Contract

0x757748e1A208f23bfeb08b925Fac64971eF0584E

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

-

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
GaugeHookReceiver

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 44 : GaugeHookReceiver.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {Ownable2Step, Ownable} from "openzeppelin5/access/Ownable2Step.sol";
import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol";

import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {PartialLiquidation} from "../liquidation/PartialLiquidation.sol";
import {IGaugeLike as IGauge} from "../../../interfaces/IGaugeLike.sol";
import {IGaugeHookReceiver, IHookReceiver} from "../../../interfaces/IGaugeHookReceiver.sol";
import {SiloHookReceiver} from "../_common/SiloHookReceiver.sol";

/// @notice Silo share token hook receiver for the gauge.
/// It notifies the gauge (if configured) about any balance update in the Silo share token.
contract GaugeHookReceiver is PartialLiquidation, IGaugeHookReceiver, SiloHookReceiver, Ownable2Step, Initializable {
    using Hook for uint256;
    using Hook for bytes;

    uint24 internal constant _HOOKS_BEFORE_NOT_CONFIGURED = 0;

    IGauge public gauge;
    IShareToken public shareToken;

    mapping(IShareToken => IGauge) public configuredGauges;

    constructor() Ownable(msg.sender) {
        _disableInitializers();
        _transferOwnership(address(0));
    }

    /// @inheritdoc IHookReceiver
    function initialize(ISiloConfig _siloConfig, bytes calldata _data)
        external
        virtual
        initializer
        override(IHookReceiver, PartialLiquidation)
    {
        (address owner) = abi.decode(_data, (address));

        require(owner != address(0), OwnerIsZeroAddress());

        _initialize(_siloConfig);
        _transferOwnership(owner);
    }

    /// @inheritdoc IGaugeHookReceiver
    function setGauge(IGauge _gauge, IShareToken _shareToken) external virtual onlyOwner {
        require(address(_gauge) != address(0), EmptyGaugeAddress());
        require(_gauge.share_token() == address(_shareToken), WrongGaugeShareToken());

        address configuredGauge = address(configuredGauges[_shareToken]);

        require(configuredGauge == address(0), GaugeAlreadyConfigured());

        address silo = address(_shareToken.silo());

        uint256 tokenType = _getTokenType(silo, address(_shareToken));
        uint256 hooksAfter = _getHooksAfter(silo);

        uint256 action = tokenType | Hook.SHARE_TOKEN_TRANSFER;
        hooksAfter = hooksAfter.addAction(action);

        _setHookConfig(silo, _HOOKS_BEFORE_NOT_CONFIGURED, hooksAfter);

        configuredGauges[_shareToken] = _gauge;

        emit GaugeConfigured(address(gauge), address(_shareToken));
    }

    /// @inheritdoc IGaugeHookReceiver
    function removeGauge(IShareToken _shareToken) external virtual onlyOwner {
        IGauge configuredGauge = configuredGauges[_shareToken];

        require(address(configuredGauge) != address(0), GaugeIsNotConfigured());
        require(configuredGauge.is_killed(), CantRemoveActiveGauge());

        address silo = address(_shareToken.silo());
        
        uint256 tokenType = _getTokenType(silo, address(_shareToken));
        uint256 hooksAfter = _getHooksAfter(silo);

        hooksAfter = hooksAfter.removeAction(tokenType);

        _setHookConfig(silo, _HOOKS_BEFORE_NOT_CONFIGURED, hooksAfter);

        delete configuredGauges[_shareToken];

        emit GaugeRemoved(address(_shareToken));
    }

    /// @inheritdoc IHookReceiver
    function beforeAction(address, uint256, bytes calldata)
        external
        virtual
        override(IHookReceiver, PartialLiquidation)
    {
        // Do not expect any actions.
        revert RequestNotSupported();
    }

    /// @inheritdoc IHookReceiver
    function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput)
        external
        virtual
        override(IHookReceiver, PartialLiquidation)
    {
        IGauge theGauge = configuredGauges[IShareToken(msg.sender)];

        require(theGauge != IGauge(address(0)), GaugeIsNotConfigured());

        if (theGauge.is_killed()) return; // Do not revert if gauge is killed. Ignore the action.
        if (!_getHooksAfter(_silo).matchAction(_action)) return; // Should not happen, but just in case

        Hook.AfterTokenTransfer memory input = _inputAndOutput.afterTokenTransferDecode();

        theGauge.afterTokenTransfer(
            input.sender,
            input.senderBalance,
            input.recipient,
            input.recipientBalance,
            input.totalSupply,
            input.amount
        );
    }

    function hookReceiverConfig(address _silo)
        external
        view
        virtual
        override(PartialLiquidation, IHookReceiver)
        returns (uint24 hooksBefore, uint24 hooksAfter)
    {
        return _hookReceiverConfig(_silo);
    }

    /// @notice Get the token type for the share token
    /// @param _silo Silo address for which tokens was deployed
    /// @param _shareToken Share token address
    /// @dev Revert if wrong silo
    /// @dev Revert if the share token is not one of the collateral, protected or debt tokens
    function _getTokenType(address _silo, address _shareToken) internal view virtual returns (uint256) {
        (
            address protectedShareToken,
            address collateralShareToken,
            address debtShareToken
        ) = siloConfig.getShareTokens(_silo);

        if (_shareToken == collateralShareToken) return Hook.COLLATERAL_TOKEN;
        if (_shareToken == protectedShareToken) return Hook.PROTECTED_TOKEN;
        if (_shareToken == debtShareToken) return Hook.DEBT_TOKEN;

        revert InvalidShareToken();
    }
}

File 2 of 44 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 3 of 44 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 4 of 44 : IShareToken.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";

import {ISiloConfig} from "./ISiloConfig.sol";
import {ISilo} from "./ISilo.sol";

interface IShareToken is IERC20Metadata {
    struct HookSetup {
        /// @param this is the same as in siloConfig
        address hookReceiver;
        /// @param hooks bitmap
        uint24 hooksBefore;
        /// @param hooks bitmap
        uint24 hooksAfter;
        /// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN
        uint24 tokenType;
    }

    struct ShareTokenStorage {
        /// @notice Silo address for which tokens was deployed
        ISilo silo;

        /// @dev cached silo config address
        ISiloConfig siloConfig;

        /// @notice Copy of hooks setup from SiloConfig for optimisation purposes
        HookSetup hookSetup;

        bool transferWithChecks;
    }

    /// @notice Emitted every time receiver is notified about token transfer
    /// @param notificationReceiver receiver address
    /// @param success false if TX reverted on `notificationReceiver` side, otherwise true
    event NotificationSent(address indexed notificationReceiver, bool success);

    error OnlySilo();
    error OnlySiloConfig();
    error OwnerIsZero();
    error RecipientIsZero();
    error AmountExceedsAllowance();
    error RecipientNotSolventAfterTransfer();
    error SenderNotSolventAfterTransfer();
    error ZeroTransfer();

    /// @notice method for SiloConfig to synchronize hooks
    /// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action
    /// @param _hooksAfter hooks bitmap to trigger hooks AFTER action
    function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external;

    /// @notice Mint method for Silo to create debt
    /// @param _owner wallet for which to mint token
    /// @param _spender wallet that asks for mint
    /// @param _amount amount of token to be minted
    function mint(address _owner, address _spender, uint256 _amount) external;

    /// @notice Burn method for Silo to close debt
    /// @param _owner wallet for which to burn token
    /// @param _spender wallet that asks for burn
    /// @param _amount amount of token to be burned
    function burn(address _owner, address _spender, uint256 _amount) external;

    /// @notice TransferFrom method for liquidation
    /// @param _from wallet from which we transferring tokens
    /// @param _to wallet that will get tokens
    /// @param _amount amount of token to transfer
    function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external;

    /// @dev Returns the amount of tokens owned by `account`.
    /// @param _account address for which to return data
    /// @return balance of the _account
    /// @return totalSupply total supply of the token
    function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply);

    /// @notice Returns silo address for which token was deployed
    /// @return silo address
    function silo() external view returns (ISilo silo);

    function siloConfig() external view returns (ISiloConfig silo);

    /// @notice Returns hook setup
    function hookSetup() external view returns (HookSetup memory);

    /// @notice Returns hook receiver address
    function hookReceiver() external view returns (address);
}

File 5 of 44 : ISiloConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";

interface ISiloConfig is ICrossReentrancyGuard {
    struct InitData {
        /// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
        /// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
        /// fees. NFT can be transferred with the right to claim.
        address deployer;

        /// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
        /// implements liquidation logic and veSilo gauge connection.
        address hookReceiver;

        /// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
        /// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
        uint256 deployerFee;

        /// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
        /// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
        uint256 daoFee;

        /// @notice Address of the first token
        address token0;

        /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
        /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
        address solvencyOracle0;

        /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
        /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
        /// oracle. If neither is set price of 1 will be assumed.
        address maxLtvOracle0;

        /// @notice Address of the interest rate model
        address interestRateModel0;

        /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
        /// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
        uint256 maxLtv0;

        /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
        /// points. LT must not be lower than maxLTV.
        uint256 lt0;

        /// @notice minimal acceptable LTV after liquidation, in 18 decimals points
        uint256 liquidationTargetLtv0;

        /// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
        /// for repaying insolvent loan.
        uint256 liquidationFee0;

        /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
        uint256 flashloanFee0;

        /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
        bool callBeforeQuote0;

        /// @notice Address of the second token
        address token1;

        /// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
        /// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
        address solvencyOracle1;

        /// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
        /// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
        /// oracle. If neither is set price of 1 will be assumed.
        address maxLtvOracle1;

        /// @notice Address of the interest rate model
        address interestRateModel1;

        /// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
        /// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
        uint256 maxLtv1;

        /// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
        uint256 lt1;

        /// @notice minimal acceptable LTV after liquidation, in 18 decimals points
        uint256 liquidationTargetLtv1;

        /// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
        uint256 liquidationFee1;

        /// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
        uint256 flashloanFee1;

        /// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
        bool callBeforeQuote1;
    }

    struct ConfigData {
        uint256 daoFee;
        uint256 deployerFee;
        address silo;
        address token;
        address protectedShareToken;
        address collateralShareToken;
        address debtShareToken;
        address solvencyOracle;
        address maxLtvOracle;
        address interestRateModel;
        uint256 maxLtv;
        uint256 lt;
        uint256 liquidationTargetLtv;
        uint256 liquidationFee;
        uint256 flashloanFee;
        address hookReceiver;
        bool callBeforeQuote;
    }

    struct DepositConfig {
        address silo;
        address token;
        address collateralShareToken;
        address protectedShareToken;
        uint256 daoFee;
        uint256 deployerFee;
        address interestRateModel;
    }

    error OnlySilo();
    error OnlySiloOrTokenOrHookReceiver();
    error WrongSilo();
    error OnlyDebtShareToken();
    error DebtExistInOtherSilo();
    error FeeTooHigh();

    /// @dev It should be called on debt transfer (debt share token transfer).
    /// In the case if the`_recipient` doesn't have configured a collateral silo,
    /// it will be set to the collateral silo of the `_sender`.
    /// @param _sender sender address
    /// @param _recipient recipient address
    function onDebtTransfer(address _sender, address _recipient) external;

    /// @notice Set collateral silo.
    /// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
    /// @dev Always set collateral silo the same as msg.sender.
    /// @param _borrower borrower address
    function setThisSiloAsCollateralSilo(address _borrower) external;

    /// @notice Set collateral silo
    /// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
    /// @dev Always set collateral silo opposite to the msg.sender.
    /// @param _borrower borrower address
    function setOtherSiloAsCollateralSilo(address _borrower) external;

    /// @notice Accrue interest for the silo
    /// @param _silo silo for which accrue interest
    function accrueInterestForSilo(address _silo) external;

    /// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
    function accrueInterestForBothSilos() external;

