aef9190613641565b611af991906136ab565b90508015611b86576006546040517f42966c680000000000000000000000000000000000000000000000000000000081526004810183905273ffffffffffffffffffffffffffffffffffffffff909116906342966c6890602401600060405180830381600087803b158015611b6d57600080fd5b505af1158015611b81573d6000803e3d6000fd5b505050505b8254600080855580845560018401819055600b8054839290611ba99084906136ab565b9091555050600c8054906000611bbe8361373f565b9190505550611bcd3382612616565b60405181815233907fbeeac20c93f16ecc5d2707dffeb3263a7f99053ac0aa548803e9e8b5a00074389060200160405180910390a250505b60038301548254670de0b6b3a764000091611c1f916135fb565b611c299190613641565b60019283015550805550565b600082611c4160025490565b8110611c8f5760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b600060028581548110611ca457611ca461367c565b600091825260208083208884526004808352604080862073ffffffffffffffffffffffffffffffffffffffff8b16875290935291842092909102016003810154909350909187611cf657600b54611d87565b83546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff909116906370a0823190602401602060405180830381865afa158015611d63573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611d879190613726565b9050836002015442118015611d9b57508015155b15611e1c576000846002015442611db291906136ab565b90506000600954866001015460075484611dcc91906135fb565b611dd691906135fb565b611de09190613641565b90506000611ded826127e3565b905083611e0282670de0b6b3a76400006135fb565b611e0c9190613641565b611e1690866136db565b94505050505b60018301548354670de0b6b3a764000090611e389085906135fb565b611e429190613641565b611e4c91906136ab565b98975050505050505050565b611e60612450565b611e68611479565b600654604080517fd5abeb01000000000000000000000000000000000000000000000000000000008152905160009273ffffffffffffffffffffffffffffffffffffffff169163d5abeb019160048083019260209291908290030181865afa158015611ed8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611efc9190613726565b90506000600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611f6d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611f919190613726565b90508183106120085760405162461bcd60e51b815260206004820152603760248201527f4e6577206d617820737570706c79206d757374206265206c657373207468616e60448201527f207468652063757272656e74206d617820737570706c7900000000000000000060648201526084016105c2565b8083101561207e5760405162461bcd60e51b815260206004820152603b60248201527f4e6577206d617820737570706c792063616e6e6f74206265206c65737320746860448201527f616e207468652063757272656e7420746f74616c20737570706c79000000000060648201526084016105c2565b6006546040517f91ff4a730000000000000000000000000000000000000000000000000000000081526004810185905273ffffffffffffffffffffffffffffffffffffffff909116906391ff4a7390602401600060405180830381600087803b1580156120ea57600080fd5b505af11580156120fe573d6000803e3d6000fd5b50505050505050565b61210f612450565b674563918244f4000081111561218d5760405162461bcd60e51b815260206004820152602360248201527f456d697373696f6e20726174652065786365656473206d6178696d756d206c6960448201527f6d6974000000000000000000000000000000000000000000000000000000000060648201526084016105c2565b612195611479565b60078190556040518181527fb114240d54ce08081cbd18870dc3b6cd4091bb86ff29d2ad41906c2a2d6723d49060200160405180910390a150565b6121d86125d3565b816121e260025490565b81106122305760405162461bcd60e51b815260206004820152600f60248201527f496e76616c696420706f6f6c204944000000000000000000000000000000000060448201526064016105c2565b826000036122a65760405162461bcd60e51b815260206004820152602d60248201527f4465706f736974204649564520746f6b656e7320766961207374616b696e672060448201527f706f6f6c20285049445b305d290000000000000000000000000000000000000060648201526084016105c2565b6000600284815481106122bb576122bb61367c565b600091825260208083208784526004808352604080862033875290935291909320910290910191506122ec85611037565b80541561233f5760008160010154670de0b6b3a76400008460030154846000015461231791906135fb565b6123219190613641565b61232b91906136ab565b9050801561233d5761233d3382612616565b505b83156123835781546123699073ffffffffffffffffffffffffffffffffffffffff16333087612a2f565b8381600001600082825461237d91906136db565b90915550505b60038201548154670de0b6b3a76400009161239d916135fb565b6123a79190613641565b6001820155604051848152859033907f90890809c654f11d6e72a28fa60149770a0d11ec6c92319d6ceb2bb0a4ea1a159060200160405180910390a3505050610ab460018055565b6123f7612450565b73ffffffffffffffffffffffffffffffffffffffff8116612447576040517f1e4fbdf7000000000000000000000000000000000000000000000000000000008152600060048201526024016105c2565b610613816129ba565b60005473ffffffffffffffffffffffffffffffffffffffff16331461172b576040517f118cdaa70000000000000000000000000000000000000000