    /// @notice Retrieves the collateral silo for a specific borrower.
    /// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
    /// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
    /// After being set, the collateral silo is never set to `address(0)` again but such getters as
    /// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
    /// collateral silo config if borrower doesn't have debt.
    ///
    /// In the SiloConfig collateral silo is set by the following functions:
    /// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
    /// This function is called on debt share token transfer (debt transfer).
    /// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function.
    /// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
    ///
    /// In the Silo collateral silo is set by the following functions:
    /// `borrow` - always sets opposite silo as collateral.
    /// If Silo0 borrows, then Silo1 will be collateral and vice versa.
    /// `borrowSameAsset` - always sets the same silo as collateral.
    /// `switchCollateralToThisSilo` - always sets the same silo as collateral.
    /// @param _borrower The address of the borrower for which the collateral silo is being retrieved
    /// @return collateralSilo The address of the collateral silo for the specified borrower
    function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);

    /// @notice Retrieves the silo ID
    /// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
    /// An owner of that token receives the deployer fees.
    /// @return siloId The ID of the silo
    function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase

    /// @notice Retrieves the addresses of the two silos
    /// @return silo0 The address of the first silo
    /// @return silo1 The address of the second silo
    function getSilos() external view returns (address silo0, address silo1);

    /// @notice Retrieves the asset associated with a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which the associated asset is being retrieved
    /// @return asset The address of the asset associated with the specified silo
    function getAssetForSilo(address _silo) external view returns (address asset);

    /// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
    /// @param _thisSilo The address of the silo in respect of which the debt is checked
    /// @param _borrower The address of the borrower for which the debt is checked
    /// @return hasDebt true if the borrower has debt in other silo
    function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);

    /// @notice Retrieves the debt silo associated with a specific borrower
    /// @dev This function reverts if debt present in two silo (should not happen)
    /// @param _borrower The address of the borrower for which the debt silo is being retrieved
    function getDebtSilo(address _borrower) external view returns (address debtSilo);

    /// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
    /// @param borrower borrower address for which debtConfig will be returned
    /// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
    /// @return debtConfig The configuration data for debt silo (empty if there is no debt).
    function getConfigsForSolvency(address borrower)
        external
        view
        returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);

    /// @notice Retrieves configuration data for a specific silo
    /// @dev This function reverts for incorrect silo address input.
    /// @param _silo The address of the silo for which configuration data is being retrieved
    /// @return config The configuration data for the specified silo
    function getConfig(address _silo) external view returns (ConfigData memory config);

    /// @notice Retrieves configuration data for a specific silo for withdraw fn.
    /// @dev This function reverts for incorrect silo address input.
    /// @param _silo The address of the silo for which configuration data is being retrieved
    /// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
    /// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
    /// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
    function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
        DepositConfig memory depositConfig,
        ConfigData memory collateralConfig,
        ConfigData memory debtConfig
    );

    /// @notice Retrieves configuration data for a specific silo for borrow fn.
    /// @dev This function reverts for incorrect silo address input.
    /// @param _debtSilo The address of the silo for which configuration data is being retrieved
    /// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
    /// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
    function getConfigsForBorrow(address _debtSilo)
        external
        view
        returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);

    /// @notice Retrieves fee-related information for a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which fee-related information is being retrieved.
    /// @return daoFee The DAO fee percentage in 18 decimals points.
    /// @return deployerFee The deployer fee percentage in 18 decimals points.
    /// @return flashloanFee The flashloan fee percentage in 18 decimals points.
    /// @return asset The address of the asset associated with the specified silo.
    function getFeesWithAsset(address _silo)
        external
        view
        returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);

    /// @notice Retrieves share tokens associated with a specific silo
    /// @dev This function reverts for incorrect silo address input
    /// @param _silo The address of the silo for which share tokens are being retrieved
    /// @return protectedShareToken The address of the protected (non-borrowable) share token
    /// @return collateralShareToken The address of the collateral share token
    /// @return debtShareToken The address of the debt share token
    function getShareTokens(address _silo)
        external
        view
        returns (address protectedShareToken, address collateralShareToken, address debtShareToken);

    /// @notice Retrieves the share token and the silo token associated with a specific silo
    /// @param _silo The address of the silo for which the share token and silo token are being retrieved
    /// @param _collateralType The type of collateral
    /// @return shareToken The address of the share token (collateral or protected collateral)
    /// @return asset The address of the silo token
    function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
        external
        view
        returns (address shareToken, address asset);

    /// @notice Retrieves the share token and the silo token associated with a specific silo
    /// @param _silo The address of the silo for which the share token and silo token are being retrieved
    /// @return shareToken The address of the share token (debt)
    /// @return asset The address of the silo token
    function getDebtShareTokenAndAsset(address _silo)
        external
        view
        returns (address shareToken, address asset);
}

File 6 of 44 : Hook.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;

import {ISilo} from "../interfaces/ISilo.sol";

// solhint-disable private-vars-leading-underscore
library Hook {
    /// @notice The data structure for the deposit hook
    /// @param assets The amount of assets deposited
    /// @param shares The amount of shares deposited
    /// @param receiver The receiver of the deposit
    struct BeforeDepositInput {
        uint256 assets;
        uint256 shares;
        address receiver;
    }

    /// @notice The data structure for the deposit hook
    /// @param assets The amount of assets deposited
    /// @param shares The amount of shares deposited
    /// @param receiver The receiver of the deposit
    /// @param receivedAssets The exact amount of assets being deposited
    /// @param mintedShares The exact amount of shares being minted
    struct AfterDepositInput {
        uint256 assets;
        uint256 shares;
        address receiver;
        uint256 receivedAssets;
        uint256 mintedShares;
    }

    /// @notice The data structure for the withdraw hook
    /// @param assets The amount of assets withdrawn
    /// @param shares The amount of shares withdrawn
    /// @param receiver The receiver of the withdrawal
    /// @param owner The owner of the shares
    /// @param spender The spender of the shares
    struct BeforeWithdrawInput {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;
    }

    /// @notice The data structure for the withdraw hook
    /// @param assets The amount of assets withdrawn
    /// @param shares The amount of shares withdrawn
    /// @param receiver The receiver of the withdrawal
    /// @param owner The owner of the shares
    /// @param spender The spender of the shares
    /// @param withdrawnAssets The exact amount of assets being withdrawn
    /// @param withdrawnShares The exact amount of shares being withdrawn
    struct AfterWithdrawInput {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;
        uint256 withdrawnAssets;
        uint256 withdrawnShares;
    }

    /// @notice The data structure for the share token transfer hook
    /// @param sender The sender of the transfer (address(0) on mint)
    /// @param recipient The recipient of the transfer (address(0) on burn)
    /// @param amount The amount of tokens transferred/minted/burned
    /// @param senderBalance The balance of the sender after the transfer (empty on mint)
    /// @param recipientBalance The balance of the recipient after the transfer (empty on burn)
    /// @param totalSupply The total supply of the share token
    struct AfterTokenTransfer {
        address sender;
        address recipient;
        uint256 amount;
        uint256 senderBalance;
        uint256 recipientBalance;
        uint256 totalSupply;
    }

    /// @notice The data structure for the before borrow hook
    /// @param assets The amount of assets to borrow
    /// @param shares The amount of shares to borrow
    /// @param receiver The receiver of the borrow
    /// @param borrower The borrower of the assets
    /// @param _spender Address which initiates the borrowing action on behalf of the borrower
    struct BeforeBorrowInput {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
        address spender;
    }

    /// @notice The data structure for the after borrow hook
    /// @param assets The amount of assets borrowed
    /// @param shares The amount of shares borrowed
    /// @param receiver The receiver of the borrow
    /// @param borrower The borrower of the assets
    /// @param spender Address which initiates the borrowing action on behalf of the borrower
    /// @param borrowedAssets The exact amount of assets being borrowed
    /// @param borrowedShares The exact amount of shares being borrowed
    struct AfterBorrowInput {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
        address spender;
        uint256 borrowedAssets;
        uint256 borrowedShares;
    }

    /// @notice The data structure for the before repay hook
    /// @param assets The amount of assets to repay
    /// @param shares The amount of shares to repay
    /// @param borrower The borrower of the assets
    /// @param repayer The repayer of the assets
    struct BeforeRepayInput {
        uint256 assets;
        uint256 shares;
        address borrower;
        address repayer;
    }

    /// @notice The data structure for the after repay hook
    /// @param assets The amount of assets to repay
    /// @param shares The amount of shares to repay
    /// @param borrower The borrower of the assets
    /// @param repayer The repayer of the assets
    /// @param repaidAssets The exact amount of assets being repaid
    /// @param repaidShares The exact amount of shares being repaid
    struct AfterRepayInput {
        uint256 assets;
        uint256 shares;
        address borrower;
        address repayer;
        uint256 repaidAssets;
        uint256 repaidShares;
    }

    /// @notice The data structure for the before flash loan hook
    /// @param receiver The flash loan receiver
    /// @param token The flash loan token
    /// @param amount Requested amount of tokens
    struct BeforeFlashLoanInput {
        address receiver;
        address token;
        uint256 amount;
    }

    /// @notice The data structure for the after flash loan hook
    /// @param receiver The flash loan receiver
    /// @param token The flash loan token
    /// @param amount Received amount of tokens
    /// @param fee The flash loan fee
    struct AfterFlashLoanInput {
        address receiver;
        address token;
        uint256 amount;
        uint256 fee;
    }

    /// @notice The data structure for the before transition collateral hook
    /// @param shares The amount of shares to transition
    struct BeforeTransitionCollateralInput {
        uint256 shares;
        address owner;
    }

    /// @notice The data structure for the after transition collateral hook
    /// @param shares The amount of shares to transition
    struct AfterTransitionCollateralInput {
        uint256 shares;
        address owner;
        uint256 assets;
    }

    /// @notice The data structure for the switch collateral hook
    /// @param user The user switching collateral
    struct SwitchCollateralInput {
        address user;
    }

    /// @notice Supported hooks
    /// @dev The hooks are stored as a bitmap and can be combined with bitwise OR
    uint256 internal constant NONE = 0;
    uint256 internal constant DEPOSIT = 2 ** 1;
    uint256 internal constant BORROW = 2 ** 2;
    uint256 internal constant BORROW_SAME_ASSET = 2 ** 3;
    uint256 internal constant REPAY = 2 ** 4;
    uint256 internal constant WITHDRAW = 2 ** 5;
    uint256 internal constant FLASH_LOAN = 2 ** 6;
    uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7;
    uint256 internal constant SWITCH_COLLATERAL = 2 ** 8;
    uint256 internal constant LIQUIDATION = 2 ** 9;
    uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10;
    uint256 internal constant COLLATERAL_TOKEN = 2 ** 11;
    uint256 internal constant PROTECTED_TOKEN = 2 ** 12;
    uint256 internal constant DEBT_TOKEN = 2 ** 13;

    // note: currently we can support hook value up to 2 ** 23,
    // because for optimisation purposes, we storing hooks as uint24

    // For decoding packed data
    uint256 private constant PACKED_ADDRESS_LENGTH = 20;
    uint256 private constant PACKED_FULL_LENGTH = 32;
    uint256 private constant PACKED_ENUM_LENGTH = 1;
    uint256 private constant PACKED_BOOL_LENGTH = 1;

    error FailedToParseBoolean();

    /// @notice Checks if the action has a specific hook
    /// @param _action The action
    /// @param _expectedHook The expected hook
    /// @dev The function returns true if the action has the expected hook.
    /// As hooks actions can be combined with bitwise OR, the following examples are valid:
    /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true`
    /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true`
    /// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true`
    function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) {
        return _action & _expectedHook == _expectedHook;
    }

    /// @notice Adds a hook to an action
    /// @param _action The action
    /// @param _newAction The new hook to be added
    function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) {
        return _action | _newAction;
    }

    /// @dev please be careful with removing actions, because other hooks might using them
    /// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER`
    /// and you want to remove action on protected token transfer by doing
    /// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN`
    /// and it will not trigger collateral token transfer. In this example you should do:
    /// `remove(_action, PROTECTED_TOKEN)`
    function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) {
        return _action & (~_actionToRemove);
    }

    /// @notice Returns the action for depositing a specific collateral type
    /// @param _type The collateral type
    function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) {
        return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
    }

    /// @notice Returns the action for withdrawing a specific collateral type
    /// @param _type The collateral type
    function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) {
        return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
    }

    /// @notice Returns the action for collateral transition
    /// @param _type The collateral type
    function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) {
        return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
    }

    /// @notice Returns the share token transfer action
    /// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN)
    function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) {
        return SHARE_TOKEN_TRANSFER | _tokenType;
    }

    /// @dev Decodes packed data from the share token after the transfer hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterTokenTransferDecode(bytes memory packed)
        internal
        pure
        returns (AfterTokenTransfer memory input)
    {
        address sender;
        address recipient;
        uint256 amount;
        uint256 senderBalance;
        uint256 recipientBalance;
        uint256 totalSupply;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_ADDRESS_LENGTH
            sender := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            recipient := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            amount := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            senderBalance := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            recipientBalance := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            totalSupply := mload(add(packed, pointer))
        }

        input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply);
    }

    /// @dev Decodes packed data from the deposit hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeDepositDecode(bytes memory packed)
        internal
        pure
        returns (BeforeDepositInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
        }

        input = BeforeDepositInput(assets, shares, receiver);
    }

    /// @dev Decodes packed data from the deposit hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterDepositDecode(bytes memory packed)
        internal
        pure
        returns (AfterDepositInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;
        uint256 receivedAssets;
        uint256 mintedShares;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            receivedAssets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            mintedShares := mload(add(packed, pointer))
        }

        input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares);
    }

    /// @dev Decodes packed data from the withdraw hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeWithdrawDecode(bytes memory packed)
        internal
        pure
        returns (BeforeWithdrawInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            owner := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            spender := mload(add(packed, pointer))
        }

        input = BeforeWithdrawInput(assets, shares, receiver, owner, spender);
    }

    /// @dev Decodes packed data from the withdraw hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterWithdrawDecode(bytes memory packed)
        internal
        pure
        returns (AfterWithdrawInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;
        uint256 withdrawnAssets;
        uint256 withdrawnShares;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            owner := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            spender := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            withdrawnAssets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            withdrawnShares := mload(add(packed, pointer))
        }

        input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares);
    }

    /// @dev Decodes packed data from the before borrow hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeBorrowDecode(bytes memory packed)
        internal
        pure
        returns (BeforeBorrowInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
        address spender;
        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            borrower := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            spender := mload(add(packed, pointer))
        }

        input = BeforeBorrowInput(assets, shares, receiver, borrower, spender);
    }

    /// @dev Decodes packed data from the after borrow hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterBorrowDecode(bytes memory packed)
        internal
        pure
        returns (AfterBorrowInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
        address spender;
        uint256 borrowedAssets;
        uint256 borrowedShares;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            borrower := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            spender := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            borrowedAssets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            borrowedShares := mload(add(packed, pointer))
        }

        input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares);
    }

    /// @dev Decodes packed data from the before repay hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeRepayDecode(bytes memory packed)
        internal
        pure
        returns (BeforeRepayInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address borrower;
        address repayer;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            borrower := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            repayer := mload(add(packed, pointer))
        }

        input = BeforeRepayInput(assets, shares, borrower, repayer);
    }

    /// @dev Decodes packed data from the after repay hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterRepayDecode(bytes memory packed)
        internal
        pure
        returns (AfterRepayInput memory input)
    {
        uint256 assets;
        uint256 shares;
        address borrower;
        address repayer;
        uint256 repaidAssets;
        uint256 repaidShares;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            assets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            borrower := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            repayer := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            repaidAssets := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            repaidShares := mload(add(packed, pointer))
        }

        input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares);
    }

    /// @dev Decodes packed data from the before flash loan hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeFlashLoanDecode(bytes memory packed)
        internal
        pure
        returns (BeforeFlashLoanInput memory input)
    {
        address receiver;
        address token;
        uint256 amount;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_ADDRESS_LENGTH
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            token := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            amount := mload(add(packed, pointer))
        }

        input = BeforeFlashLoanInput(receiver, token, amount);
    }

    /// @dev Decodes packed data from the before flash loan hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterFlashLoanDecode(bytes memory packed)
        internal
        pure
        returns (AfterFlashLoanInput memory input)
    {
        address receiver;
        address token;
        uint256 amount;
        uint256 fee;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_ADDRESS_LENGTH
            receiver := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            token := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            amount := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            fee := mload(add(packed, pointer))
        }

        input = AfterFlashLoanInput(receiver, token, amount, fee);
    }

    /// @dev Decodes packed data from the transition collateral hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function beforeTransitionCollateralDecode(bytes memory packed)
        internal
        pure
        returns (BeforeTransitionCollateralInput memory input)
    {
        uint256 shares;
        address owner;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            owner := mload(add(packed, pointer))
        }

        input = BeforeTransitionCollateralInput(shares, owner);
    }

    /// @dev Decodes packed data from the transition collateral hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function afterTransitionCollateralDecode(bytes memory packed)
        internal
        pure
        returns (AfterTransitionCollateralInput memory input)
    {
        uint256 shares;
        address owner;
        uint256 assets;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_FULL_LENGTH
            shares := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_ADDRESS_LENGTH)
            owner := mload(add(packed, pointer))
            pointer := add(pointer, PACKED_FULL_LENGTH)
            assets := mload(add(packed, pointer))
        }

        input = AfterTransitionCollateralInput(shares, owner, assets);
    }

    /// @dev Decodes packed data from the switch collateral hook
    /// @param packed The packed data (via abi.encodePacked)
    /// @return input decoded
    function switchCollateralDecode(bytes memory packed)
        internal
        pure
        returns (SwitchCollateralInput memory input)
    {
        address user;

        assembly { // solhint-disable-line no-inline-assembly
            let pointer := PACKED_ADDRESS_LENGTH
            user := mload(add(packed, pointer))
        }

        input = SwitchCollateralInput(user);
    }

    /// @dev Converts a uint8 to a boolean
    function _toBoolean(uint8 _value) internal pure returns (bool result) {
        if (_value == 0) {
            result = false;
        } else if (_value == 1) {
            result = true;
        } else {
            revert FailedToParseBoolean();
        }
    }
}

File 7 of 44 : PartialLiquidation.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {IERC20} from "openzeppelin5/interfaces/IERC20.sol";
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";

import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";

import {SiloMathLib} from "silo-core/contracts/lib/SiloMathLib.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
import {RevertLib} from "silo-core/contracts/lib/RevertLib.sol";
import {CallBeforeQuoteLib} from "silo-core/contracts/lib/CallBeforeQuoteLib.sol";

import {PartialLiquidationExecLib} from "./lib/PartialLiquidationExecLib.sol";

/// @title PartialLiquidation module for executing liquidations
/// @dev if we need additional hook functionality, this contract should be included as parent
contract PartialLiquidation is IPartialLiquidation, IHookReceiver {
    using SafeERC20 for IERC20;
    using Hook for uint24;
    using CallBeforeQuoteLib for ISiloConfig.ConfigData;

    ISiloConfig public siloConfig;

    struct LiquidationCallParams {
        address liquidator;
        address silo;
        address borrower;
        uint256 repayDebtAssets;
        uint256 withdrawCollateral;
        bool receiveSToken;
    }

    function initialize(ISiloConfig _siloConfig, bytes calldata) external virtual {
        _initialize(_siloConfig);
    }

    function beforeAction(address, uint256, bytes calldata) external virtual {
        // not in use
    }

    function afterAction(address, uint256, bytes calldata) external virtual {
        // not in use
    }

    /// @inheritdoc IPartialLiquidation
    function liquidationCall( // solhint-disable-line function-max-lines, code-complexity
        address _collateralAsset,
        address _debtAsset,
        address _borrower,
        uint256 _maxDebtToCover,
        bool _receiveSToken
    )
        external
        virtual
        returns (uint256 withdrawCollateral, uint256 repayDebtAssets)
    {
        ISiloConfig siloConfigCached = siloConfig;

        require(address(siloConfigCached) != address(0), EmptySiloConfig());
        require(_maxDebtToCover != 0, NoDebtToCover());

        siloConfigCached.turnOnReentrancyProtection();

        (
            ISiloConfig.ConfigData memory collateralConfig,
            ISiloConfig.ConfigData memory debtConfig
        ) = _fetchConfigs(siloConfigCached, _collateralAsset, _debtAsset, _borrower);

        uint256 collateralShares;
        uint256 protectedShares;
        uint256 withdrawAssetsFromCollateral;
        uint256 withdrawAssetsFromProtected;
        bytes4 customError;

        (
            withdrawAssetsFromCollateral, withdrawAssetsFromProtected, repayDebtAssets, customError
        ) = PartialLiquidationExecLib.getExactLiquidationAmounts(
            collateralConfig,
            debtConfig,
            _borrower,
            _maxDebtToCover,
            collateralConfig.liquidationFee
        );

        RevertLib.revertIfError(customError);

        // we do not allow dust so full liquidation is required
        require(repayDebtAssets <= _maxDebtToCover, FullLiquidationRequired());

        {
            IERC20(debtConfig.token).safeTransferFrom(msg.sender, address(this), repayDebtAssets);
            IERC20(debtConfig.token).safeIncreaseAllowance(debtConfig.silo, repayDebtAssets);

            address shareTokenReceiver = _receiveSToken ? msg.sender : address(this);

            collateralShares = _callShareTokenForwardTransferNoChecks(
                collateralConfig.silo,
                _borrower,
                shareTokenReceiver,
                withdrawAssetsFromCollateral,
                collateralConfig.collateralShareToken,
                ISilo.AssetType.Collateral
            );

            protectedShares = _callShareTokenForwardTransferNoChecks(
                collateralConfig.silo,
                _borrower,
                shareTokenReceiver,
                withdrawAssetsFromProtected,
                collateralConfig.protectedShareToken,
                ISilo.AssetType.Protected
            );
        }

        siloConfigCached.turnOffReentrancyProtection();

        ISilo(debtConfig.silo).repay(repayDebtAssets, _borrower);

        if (_receiveSToken) {
            if (collateralShares != 0) {
                withdrawCollateral = ISilo(collateralConfig.silo).previewRedeem(
                    collateralShares,
                    ISilo.CollateralType.Collateral
                );
            }

            if (protectedShares != 0) {
                unchecked {
                    // protected and collateral values were split from total collateral to withdraw,
                    // so we will not overflow when we sum them back, especially that on redeem, we rounding down
                    withdrawCollateral += ISilo(collateralConfig.silo).previewRedeem(
                        protectedShares,
                        ISilo.CollateralType.Protected
                    );
                }
            }
        } else {
            // in case of liquidation redeem, hook transfers sTokens to itself and it has no debt
            // so solvency will not be checked in silo on redeem action

            // if share token offset is more than 0, positive number of shares can generate 0 assets
            // so there is a need to check assets before we withdraw collateral/protected

            if (collateralShares != 0) {
                withdrawCollateral = ISilo(collateralConfig.silo).redeem({
                    _shares: collateralShares,
                    _receiver: msg.sender,
                    _owner: address(this),
                    _collateralType: ISilo.CollateralType.Collateral
                });
            }

            if (protectedShares != 0) {
                unchecked {
                    // protected and collateral values were split from total collateral to withdraw,
                    // so we will not overflow when we sum them back, especially that on redeem, we rounding down
                    withdrawCollateral += ISilo(collateralConfig.silo).redeem({
                        _shares: protectedShares,
                        _receiver: msg.sender,
                        _owner: address(this),
                        _collateralType: ISilo.CollateralType.Protected
                    });
                }
            }
        }

        { // stack too deep
            LiquidationCallParams memory params = LiquidationCallParams({
                liquidator: msg.sender,
                silo: debtConfig.silo,
                borrower: _borrower,
                repayDebtAssets: repayDebtAssets,
                withdrawCollateral: withdrawCollateral,
                receiveSToken: _receiveSToken
            });

            emit LiquidationCall(
                params.liquidator,
                params.silo,
                params.borrower,
                params.repayDebtAssets,
                params.withdrawCollateral,
                params.receiveSToken
            );
        }
    }

    function hookReceiverConfig(address) external virtual view returns (uint24 hooksBefore, uint24 hooksAfter) {
        return (0, 0);
    }