000000000000000081523360048201526024016105c2565b60006124ae60025490565b9050600060015b828110156124ff57600281815481106124d0576124d061367c565b906000526020600020906004020160010154826124ed91906136db565b91506124f8816136ee565b90506124b5565b508015610ab45760006008548261251691906135fb565b61252890670de0b6b3a76400006135fb565b90506000600854606461253b91906136ab565b90506000670de0b6b3a76400006125528385613641565b61255c9190613641565b90508060026000815481106125735761257361367c565b90600052602060002090600402016001015460095461259291906136ab565b61259c91906136db565b6009819055508060026000815481106125b7576125b761367c565b9060005260206000209060040201600101819055505050505050565b60026001540361260f576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600155565b6006546040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260009173ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa158015612685573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906126a99190613726565b905060008183116126ba57826126bc565b815b6006546040517fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff87811660048301526024820184905292935091169063a9059cbb906044016020604051808303816000875af1158015612737573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061275b91906136be565b5050505050565b60405173ffffffffffffffffffffffffffffffffffffffff83811660248301526044820183905261160891859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612a7b565b600080600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015612853573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906128779190613726565b600660009054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128e4573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129089190613726565b61291291906136ab565b90508083116129215782612923565b805b9392505050565b60006129238383612b1f565b600061292383670de0b6b3a764000084612c37565b6000680736ea4425c11ac6318210612992576040517f315da068000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b6714057b7ef767814f8202612923670de0b6b3a76400006706f05b59d3b20000830104612d3a565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60405173ffffffffffffffffffffffffffffffffffffffff8481166024830152838116604483015260648201839052612a759186918216906323b872dd9060840161279c565b50505050565b600080602060008451602086016000885af180612a9e576040513d6000823e3d81fd5b50506000513d91508115612ab6578060011415612ad0565b73ffffffffffffffffffffffffffffffffffffffff84163b155b15612a75576040517f5274afe700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff851660048201526024016105c2565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050670de0b6b3a76400008110612b9a576040517fd31b3402000000000000000000000000000000000000000000000000000000008152600481018290526024016105c2565b600080670de0b6b3a764000086880991506706f05b59d3b1ffff8211905082600003612bd85780670de0b6b3a7640000850401945050505050612c31565b6204000082850304939091119091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669020190505b92915050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff85870985870292508281108382030391505080600003612c8f57838281612c8557612c85613612565b0492505050612923565b838110612cd2576040517f773cc18c00000000000000000000000000000000000000000000000000000000815260048101829052602481018590526044016105c2565b600084868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203026000889003889004909101858311909403939093029303949094049190911702949350505050565b6000680a688906bd8b0000008210612d81576040517f4a4f26f1000000000000000000000000000000000000000000000000000000008152600481018390526024016105c2565b670de0b6b3a7640000604083901b046129238177800000000000000000000000000000000000000000000000678000000000000000821615612dcc5768016a09e667f3bcc9090260401c5b674000000000000000821615612deb576801306fe0a31b7152df0260401c5b672000000000000000821615612e0a576801172b83c7d517adce0260401c5b671000000000000000821615612e295768010b5586cf9890f62a0260401c5b670800000000000000821615612e48576801059b0d31585743ae0260401c5b670400000000000000821615612e6757680102c9a3e778060ee70260401c5b670200000000000000821615612e865768010163da9fb33356d80260401c5b670100000000000000821615612ea557680100b1afa5abcbed610260401c5b6680000000000000821615612ec35768010058c86da1c09ea20260401c5b6640000000000000821615612ee1576801002c605e2e8cec500260401c5b6620000000000000821615612eff57680100162f3904051fa10260401c5b6610000000000000821615612f1d576801000b175effdc76ba0260401c5b6608000000000000821615612f3b57680100058ba01fb9f96d0260401c5b6604000000000000821615612f595768010002c5cc37da94920260401c5b6602000000000000821615612f77576801000162e525ee05470260401c5b6601000000000000821615612f955768010000b17255775c040260401c5b65800000