    /// @inheritdoc IPartialLiquidation
    function maxLiquidation(address _borrower)
        external
        view
        virtual
        returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
    {
        return PartialLiquidationExecLib.maxLiquidation(siloConfig, _borrower);
    }

    function _fetchConfigs(
        ISiloConfig _siloConfigCached,
        address _collateralAsset,
        address _debtAsset,
        address _borrower
    )
        internal
        virtual
        returns (
            ISiloConfig.ConfigData memory collateralConfig,
            ISiloConfig.ConfigData memory debtConfig
        )
    {
        (collateralConfig, debtConfig) = _siloConfigCached.getConfigsForSolvency(_borrower);

        require(debtConfig.silo != address(0), UserIsSolvent());
        require(_collateralAsset == collateralConfig.token, UnexpectedCollateralToken());
        require(_debtAsset == debtConfig.token, UnexpectedDebtToken());

        ISilo(debtConfig.silo).accrueInterest();

        if (collateralConfig.silo != debtConfig.silo) {
            ISilo(collateralConfig.silo).accrueInterest();
            collateralConfig.callSolvencyOracleBeforeQuote();
            debtConfig.callSolvencyOracleBeforeQuote();
        }
    }

    function _callShareTokenForwardTransferNoChecks(
        address _silo,
        address _borrower,
        address _receiver,
        uint256 _withdrawAssets,
        address _shareToken,
        ISilo.AssetType _assetType
    ) internal virtual returns (uint256 shares) {
        if (_withdrawAssets == 0) return 0;
        
        shares = SiloMathLib.convertToShares(
            _withdrawAssets,
            ISilo(_silo).getTotalAssetsStorage(_assetType),
            IShareToken(_shareToken).totalSupply(),
            Rounding.LIQUIDATE_TO_SHARES,
            ISilo.AssetType(_assetType)
        );

        if (shares == 0) return 0;

        IShareToken(_shareToken).forwardTransferFromNoChecks(_borrower, _receiver, shares);
    }

    function _initialize(ISiloConfig _siloConfig) internal virtual {
        require(address(_siloConfig) != address(0), EmptySiloConfig());
        require(address(siloConfig) == address(0), AlreadyConfigured());

        siloConfig = _siloConfig;
    }
}

File 8 of 44 : IGaugeLike.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IGaugeLike {
    event GaugeKilled();
    event GaugeUnKilled();

    error EmptyShareToken();

    function afterTokenTransfer(
        address _sender,
        uint256 _senderBalance,
        address _recipient,
        uint256 _recipientBalance,
        uint256 _totalSupply,
        uint256 _amount
    ) external;

    /// @notice Kills the gauge
    function killGauge() external;

    /// @notice Un kills the gauge
    function unkillGauge() external;

    // solhint-disable func-name-mixedcase
    function share_token() external view returns (address);

    function is_killed() external view returns (bool);
    // solhint-enable func-name-mixedcase
}

File 9 of 44 : IGaugeHookReceiver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IShareToken} from "./IShareToken.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
import {IGaugeLike as IGauge} from "./IGaugeLike.sol";

/// @notice Silo share token hook receiver for the gauge
interface IGaugeHookReceiver is IHookReceiver {
    /// @dev Emit when the new gauge is configured
    /// @param gauge Gauge for which hook receiver will send notification about the share token balance updates.
    /// @param shareToken Share token.
    event GaugeConfigured(address gauge, address shareToken);
    /// @dev Emit when the gauge is removed
    /// @param shareToken Share token for which the gauge was removed
    event GaugeRemoved(address shareToken);

    /// @dev Revert on an attempt to initialize with a zero `_owner` address
    error OwnerIsZeroAddress();
    /// @dev Revert on an attempt to initialize with an invalid `_shareToken` address
    error InvalidShareToken();
    /// @dev Revert on an attempt to setup a `_gauge` with a different `_shareToken`
    /// than hook receiver were initialized
    error WrongGaugeShareToken();
    /// @dev Revert on an attempt to remove a `gauge` that still can mint SILO tokens
    error CantRemoveActiveGauge();
    /// @dev Revert on an attempt to set a gauge with a zero address
    error EmptyGaugeAddress();
    /// @dev Revert if the hook received `beforeAction` notification
    error RequestNotSupported();
    /// @dev Revert on an attempt to remove not configured gauge
    error GaugeIsNotConfigured();
    /// @dev Revert on an attempt to configure already configured gauge
    error GaugeAlreadyConfigured();

    /// @notice Configuration of the gauge
    /// for which the hook receiver should send notifications about the share token balance updates.
    /// The `_gauge` can be updated by an owner (DAO)
    /// @dev Overrides existing configuration
    /// @param _shareToken Share token for which the gauge is configured
    /// @param _gauge Array of gauges for which hook receiver will send notification.
    function setGauge(IGauge _gauge, IShareToken _shareToken) external;

    /// @notice Remove the gauge from the hook receiver for the share token
    /// @param _shareToken Share token for which the gauge needs to be removed
    function removeGauge(IShareToken _shareToken) external;

    /// @notice Get the gauge
    function gauge() external view returns (IGauge);

    /// @notice Get the share token
    function shareToken() external view returns (IShareToken);

    /// @notice Get the gauge for the share token
    /// @param _shareToken Share token
    function configuredGauges(IShareToken _shareToken) external view returns (IGauge);
}

File 10 of 44 : SiloHookReceiver.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IHookReceiver} from "../../../interfaces/IHookReceiver.sol";

abstract contract SiloHookReceiver is IHookReceiver {
    mapping(address silo => HookConfig) private _hookConfig;

    function _setHookConfig(address _silo, uint256 _hooksBefore, uint256 _hooksAfter) internal virtual {
        _hookConfig[_silo] = HookConfig(uint24(_hooksBefore), uint24(_hooksAfter));
        emit HookConfigured(_silo, uint24(_hooksBefore), uint24(_hooksAfter));

        ISilo(_silo).updateHooks();
    }

    function _hookReceiverConfig(address _silo) internal view virtual returns (uint24 hooksBefore, uint24 hooksAfter) {
        HookConfig memory hookConfig = _hookConfig[_silo];

        hooksBefore = hookConfig.hooksBefore;
        hooksAfter = hookConfig.hooksAfter;
    }

    function _getHooksBefore(address _silo) internal view virtual returns (uint256 hooksBefore) {
        hooksBefore = _hookConfig[_silo].hooksBefore;
    }

    function _getHooksAfter(address _silo) internal view virtual returns (uint256 hooksAfter) {
        hooksAfter = _hookConfig[_silo].hooksAfter;
    }
}

File 11 of 44 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 12 of 44 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 13 of 44 : ISilo.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";

import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";

import {IHookReceiver} from "./IHookReceiver.sol";

// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
    /// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
    ///      outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
    ///      to make a decision inside functions if interest should be accrued in memory to work on updated values.
    enum AccrueInterestInMemory {
        No,
        Yes
    }

    /// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
    ///      oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
    ///      one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
    ///      because it's used as denominator for ETH and it's "price" can be assume as 1.
    enum OracleType {
        Solvency,
        MaxLtv
    }

    /// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
    ///      for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
    ///      identical calculations for each type of accounting but it uses different data. To avoid code duplication
    ///      this enum is used to decide which data should be read.
    enum AssetType {
        Protected, // default
        Collateral,
        Debt
    }

    /// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
    ///      for borrowable collateral deposit called "collateral". System does
    ///      identical calculations for each type of accounting but it uses different data. To avoid code duplication
    ///      this enum is used to decide which data should be read.
    enum CollateralType {
        Protected, // default
        Collateral
    }

    /// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
    enum CallType {
        Call, // default
        Delegatecall
    }

    /// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
    /// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
    /// @param _receiver Address receiving the withdrawn assets
    /// @param _owner Address of the owner of the shares being burned
    /// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
    /// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
    struct WithdrawArgs {
        uint256 assets;
        uint256 shares;
        address receiver;
        address owner;
        address spender;
        ISilo.CollateralType collateralType;
    }

    /// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
    /// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
    /// assets are provided.
    /// @param receiver Address that will receive the borrowed assets
    /// @param borrower The user who is borrowing the assets
    struct BorrowArgs {
        uint256 assets;
        uint256 shares;
        address receiver;
        address borrower;
    }

    /// @param shares Amount of shares the user wishes to transit.
    /// @param owner owner of the shares after transition.
    /// @param transitionFrom type of collateral that will be transitioned.
    struct TransitionCollateralArgs {
        uint256 shares;
        address owner;
        ISilo.CollateralType transitionFrom;
    }

    struct UtilizationData {
        /// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
        /// It also includes token amount that has been borrowed.
        uint256 collateralAssets;
        /// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
        uint256 debtAssets;
        /// @dev timestamp of the last interest accrual
        uint64 interestRateTimestamp;
    }

    struct SiloStorage {
        /// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
        /// but not yet withdrawn
        uint192 daoAndDeployerRevenue;
        /// @dev timestamp of the last interest accrual
        uint64 interestRateTimestamp;

        /// @dev silo is just for one asset,
        /// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
        /// Assets based on type:
        /// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
        /// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
        /// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
        /// It also includes token amount that has been borrowed.
        /// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
        /// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
        /// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
        mapping(AssetType assetType => uint256 assets) totalAssets;
    }

    /// @notice Emitted on protected deposit
    /// @param sender wallet address that deposited asset
    /// @param owner wallet address that received shares in Silo
    /// @param assets amount of asset that was deposited
    /// @param shares amount of shares that was minted
    event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    /// @notice Emitted on protected withdraw
    /// @param sender wallet address that sent transaction
    /// @param receiver wallet address that received asset
    /// @param owner wallet address that owned asset
    /// @param assets amount of asset that was withdrew
    /// @param shares amount of shares that was burn
    event WithdrawProtected(
        address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    /// @notice Emitted on borrow
    /// @param sender wallet address that sent transaction
    /// @param receiver wallet address that received asset
    /// @param owner wallet address that owes assets
    /// @param assets amount of asset that was borrowed
    /// @param shares amount of shares that was minted
    event Borrow(
        address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    /// @notice Emitted on repayment
    /// @param sender wallet address that repaid asset
    /// @param owner wallet address that owed asset
    /// @param assets amount of asset that was repaid
    /// @param shares amount of shares that was burn
    event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    /// @notice emitted only when collateral has been switched to other one
    event CollateralTypeChanged(address indexed borrower);

    event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);

    event AccruedInterest(uint256 hooksBefore);

    event FlashLoan(uint256 amount);

    event WithdrawnFeed(uint256 daoFees, uint256 deployerFees);

    error Unsupported();
    error NothingToWithdraw();
    error NotEnoughLiquidity();
    error NotSolvent();
    error BorrowNotPossible();
    error EarnedZero();
    error FlashloanFailed();
    error AboveMaxLtv();
    error SiloInitialized();
    error OnlyHookReceiver();
    error NoLiquidity();
    error InputCanBeAssetsOrShares();
    error CollateralSiloAlreadySet();
    error RepayTooHigh();
    error ZeroAmount();
    error InputZeroShares();
    error ReturnZeroAssets();
    error ReturnZeroShares();

    /// @return siloFactory The associated factory of the silo
    function factory() external view returns (ISiloFactory siloFactory);

    /// @notice Method for HookReceiver only to call on behalf of Silo
    /// @param _target address of the contract to call
    /// @param _value amount of ETH to send
    /// @param _callType type of the call (Call or Delegatecall)
    /// @param _input calldata for the call
    function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
        external
        payable
        returns (bool success, bytes memory result);

    /// @notice Initialize Silo
    /// @param _siloConfig address of ISiloConfig with full config for this Silo
    function initialize(ISiloConfig _siloConfig) external;

    /// @notice Update hooks configuration for Silo
    /// @dev This function must be called after the hooks configuration is changed in the hook receiver
    function updateHooks() external;

    /// @notice Fetches the silo configuration contract
    /// @return siloConfig Address of the configuration contract associated with the silo
    function config() external view returns (ISiloConfig siloConfig);

    /// @notice Fetches the utilization data of the silo used by IRM
    function utilizationData() external view returns (UtilizationData memory utilizationData);

    /// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
    /// @return liquidity The amount of liquidity
    function getLiquidity() external view returns (uint256 liquidity);

    /// @notice Determines if a borrower is solvent
    /// @param _borrower Address of the borrower to check for solvency
    /// @return True if the borrower is solvent, otherwise false
    function isSolvent(address _borrower) external view returns (bool);

    /// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
    function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);

    /// @notice Direct storage access to silo storage
    /// @dev See struct `SiloStorage` for more details
    function getSiloStorage()
        external
        view
        returns (
            uint192 daoAndDeployerRevenue,
            uint64 interestRateTimestamp,
            uint256 protectedAssets,
            uint256 collateralAssets,
            uint256 debtAssets
        );

    /// @notice Retrieves the total amount of collateral (borrowable) assets with interest
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    function getCollateralAssets() external view returns (uint256 totalCollateralAssets);

    /// @notice Retrieves the total amount of debt assets with interest
    /// @return totalDebtAssets The total amount of assets of type 'Debt'
    function getDebtAssets() external view returns (uint256 totalDebtAssets);

    /// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    /// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
    function getCollateralAndProtectedTotalsStorage()
        external
        view
        returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);

    /// @notice Retrieves the total amounts of collateral and debt assets
    /// @return totalCollateralAssets The total amount of assets of type 'Collateral'
    /// @return totalDebtAssets The total amount of debt assets of type 'Debt'
    function getCollateralAndDebtTotalsStorage()
        external
        view
        returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);

    /// @notice Implements IERC4626.convertToShares for each asset type
    function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.convertToAssets for each asset type
    function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
        external
        returns (uint256 shares);

    /// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);

    /// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);

    /// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);

    /// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
        external
        returns (uint256 shares);

    /// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);

    /// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);

    /// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
    /// @dev Reverts for debt asset type
    function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
        external
        returns (uint256 assets);

    /// @notice Calculates the maximum amount of assets that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
    /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
    /// Reason for underestimation is to return value that will not cause borrow revert
    function maxBorrow(address _borrower) external view returns (uint256 maxAssets);

    /// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
    /// @param _assets Amount of assets to preview the equivalent shares for
    /// @return shares Amount of shares equivalent to the provided asset amount
    function previewBorrow(uint256 _assets) external view returns (uint256 shares);

    /// @notice Allows an address to borrow a specified amount of assets
    /// @param _assets Amount of assets to borrow
    /// @param _receiver Address receiving the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return shares Amount of shares equivalent to the borrowed assets
    function borrow(uint256 _assets, address _receiver, address _borrower)
        external returns (uint256 shares);

    /// @notice Calculates the maximum amount of shares that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxShares Maximum number of shares that the borrower can borrow
    function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);

    /// @notice Previews the amount of assets equivalent to the given share amount for borrowing
    /// @param _shares Amount of shares to preview the equivalent assets for
    /// @return assets Amount of assets equivalent to the provided share amount
    function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);

    /// @notice Calculates the maximum amount of assets that can be borrowed by the given address
    /// @param _borrower Address of the potential borrower
    /// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
    /// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
    /// Reason for underestimation is to return value that will not cause borrow revert
    function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);

    /// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the
    /// same asset
    /// @param _assets Amount of assets to borrow
    /// @param _receiver Address receiving the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return shares Amount of shares equivalent to the borrowed assets
    function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
        external returns (uint256 shares);

    /// @notice Allows a user to borrow assets based on the provided share amount
    /// @param _shares Amount of shares to borrow against
    /// @param _receiver Address to receive the borrowed assets
    /// @param _borrower Address responsible for the borrowed assets
    /// @return assets Amount of assets borrowed
    function borrowShares(uint256 _shares, address _receiver, address _borrower)
        external
        returns (uint256 assets);

    /// @notice Calculates the maximum amount an address can repay based on their debt shares
    /// @param _borrower Address of the borrower
    /// @return assets Maximum amount of assets the borrower can repay
    function maxRepay(address _borrower) external view returns (uint256 assets);

    /// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
    /// @param _assets Amount of assets to be repaid
    /// @return shares Estimated number of shares equivalent to the provided asset amount
    function previewRepay(uint256 _assets) external view returns (uint256 shares);

    /// @notice Repays a given asset amount and returns the equivalent number of shares
    /// @param _assets Amount of assets to be repaid
    /// @param _borrower Address of the borrower whose debt is being repaid
    /// @return shares The equivalent number of shares for the provided asset amount
    function repay(uint256 _assets, address _borrower) external returns (uint256 shares);

    /// @notice Calculates the maximum number of shares that can be repaid for a given borrower
    /// @param _borrower Address of the borrower
    /// @return shares The maximum number of shares that can be repaid for the borrower
    function maxRepayShares(address _borrower) external view returns (uint256 shares);

    /// @notice Provides a preview of the equivalent assets for a given number of shares to repay
    /// @param _shares Number of shares to preview repayment for
    /// @return assets Equivalent assets for the provided shares
    function previewRepayShares(uint256 _shares) external view returns (uint256 assets);

    /// @notice Allows a user to repay a loan using shares instead of assets
    /// @param _shares The number of shares the borrower wants to repay with
    /// @param _borrower The address of the borrower for whom to repay the loan
    /// @return assets The equivalent assets amount for the provided shares
    function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);

    /// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
    /// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
    /// leaving the protocol
    /// @param _shares Amount of shares to be transitioned
    /// @param _owner Owner of the assets being transitioned
    /// @param _transitionFrom Specifies if the transition is from collateral or protected assets
    /// @return assets Amount of assets transitioned
    function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
        external
        returns (uint256 assets);

    /// @notice Switches the collateral silo to this silo
    /// @dev Revert if the collateral silo is already set
    function switchCollateralToThisSilo() external;

    /// @notice Accrues interest for the asset and returns the accrued interest amount
    /// @return accruedInterest The total interest accrued during this operation
    function accrueInterest() external returns (uint256 accruedInterest);

    /// @notice only for SiloConfig
    function accrueInterestForConfig(
        address _interestRateModel,
        uint256 _daoFee,
        uint256 _deployerFee
    ) external;

    /// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
    function withdrawFees() external;
}

File 14 of 44 : ICrossReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface ICrossReentrancyGuard {
    error CrossReentrantCall();
    error CrossReentrancyNotActive();

    /// @notice only silo method for cross Silo reentrancy
    function turnOnReentrancyProtection() external;

    /// @notice only silo method for cross Silo reentrancy
    function turnOffReentrancyProtection() external;

    /// @notice view method for checking cross Silo reentrancy flag
    /// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
    /// `nonReentrant` function in the call stack.
    function reentrancyGuardEntered() external view returns (bool entered);
}

File 15 of 44 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 16 of 44 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 17 of 44 : IPartialLiquidation.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IPartialLiquidation {
    struct HookSetup {
        /// @param this is the same as in siloConfig
        address hookReceiver;
        /// @param hooks bitmap
        uint24 hooksBefore;
        /// @param hooks bitmap
        uint24 hooksAfter;
    }

    /// @dev Emitted when a borrower is liquidated.
    /// @param liquidator The address of the liquidator
    /// @param silo The address of the silo on which position was liquidated
    /// @param borrower The address of the borrower
    /// @param repayDebtAssets Repay amount
    /// @param withdrawCollateral Total (collateral + protected) withdraw amount, in case `receiveSToken` is TRUE
    /// then this is estimated withdraw, and representation of this amount in sToken was transferred
    /// @param receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
    /// to receive the underlying collateral asset directly
    event LiquidationCall(
        address indexed liquidator,
        address indexed silo,
        address indexed borrower,
        uint256 repayDebtAssets,
        uint256 withdrawCollateral,
        bool receiveSToken
    );

    /// @dev Revert if provided silo configuration during initialization is empty
    error EmptySiloConfig();
    /// @dev Revert if the hook receiver is already configured/initialized
    error AlreadyConfigured();
    error UnexpectedCollateralToken();
    error UnexpectedDebtToken();
    error NoDebtToCover();
    error FullLiquidationRequired();
    error UserIsSolvent();
    error UnknownRatio();
    error NoRepayAssets();

    /// @notice Function to liquidate insolvent position
    /// - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
    ///   an equivalent amount in `collateralAsset` plus a liquidation fee to cover market risk
    /// @dev this method reverts when:
    /// - `_maxDebtToCover` is zero
    /// - `_collateralAsset` is not `_user` collateral token (note, that user can have both tokens in Silo, but only one
    ///   is for backing debt
    /// - `_debtAsset` is not a token that `_user` borrow
    /// - `_user` is solvent and there is no debt to cover
    /// - `_maxDebtToCover` is set to cover only part of the debt but full liquidation is required
    /// - when not enough liquidity to transfer from `_user` collateral to liquidator
    ///   (use `_receiveSToken == true` in that case)
    /// @param _collateralAsset The address of the underlying asset used as collateral, to receive as result
    /// @param _debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
    /// @param _user The address of the borrower getting liquidated
    /// @param _maxDebtToCover The maximum debt amount of borrowed `asset` the liquidator wants to cover,
    /// in case this amount is too big, it will be reduced to maximum allowed liquidation amount
    /// @param _receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
    /// to receive the underlying collateral asset directly
    /// @return withdrawCollateral collateral that was send to `msg.sender`, in case of `_receiveSToken` is TRUE,
    /// `withdrawCollateral` will be estimated, on redeem one can expect this value to be rounded down
    /// @return repayDebtAssets actual debt value that was repaid by `msg.sender`
    function liquidationCall(
        address _collateralAsset,
        address _debtAsset,
        address _user,
        uint256 _maxDebtToCover,
        bool _receiveSToken
    )
        external
        returns (uint256 withdrawCollateral, uint256 repayDebtAssets);

    /// @dev debt is keep growing over time, so when dApp use this view to calculate max, tx should never revert
    /// because actual max can be only higher
    /// @return collateralToLiquidate underestimated amount of collateral liquidator will get
    /// @return debtToRepay debt amount needed to be repay to get `collateralToLiquidate`
    /// @return sTokenRequired TRUE, when liquidation with underlying asset is not possible because of not enough
    /// liquidity
    function maxLiquidation(address _borrower)
        external
        view
        returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired);
}

File 18 of 44 : IHookReceiver.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {ISiloConfig} from "./ISiloConfig.sol";

interface IHookReceiver {
    struct HookConfig {
        uint24 hooksBefore;
        uint24 hooksAfter;
    }

    event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);

    /// @notice Initialize a hook receiver
    /// @param _siloConfig Silo configuration with all the details about the silo
    /// @param _data Data to initialize the hook receiver (if needed)
    function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;

    /// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
    function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;

    function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;

    /// @notice return hooksBefore and hooksAfter configuration
    function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}

File 19 of 44 : SiloMathLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";
import {Rounding} from "../lib/Rounding.sol";
import {ISilo} from "../interfaces/ISilo.sol";

library SiloMathLib {
    using Math for uint256;

    uint256 internal constant _PRECISION_DECIMALS = 1e18;

    uint256 internal constant _DECIMALS_OFFSET = 3;

    /// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset
    uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET;

    /// @notice Returns available liquidity to be borrowed
    /// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The
    ///      difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable
    ///      liquidity.
    function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) {
        unchecked {
            // we checked the underflow
            liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets;
        }
    }

    /// @notice Calculate collateral assets with accrued interest and associated fees
    /// @param _collateralAssets The total amount of collateral assets
    /// @param _debtAssets The total amount of debt assets
    /// @param _rcomp Compound interest rate for debt
    /// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO
    /// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer
    /// @return collateralAssetsWithInterest The total collateral assets including the accrued interest
    /// @return debtAssetsWithInterest The debt assets with accrued interest
    /// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer
    /// @return accruedInterest The total accrued interest
    function getCollateralAmountsWithInterest(
        uint256 _collateralAssets,
        uint256 _debtAssets,
        uint256 _rcomp,
        uint256 _daoFee,
        uint256 _deployerFee
    )
        internal
        pure
        returns (
            uint256 collateralAssetsWithInterest,
            uint256 debtAssetsWithInterest,
            uint256 daoAndDeployerRevenue,
            uint256 accruedInterest
        )
    {
        (debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp);

        uint256 fees;