000000821615612fb2576801000058b91b5bc9ae0260401c5b65400000000000821615612fcf57680100002c5c89d5ec6d0260401c5b65200000000000821615612fec5768010000162e43f4f8310260401c5b6510000000000082161561300957680100000b1721bcfc9a0260401c5b650800000000008216156130265768010000058b90cf1e6e0260401c5b65040000000000821615613043576801000002c5c863b73f0260401c5b6502000000000082161561306057680100000162e430e5a20260401c5b6501000000000082161561307d576801000000b1721835510260401c5b64800000000082161561309957680100000058b90c0b490260401c5b6440000000008216156130b55768010000002c5c8601cc0260401c5b6420000000008216156130d1576801000000162e42fff00260401c5b6410000000008216156130ed5768010000000b17217fbb0260401c5b640800000000821615613109576801000000058b90bfce0260401c5b64040000000082161561312557680100000002c5c85fe30260401c5b6402000000008216156131415768010000000162e42ff10260401c5b64010000000082161561315d57680100000000b17217f80260401c5b63800000008216156131785768010000000058b90bfc0260401c5b6340000000821615613193576801000000002c5c85fe0260401c5b63200000008216156131ae57680100000000162e42ff0260401c5b63100000008216156131c9576801000000000b17217f0260401c5b63080000008216156131e457680100000000058b90c00260401c5b63040000008216156131ff5768010000000002c5c8600260401c5b630200000082161561321a576801000000000162e4300260401c5b63010000008216156132355768010000000000b172180260401c5b6280000082161561324f576801000000000058b90c0260401c5b6240000082161561326957680100000000002c5c860260401c5b622000008216156132835768010000000000162e430260401c5b6210000082161561329d57680100000000000b17210260401c5b620800008216156132b75768010000000000058b910260401c5b620400008216156132d1576801000000000002c5c80260401c5b620200008216156132eb57680100000000000162e40260401c5b62010000821615613305576801000000000000b1720260401c5b61800082161561331e57680100000000000058b90260401c5b6140008216156133375768010000000000002c5d0260401c5b612000821615613350576801000000000000162e0260401c5b6110008216156133695768010000000000000b170260401c5b610800821615613382576801000000000000058c0260401c5b61040082161561339b57680100000000000002c60260401c5b6102008216156133b457680100000000000001630260401c5b6101008216156133cd57680100000000000000b10260401c5b60808216156133e557680100000000000000590260401c5b60408216156133fd576801000000000000002c0260401c5b602082161561341557680100000000000000160260401c5b601082161561342d576801000000000000000b0260401c5b600882161561344557680100000000000000060260401c5b600482161561345d57680100000000000000030260401c5b600282161561347557680100000000000000010260401c5b600182161561348d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134b657600080fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff8116811461061357600080fd5b6000602082840312156134f157600080fd5b8135612923816134bd565b6000806040838503121561350f57600080fd5b50508035926020909101359150565b801515811461061357600080fd5b60008060006060848603121561354157600080fd5b833592506020840135613553816134bd565b915060408401356135638161351e565b809150509250925092565b60008060006060848603121561358357600080fd5b833592506020840135915060408401356135638161351e565b600080604083850312156135af57600080fd5b8235915060208301356135c1816134bd565b809150509250929050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417612c3157612c316135cc565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613677577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b81810381811115612c3157612c316135cc565b6000602082840312156136d057600080fd5b81516129238161351e565b80820180821115612c3157612c316135cc565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff820361371f5761371f6135cc565b5060010190565b60006020828403121561373857600080fd5b5051919050565b60008161374e5761374e6135cc565b507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff019056fea164736f6c6343000814000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df0000000000000000000000000000000000000000000000000000000067963a0d00000000000000000000000000000000000000000000000029a2241af62c0000

-----Decoded View---------------
Arg [0] : initialOwner (address): 0x6571c18ddEa876Ce67932bE7115A4E2d11b5D943
Arg [1] : _five (address): 0x804CFf5509b987167ce3e892b64BB24c8fbaD3dF
Arg [2] : _startBlockTime (uint256): 1737898509
Arg [3] : initialK (uint256): 3000000000000000000

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 0000000000000000000000006571c18ddea876ce67932be7115a4e2d11b5d943
Arg [1] : 000000000000000000000000804cff5509b987167ce3e892b64bb24c8fbad3df
Arg [2] : 0000000000000000000000000000000000000000000000000000000067963a0d
Arg [3] : 00000000000000000000000000000000000000000000000029a2241af62c0000


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.