        // _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow
        unchecked { fees = _daoFee + _deployerFee; }

        daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS);

        // we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest
        uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue;

        // save to uncheck because variable can not be more than max
        uint256 cap = type(uint256).max - _collateralAssets;

        if (cap < collateralInterest) {
            // avoid overflow on interest
            collateralInterest = cap;
        }

        // safe to uncheck because of cap
        unchecked {  collateralAssetsWithInterest = _collateralAssets + collateralInterest; }
    }

    /// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow
    /// @param _totalDebtAssets The total amount of debt assets before accrued interest
    /// @param _rcomp Compound interest rate for the debt in 18 decimal precision
    /// @return debtAssetsWithInterest The debt assets including the accrued interest
    /// @return accruedInterest The total amount of interest accrued on the debt assets
    function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp)
        internal
        pure
        returns (uint256 debtAssetsWithInterest, uint256 accruedInterest)
    {
        if (_totalDebtAssets == 0 || _rcomp == 0) {
            return (_totalDebtAssets, 0);
        }

        accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS);

        unchecked {
            // We intentionally allow overflow here, to prevent transaction revert due to interest calculation.
            debtAssetsWithInterest = _totalDebtAssets + accruedInterest;

            // If overflow occurs, we skip accruing interest.
            if (debtAssetsWithInterest < _totalDebtAssets) {
                debtAssetsWithInterest = _totalDebtAssets;
                accruedInterest = 0;
            }
        }
    }

    /// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage
    /// @dev It assumes `_dp` = 100%.
    /// @param _dp decimal points used by model
    /// @param _collateralAssets current total deposits for assets
    /// @param _debtAssets current total borrows for assets
    /// @return utilization value, capped to 100%
    /// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations
    /// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt.
    function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets)
        internal
        pure
        returns (uint256 utilization)
    {
        if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0;

        /*
            how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST):
            1. max > _debtAssets * _dp / _collateralAssets
            2. max / _dp > _debtAssets / _collateralAssets
        */
        if (type(uint256).max / _dp > _debtAssets / _collateralAssets) {
            utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST);
            // cap at 100%
            if (utilization > _dp) utilization = _dp;
        } else {
            // we have overflow
            utilization = _dp;
        }
    }

    function convertToAssetsOrToShares(
        uint256 _assets,
        uint256 _shares,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _roundingToAssets,
        Math.Rounding _roundingToShares,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 assets, uint256 shares) {
        if (_assets == 0) {
            require(_shares != 0, ISilo.InputZeroShares());
            shares = _shares;
            assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType);
            require(assets != 0, ISilo.ReturnZeroAssets());
        } else if (_shares == 0) {
            shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType);
            assets = _assets;
            require(shares != 0, ISilo.ReturnZeroShares());
        } else {
            revert ISilo.InputCanBeAssetsOrShares();
        }
    }

    /// @dev Math for collateral is exact copy of
    ///      openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares
    function convertToShares(
        uint256 _assets,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _rounding,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 shares) {
        (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);

        // initially, in case of debt, if silo is empty we return shares==assets
        // for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo`
        if (totalShares == 0) return _assets;

        shares = _assets.mulDiv(totalShares, totalAssets, _rounding);
    }

    /// @dev Math for collateral is exact copy of
    ///      openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets
    function convertToAssets(
        uint256 _shares,
        uint256 _totalAssets,
        uint256 _totalShares,
        Math.Rounding _rounding,
        ISilo.AssetType _assetType
    ) internal pure returns (uint256 assets) {
        (uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);

        // initially, in case of debt, if silo is empty we return shares==assets
        // for collateral, this will never be the case, because of `+1` in line above
        if (totalShares == 0) return _shares;

        assets = _shares.mulDiv(totalAssets, totalShares, _rounding);
    }

    /// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset
    /// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected)
    /// @param _borrowerDebtValue total value of borrower debt
    /// @return maxBorrowValue max borrow value yet available for borrower
    function calculateMaxBorrowValue(
        uint256 _collateralMaxLtv,
        uint256 _sumOfBorrowerCollateralValue,
        uint256 _borrowerDebtValue
    ) internal pure returns (uint256 maxBorrowValue) {
        if (_sumOfBorrowerCollateralValue == 0) {
            return 0;
        }

        uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv(
            _collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE
        );

        unchecked {
            // we will not underflow because we checking `maxDebtValue > _borrowerDebtValue`
            maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0;
        }
    }

    /// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold
    /// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower
    /// @param _debtValue The total debt value of the borrower
    /// @param _lt The liquidation threshold in 18 decimal points
    /// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal
    /// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal
    /// @return maxAssets The maximum assets the borrower can safely withdraw
    function calculateMaxAssetsToWithdraw(
        uint256 _sumOfCollateralsValue,
        uint256 _debtValue,
        uint256 _lt,
        uint256 _borrowerCollateralAssets,
        uint256 _borrowerProtectedAssets
    ) internal pure returns (uint256 maxAssets) {
        if (_sumOfCollateralsValue == 0) return 0;
        if (_debtValue == 0) return _sumOfCollateralsValue;
        if (_lt == 0) return 0;

        // using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent
        uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV);

        // if we over LT, we can not withdraw
        if (_sumOfCollateralsValue <= minimumCollateralValue) {
            return 0;
        }

        uint256 spareCollateralValue;
        // safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)`
        unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; }

        maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets)
                .mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS);
    }

    /// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw
    /// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation
    /// threshold
    /// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower
    /// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower
    /// @param _collateralType Specifies whether the asset is of type Collateral or Protected
    /// @param _totalAssets The entire quantity of assets available in the system for withdrawal
    /// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type
    /// @param _liquidity Current liquidity in the system for the asset type
    /// @return assets Maximum assets the borrower can withdraw
    /// @return shares Corresponding number of shares for the derived `assets` amount
    function maxWithdrawToAssetsAndShares(
        uint256 _maxAssets,
        uint256 _borrowerCollateralAssets,
        uint256 _borrowerProtectedAssets,
        ISilo.CollateralType _collateralType,
        uint256 _totalAssets,
        uint256 _assetTypeShareTokenTotalSupply,
        uint256 _liquidity
    ) internal pure returns (uint256 assets, uint256 shares) {
        if (_maxAssets == 0) return (0, 0);
        if (_assetTypeShareTokenTotalSupply == 0) return (0, 0);

        if (_collateralType == ISilo.CollateralType.Collateral) {
            assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets;

            if (assets > _liquidity) {
                assets = _liquidity;
            }
        } else {
            assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets;
        }

        shares = SiloMathLib.convertToShares(
            assets,
            _totalAssets,
            _assetTypeShareTokenTotalSupply,
            Rounding.MAX_WITHDRAW_TO_SHARES,
            ISilo.AssetType(uint256(_collateralType))
        );
    }

    /// @dev executed `_a * _b / _c`, reverts on _c == 0
    /// @return mulDivResult on overflow returns 0
    function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c)
        internal
        pure
        returns (uint256 mulDivResult)
    {
        if (_a == 0) return (0);

        unchecked {
            // we have to uncheck to detect overflow
            mulDivResult = _a * _b;
            if (mulDivResult / _a != _b) return 0;

            mulDivResult /= _c;
        }
    }

    /// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for
    /// itself. It should return actual result and round it up.
    function _commonConvertTo(
        uint256 _totalAssets,
        uint256 _totalShares,
        ISilo.AssetType _assetType
    ) private pure returns (uint256 totalShares, uint256 totalAssets) {
        if (_totalShares == 0) {
            // silo is empty and we have dust to redistribute: this can only happen when everyone exits silo
            // this case can happen only for collateral, because for collateral we rounding in favorite of protocol
            // by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state
            _totalAssets = 0;
        }

            (totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt
                ? (_totalShares, _totalAssets)
                : (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1);
    }
}

File 20 of 44 : Rounding.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";

// solhint-disable private-vars-leading-underscore
library Rounding {
    Math.Rounding internal constant UP = (Math.Rounding.Ceil);
    Math.Rounding internal constant DOWN = (Math.Rounding.Floor);
    Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil);
    // COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down)
    Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor);
    // why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down?
    // DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens
    // so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why
    // different rounding policy
    Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil);
    Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor);
    Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil);
    Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil);
    Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
    Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor);
    Math.Rounding internal constant LTV = (Math.Rounding.Ceil);
    Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor);
}

File 21 of 44 : RevertLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.7.6 <=0.9.0;

library RevertLib {
    function revertBytes(bytes memory _errMsg, string memory _customErr) internal pure {
        if (_errMsg.length > 0) {
            assembly { // solhint-disable-line no-inline-assembly
                revert(add(32, _errMsg), mload(_errMsg))
            }
        }

        revert(_customErr);
    }

    function revertIfError(bytes4 _errorSelector) internal pure {
        if (_errorSelector == 0) return;

        bytes memory customError = abi.encodeWithSelector(_errorSelector);

        assembly {
            revert(add(32, customError), mload(customError))
        }
    }
}

File 22 of 44 : CallBeforeQuoteLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";

library CallBeforeQuoteLib {
    /// @dev Call `beforeQuote` on the `solvencyOracle` oracle
    /// @param _config Silo config data
    function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
        if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) {
            ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token);
        }
    }

    /// @dev Call `beforeQuote` on the `maxLtvOracle` oracle
    /// @param _config Silo config data
    function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
        if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) {
            ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token);
        }
    }
}

File 23 of 44 : PartialLiquidationExecLib.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {SiloSolvencyLib} from "silo-core/contracts/lib/SiloSolvencyLib.sol";
import {PartialLiquidationLib} from "./PartialLiquidationLib.sol";

library PartialLiquidationExecLib {
    /// @dev it will be user responsibility to check profit, this method expect interest to be already accrued
    function getExactLiquidationAmounts(
        ISiloConfig.ConfigData memory _collateralConfig,
        ISiloConfig.ConfigData memory _debtConfig,
        address _user,
        uint256 _maxDebtToCover,
        uint256 _liquidationFee
    )
        internal
        view
        returns (
            uint256 withdrawAssetsFromCollateral,
            uint256 withdrawAssetsFromProtected,
            uint256 repayDebtAssets,
            bytes4 customError
        )
    {
        SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({
            _collateralConfig: _collateralConfig,
            _debtConfig: _debtConfig,
            _borrower: _user,
            _oracleType: ISilo.OracleType.Solvency,
            _accrueInMemory: ISilo.AccrueInterestInMemory.No,
            _debtShareBalanceCached:0 /* no cached balance */
        });

        uint256 borrowerCollateralToLiquidate;

        (
            borrowerCollateralToLiquidate, repayDebtAssets, customError
        ) = liquidationPreview(
            ltvData,
            PartialLiquidationLib.LiquidationPreviewParams({
                collateralLt: _collateralConfig.lt,
                collateralConfigAsset: _collateralConfig.token,
                debtConfigAsset: _debtConfig.token,
                maxDebtToCover: _maxDebtToCover,
                liquidationTargetLtv: _collateralConfig.liquidationTargetLtv,
                liquidationFee: _liquidationFee
            })
        );

        (
            withdrawAssetsFromCollateral, withdrawAssetsFromProtected
        ) = PartialLiquidationLib.splitReceiveCollateralToLiquidate(
            borrowerCollateralToLiquidate, ltvData.borrowerProtectedAssets
        );
    }

    /// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
    /// because actual max can be only higher
    // solhint-disable-next-line function-max-lines
    function maxLiquidation(ISiloConfig _siloConfig, address _borrower)
        internal
        view
        returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
    {
        (
            ISiloConfig.ConfigData memory collateralConfig,
            ISiloConfig.ConfigData memory debtConfig
        ) = _siloConfig.getConfigsForSolvency(_borrower);

        if (debtConfig.silo == address(0)) {
            return (0, 0, false);
        }

        SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations(
            collateralConfig,
            debtConfig,
            _borrower,
            ISilo.OracleType.Solvency,
            ISilo.AccrueInterestInMemory.Yes,
            0 /* no cached balance */
        );

        if (ltvData.borrowerDebtAssets == 0) return (0, 0, false);

        (
            uint256 sumOfCollateralValue, uint256 debtValue
        ) = SiloSolvencyLib.getPositionValues(ltvData, collateralConfig.token, debtConfig.token);

        uint256 sumOfCollateralAssets = ltvData.borrowerProtectedAssets + ltvData.borrowerCollateralAssets;

        if (sumOfCollateralValue == 0) return (sumOfCollateralAssets, ltvData.borrowerDebtAssets, false);

        uint256 ltvInDp = SiloSolvencyLib.ltvMath(debtValue, sumOfCollateralValue);
        if (ltvInDp <= collateralConfig.lt) return (0, 0, false); // user solvent

        (collateralToLiquidate, debtToRepay) = PartialLiquidationLib.maxLiquidation(
            sumOfCollateralAssets,
            sumOfCollateralValue,
            ltvData.borrowerDebtAssets,
            debtValue,
            collateralConfig.liquidationTargetLtv,
            collateralConfig.liquidationFee
        );

        // maxLiquidation() can underestimate collateral by `PartialLiquidationLib._UNDERESTIMATION`,
        // when we do that, actual collateral that we will transfer will match exactly liquidity,
        // but we will liquidate higher value by 1 or 2, then sTokenRequired will return false,
        // but we can not withdraw (because we will be short by 2) solution is to include this 2wei here
        unchecked {
            // safe to uncheck, because we underestimated this value in a first place by _UNDERESTIMATION
            uint256 overestimatedCollateral = collateralToLiquidate + PartialLiquidationLib._UNDERESTIMATION;
            sTokenRequired = overestimatedCollateral > ISilo(collateralConfig.silo).getLiquidity();
        }
    }

    /// @return receiveCollateralAssets collateral + protected to liquidate, on self liquidation when borrower repay
    /// all debt, he will receive all collateral back
    /// @return repayDebtAssets
    function liquidationPreview( // solhint-disable-line function-max-lines, code-complexity
        SiloSolvencyLib.LtvData memory _ltvData,
        PartialLiquidationLib.LiquidationPreviewParams memory _params
    )
        internal
        view
        returns (uint256 receiveCollateralAssets, uint256 repayDebtAssets, bytes4 customError)
    {
        uint256 sumOfCollateralAssets = _ltvData.borrowerCollateralAssets + _ltvData.borrowerProtectedAssets;

        if (_ltvData.borrowerDebtAssets == 0 || _params.maxDebtToCover == 0) {
            return (0, 0, IPartialLiquidation.NoDebtToCover.selector);
        }

        if (sumOfCollateralAssets == 0) {
            return (
                0,
                _params.maxDebtToCover > _ltvData.borrowerDebtAssets
                    ? _ltvData.borrowerDebtAssets
                    : _params.maxDebtToCover,
                bytes4(0) // no error
            );
        }

        (
            uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvBefore
        ) = SiloSolvencyLib.calculateLtv(_ltvData, _params.collateralConfigAsset, _params.debtConfigAsset);

        if (_params.collateralLt >= ltvBefore) return (0, 0, IPartialLiquidation.UserIsSolvent.selector);

        uint256 ltvAfter;

        (receiveCollateralAssets, repayDebtAssets, ltvAfter) = PartialLiquidationLib.liquidationPreview(
            ltvBefore,
            sumOfCollateralAssets,
            sumOfBorrowerCollateralValue,
            _ltvData.borrowerDebtAssets,
            totalBorrowerDebtValue,
            _params
        );

        if (receiveCollateralAssets == 0 || repayDebtAssets == 0) {
            return (0, 0, IPartialLiquidation.NoRepayAssets.selector);
        }
    }
}

File 24 of 44 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 25 of 44 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 26 of 44 : IERC4626.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 27 of 44 : IERC3156FlashLender.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";

/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
    /// @notice Protected deposits are not available for a flash loan.
    /// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
    /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
    /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
    /// @dev Initiate a flash loan.
    /// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @param _data Arbitrary data structure, intended to contain user-defined parameters.
    function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
        external
        returns (bool);

    /// @dev The amount of currency available to be lent.
    /// @param _token The loan currency.
    /// @return The amount of `token` that can be borrowed.
    function maxFlashLoan(address _token) external view returns (uint256);

    /// @dev The fee to be charged for a given loan.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @return The amount of `token` to be charged for the loan, on top of the returned principal.
    function flashFee(address _token, uint256 _amount) external view returns (uint256);
}

File 28 of 44 : ISiloFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";

interface ISiloFactory is IERC721 {
    struct Range {
        uint128 min;
        uint128 max;
    }

    /// @notice Emitted on the creation of a Silo.
    /// @param implementation Address of the Silo implementation.
    /// @param token0 Address of the first Silo token.
    /// @param token1 Address of the second Silo token.
    /// @param silo0 Address of the first Silo.
    /// @param silo1 Address of the second Silo.
    /// @param siloConfig Address of the SiloConfig.
    event NewSilo(
        address indexed implementation,
        address indexed token0,
        address indexed token1,
        address silo0,
        address silo1,
        address siloConfig
    );

    event BaseURI(string newBaseURI);

    /// @notice Emitted on the update of DAO fee.
    /// @param minDaoFee Value of the new minimal DAO fee.
    /// @param maxDaoFee Value of the new maximal DAO fee.
    event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);

    /// @notice Emitted on the update of max deployer fee.
    /// @param maxDeployerFee Value of the new max deployer fee.
    event MaxDeployerFeeChanged(uint256 maxDeployerFee);

    /// @notice Emitted on the update of max flashloan fee.
    /// @param maxFlashloanFee Value of the new max flashloan fee.
    event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);

    /// @notice Emitted on the update of max liquidation fee.
    /// @param maxLiquidationFee Value of the new max liquidation fee.
    event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);

    /// @notice Emitted on the change of DAO fee receiver.
    /// @param daoFeeReceiver Address of the new DAO fee receiver.
    event DaoFeeReceiverChanged(address daoFeeReceiver);

    error MissingHookReceiver();
    error ZeroAddress();
    error DaoFeeReceiverZeroAddress();
    error EmptyToken0();
    error EmptyToken1();
    error MaxFeeExceeded();
    error InvalidFeeRange();
    error SameAsset();
    error SameRange();
    error InvalidIrm();
    error InvalidMaxLtv();
    error InvalidLt();
    error InvalidDeployer();
    error DaoMinRangeExceeded();
    error DaoMaxRangeExceeded();
    error MaxDeployerFeeExceeded();
    error MaxFlashloanFeeExceeded();
    error MaxLiquidationFeeExceeded();
    error InvalidCallBeforeQuote();
    error OracleMisconfiguration();
    error InvalidQuoteToken();
    error HookIsZeroAddress();
    error LiquidationTargetLtvTooHigh();

    /// @notice Create a new Silo.
    /// @param _initData Silo initialization data.
    /// @param _siloConfig Silo configuration.
    /// @param _siloImpl Address of the `Silo` implementation.
    /// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
    /// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
    function createSilo(
        ISiloConfig.InitData memory _initData,
        ISiloConfig _siloConfig,
        address _siloImpl,
        address _shareProtectedCollateralTokenImpl,
        address _shareDebtTokenImpl
    )
        external;

    /// @notice NFT ownership represents the deployer fee receiver for the each Silo ID.  After burning, 
    /// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
    /// @param _siloIdToBurn silo ID to burn.
    function burn(uint256 _siloIdToBurn) external;

    /// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
    /// Previously deployed SiloConfigs are immutable.
    /// @param _minFee Value of the new DAO minimal fee.
    /// @param _maxFee Value of the new DAO maximal fee.
    function setDaoFee(uint128 _minFee, uint128 _maxFee) external;

    /// @notice Set the new DAO fee receiver.
    /// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
    function setDaoFeeReceiver(address _newDaoFeeReceiver) external;

    /// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
    /// fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxDeployerFee Value of the new max deployer fee.
    function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;

    /// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
    /// fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxFlashloanFee Value of the new max flashloan fee.
    function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;

    /// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
    /// liquidation fee validation. Previously deployed SiloConfigs are immutable.
    /// @param _newMaxLiquidationFee Value of the new max liquidation fee.
    function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
   
    /// @notice Update the base URI.
    /// @param _newBaseURI Value of the new base URI.
    function setBaseURI(string calldata _newBaseURI) external;

    /// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function daoFeeRange() external view returns (Range memory);

    /// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxDeployerFee() external view returns (uint256);

    /// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxFlashloanFee() external view returns (uint256);

    /// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
    function maxLiquidationFee() external view returns (uint256);

    /// @notice The recipient of DAO fees.
    function daoFeeReceiver() external view returns (address);

    /// @notice Get SiloConfig address by Silo id.
    function idToSiloConfig(uint256 _id) external view returns (address);

    /// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
    /// and implementation. Most critical part of verification would be to check who deployed it.
    /// @dev True if the address was deployed using SiloFactory.
    function isSilo(address _silo) external view returns (bool);

    /// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
    /// function call. ID of a first Silo is 1.
    function getNextSiloId() external view returns (uint256);

    /// @notice Get the DAO and deployer fee receivers for a particular Silo address.
    /// @param _silo Silo address.
    /// @return dao DAO fee receiver.
    /// @return deployer Deployer fee receiver.
    function getFeeReceivers(address _silo) external view returns (address dao, address deployer);

    /// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
    /// @param _initData Silo init data.
    function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}

File 29 of 44 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 30 of 44 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 31 of 44 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        /// @solidity memory-safe-assembly
        assembly {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 32 of 44 : ISiloOracle.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface ISiloOracle {
    /// @notice Hook function to call before `quote` function reads price
    /// @dev This hook function can be used to change state right before the price is read. For example it can be used
    ///      for curve read only reentrancy protection. In majority of implementations this will be an empty function.
    ///      WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well.
    /// @param _baseToken Address of priced token
    function beforeQuote(address _baseToken) external;

    /// @return quoteAmount Returns quote price for _baseAmount of _baseToken
    /// @param _baseAmount Amount of priced token
    /// @param _baseToken Address of priced token
    function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount);

    /// @return address of token in which quote (price) is denominated
    function quoteToken() external view returns (address);
}

File 33 of 44 : SiloSolvencyLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";

import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";

library SiloSolvencyLib {
    using Math for uint256;

    struct LtvData {
        ISiloOracle collateralOracle;
        ISiloOracle debtOracle;
        uint256 borrowerProtectedAssets;
        uint256 borrowerCollateralAssets;
        uint256 borrowerDebtAssets;
    }

    uint256 internal constant _PRECISION_DECIMALS = 1e18;
    uint256 internal constant _INFINITY = type(uint256).max;

    /// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio
    /// @param _collateralConfig Configuration data for the collateral
    /// @param _debtConfig Configuration data for the debt
    /// @param _borrower Address of the borrower to check solvency for
    /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
    /// @return True if the borrower is solvent, false otherwise
    function isSolvent(
        ISiloConfig.ConfigData memory _collateralConfig,
        ISiloConfig.ConfigData memory _debtConfig,
        address _borrower,
        ISilo.AccrueInterestInMemory _accrueInMemory
    ) internal view returns (bool) {
        if (_debtConfig.silo == address(0)) return true; // no debt, so solvent

        uint256 ltv = getLtv(
            _collateralConfig,
            _debtConfig,
            _borrower,
            ISilo.OracleType.Solvency,
            _accrueInMemory,
            IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower)
        );

        return ltv <= _collateralConfig.lt;
    }

    /// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV
    /// @param _collateralConfig Configuration data for the collateral
    /// @param _debtConfig Configuration data for the debt
    /// @param _borrower Address of the borrower to check against max LTV
    /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
    /// @return True if the borrower's LTV is below the maximum, false otherwise
    function isBelowMaxLtv(
        ISiloConfig.ConfigData memory _collateralConfig,
        ISiloConfig.ConfigData memory _debtConfig,
        address _borrower,
        ISilo.AccrueInterestInMemory _accrueInMemory
    ) internal view returns (bool) {
        uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower);
        if (debtShareBalance == 0) return true;

        uint256 ltv = getLtv(
            _collateralConfig,
            _debtConfig,
            _borrower,
            ISilo.OracleType.MaxLtv,
            _accrueInMemory,
            debtShareBalance
        );

        return ltv <= _collateralConfig.maxLtv;
    }

    /// @notice Retrieves assets data required for LTV calculations
    /// @param _collateralConfig Configuration data for the collateral
    /// @param _debtConfig Configuration data for the debt
    /// @param _borrower Address of the borrower whose LTV data is to be calculated
    /// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations
    /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
    /// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of
    /// `_borrower` is unknown, simply pass `0`.
    /// @return ltvData Data structure containing necessary data to compute LTV
    function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines
        ISiloConfig.ConfigData memory _collateralConfig,
        ISiloConfig.ConfigData memory _debtConfig,
        address _borrower,
        ISilo.OracleType _oracleType,
        ISilo.AccrueInterestInMemory _accrueInMemory,
        uint256 _debtShareBalanceCached
    ) internal view returns (LtvData memory ltvData) {
        if (_collateralConfig.token != _debtConfig.token) {
            // When calculating maxLtv, use maxLtv oracle.
            (ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv
                ? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle))
                : (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle));
        }

        uint256 totalShares;
        uint256 shares;

        (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
            _collateralConfig.protectedShareToken, _borrower, 0 /* no cache */
        );

        (
            uint256 totalCollateralAssets, uint256 totalProtectedAssets
        ) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage();

        ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets(
            shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected
        );

        (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
            _collateralConfig.collateralShareToken, _borrower, 0 /* no cache */
        );

        totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
            ? SiloStdLib.getTotalCollateralAssetsWithInterest(
                _collateralConfig.silo,
                _collateralConfig.interestRateModel,
                _collateralConfig.daoFee,
                _collateralConfig.deployerFee
            )
            : totalCollateralAssets;

        ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets(
            shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral
        );

        (shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
            _debtConfig.debtShareToken, _borrower, _debtShareBalanceCached
        );

        uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
            ? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel)
            : ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt);

        // BORROW value -> to assets -> UP
        ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets(
            shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt
        );
    }

    /// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower
    /// @param _collateralConfig Configuration data related to the collateral asset
    /// @param _debtConfig Configuration data related to the debt asset
    /// @param _borrower Address of the borrower whose LTV is to be computed
    /// @param _oracleType Oracle type to use for fetching the asset prices
    /// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
    /// @return ltvInDp The computed LTV ratio in 18 decimals precision
    function getLtv(
        ISiloConfig.ConfigData memory _collateralConfig,
        ISiloConfig.ConfigData memory _debtConfig,
        address _borrower,
        ISilo.OracleType _oracleType,
        ISilo.AccrueInterestInMemory _accrueInMemory,
        uint256 _debtShareBalance
    ) internal view returns (uint256 ltvInDp) {
        if (_debtShareBalance == 0) return 0;

        LtvData memory ltvData = getAssetsDataForLtvCalculations(
            _collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance
        );

        if (ltvData.borrowerDebtAssets == 0) return 0;

        (,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token);
    }

    /// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data
    /// @dev calculation never reverts, if there is revert, then it is because of oracle
    /// @param _ltvData Data structure containing relevant information to calculate LTV
    /// @param _collateralToken Address of the collateral token
    /// @param _debtAsset Address of the debt token
    /// @return sumOfBorrowerCollateralValue Total value of borrower's collateral
    /// @return totalBorrowerDebtValue Total debt value for the borrower
    /// @return ltvInDp Calculated LTV in 18 decimal precision
    function calculateLtv(
        SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset)
        internal
        view
        returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp)
    {
        (
            sumOfBorrowerCollateralValue, totalBorrowerDebtValue
        ) = getPositionValues(_ltvData, _collateralToken, _debtAsset);

        if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) {
            return (0, 0, 0);
        } else if (sumOfBorrowerCollateralValue == 0) {
            ltvInDp = _INFINITY;
        } else {
            ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue);
        }
    }

    /// @notice Computes the value of collateral and debt based on given LTV data and asset addresses
    /// @param _ltvData Data structure containing the assets data required for LTV calculations
    /// @param _collateralAsset Address of the collateral asset
    /// @param _debtAsset Address of the debt asset
    /// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral
    /// assets
    /// @return debtValue Total value of debt assets
    function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset)
        internal
        view
        returns (uint256 sumOfCollateralValue, uint256 debtValue)
    {
        uint256 sumOfCollateralAssets;
        
        sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets;

        if (sumOfCollateralAssets != 0) {
            // if no oracle is set, assume price 1, we should also not set oracle for quote token
            sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0)
                ? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset)
                : sumOfCollateralAssets;
        }

        if (_ltvData.borrowerDebtAssets != 0) {
            // if no oracle is set, assume price 1, we should also not set oracle for quote token
            debtValue = address(_ltvData.debtOracle) != address(0)
                ? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset)
                : _ltvData.borrowerDebtAssets;
        }
    }

    function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue)
        internal
        pure
        returns (uint256 ltvInDp)
    {
        ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV);
    }
}

File 34 of 44 : PartialLiquidationLib.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;

import {Math} from "openzeppelin5/utils/math/Math.sol";

import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";

library PartialLiquidationLib {
    using Math for uint256;

    struct LiquidationPreviewParams {
        uint256 collateralLt;
        address collateralConfigAsset;
        address debtConfigAsset;
        uint256 maxDebtToCover;
        uint256 liquidationFee;
        uint256 liquidationTargetLtv;
    }

    /// @dev this is basically LTV == 100%
    uint256 internal constant _BAD_DEBT = 1e18;

    uint256 internal constant _PRECISION_DECIMALS = 1e18;

    /// @dev underestimation for collateral that user gets on liquidation
    /// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
    /// this two conversions are rounding down and can create 2 wai difference
    uint256 internal constant _UNDERESTIMATION = 2;

    /// @dev If the ratio of the repay value to the total debt value during liquidation exceeds the 
    /// _DEBT_DUST_LEVEL threshold, a full liquidation is triggered.
    /// For example, if the total debt value is 51 and the dust level is set at 98%, 
    /// then we are unable to liquidate 50, we must proceed to liquidate the entire 51.
    uint256 internal constant _DEBT_DUST_LEVEL = 0.9e18; // 90%

    /// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
    /// because actual max can be only higher
    /// @notice This method does not check, if user is solvent and it can return non zero result when user solvent
    function maxLiquidation(
        uint256 _sumOfCollateralAssets,
        uint256 _sumOfCollateralValue,
        uint256 _borrowerDebtAssets,
        uint256 _borrowerDebtValue,
        uint256 _liquidationTargetLTV,
        uint256 _liquidationFee
    )
        internal
        pure
        returns (uint256 collateralToLiquidate, uint256 debtToRepay)
    {
        (
            uint256 collateralValueToLiquidate, uint256 repayValue
        ) = maxLiquidationPreview(
            _sumOfCollateralValue,
            _borrowerDebtValue,
            _liquidationTargetLTV,
            _liquidationFee
        );

        collateralToLiquidate = valueToAssetsByRatio(
            collateralValueToLiquidate,
            _sumOfCollateralAssets,
            _sumOfCollateralValue
        );

        if (collateralToLiquidate > _UNDERESTIMATION) {
            // -_UNDERESTIMATION here is to underestimate collateral that user gets on liquidation
            // liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
            // this two conversions are rounding down and can create 2 wei difference

            // we will not underflow on -_UNDERESTIMATION because collateralToLiquidate is >= _UNDERESTIMATION
            unchecked { collateralToLiquidate -= _UNDERESTIMATION; }
        } else {
            collateralToLiquidate = 0;
        }

        debtToRepay = valueToAssetsByRatio(repayValue, _borrowerDebtAssets, _borrowerDebtValue);
    }

    /// @dev in case of bad debt, we do not apply any restrictions.
    /// @notice might revert when one of this values will be zero:
    /// `_sumOfCollateralValue`, `_borrowerDebtAssets`, `_borrowerDebtValue`
    function liquidationPreview( // solhint-disable-line function-max-lines
        uint256 _ltvBefore,
        uint256 _sumOfCollateralAssets,
        uint256 _sumOfCollateralValue,
        uint256 _borrowerDebtAssets,
        uint256 _borrowerDebtValue,
        LiquidationPreviewParams memory _params
    )
        internal
        pure
        returns (uint256 collateralToLiquidate, uint256 debtToRepay, uint256 ltvAfter)
    {
        uint256 collateralValueToLiquidate;
        uint256 debtValueToRepay;

        if (_ltvBefore >= _BAD_DEBT) {
            // in case of bad debt, we allow for any amount
            debtToRepay = _params.maxDebtToCover > _borrowerDebtAssets ? _borrowerDebtAssets : _params.maxDebtToCover;
            debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
        } else {
            uint256 maxRepayValue = estimateMaxRepayValue(
                _borrowerDebtValue,
                _sumOfCollateralValue,
                _params.liquidationTargetLtv,
                _params.liquidationFee
            );

            if (maxRepayValue == _borrowerDebtValue) {
                // forced full liquidation
                debtToRepay = _borrowerDebtAssets;
                debtValueToRepay = _borrowerDebtValue;
            } else {
                // partial liquidation
                uint256 maxDebtToRepay = valueToAssetsByRatio(maxRepayValue, _borrowerDebtAssets, _borrowerDebtValue);
                debtToRepay = _params.maxDebtToCover > maxDebtToRepay ? maxDebtToRepay : _params.maxDebtToCover;
                debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
            }
        }

        collateralValueToLiquidate = calculateCollateralToLiquidate(
            debtValueToRepay, _sumOfCollateralValue, _params.liquidationFee
        );

        collateralToLiquidate = valueToAssetsByRatio(
            collateralValueToLiquidate,
            _sumOfCollateralAssets,
            _sumOfCollateralValue
        );

        ltvAfter = _calculateLtvAfter(
            _sumOfCollateralValue, _borrowerDebtValue, collateralValueToLiquidate, debtValueToRepay
        );
    }

    /// @notice reverts on `_totalValue` == 0
    /// @dev calculate assets based on ratio: assets = (value, totalAssets, totalValue)
    /// to calculate assets => value, use it like: value = (assets, totalValue, totalAssets)
    function valueToAssetsByRatio(uint256 _value, uint256 _totalAssets, uint256 _totalValue)
        internal
        pure
        returns (uint256 assets)
    {
        require(_totalValue != 0, IPartialLiquidation.UnknownRatio());

        assets = _value * _totalAssets / _totalValue;
    }

    /// @notice this function never reverts
    /// @dev in case there is not enough collateral to liquidate, whole collateral is returned, no revert
    /// @param  _totalBorrowerCollateralValue can not be 0, otherwise revert
    function calculateCollateralsToLiquidate(
        uint256 _debtValueToCover,
        uint256 _totalBorrowerCollateralValue,
        uint256 _totalBorrowerCollateralAssets,
        uint256 _liquidationFee
    ) internal pure returns (uint256 collateralAssetsToLiquidate, uint256 collateralValueToLiquidate) {
        collateralValueToLiquidate = calculateCollateralToLiquidate(
            _debtValueToCover, _totalBorrowerCollateralValue, _liquidationFee
        );

        // this is also true if _totalBorrowerCollateralValue == 0, so div below will not revert
        if (collateralValueToLiquidate == _totalBorrowerCollateralValue) {
            return (_totalBorrowerCollateralAssets, _totalBorrowerCollateralValue);
        }

        // this will never revert, because of `if collateralValueToLiquidate == _totalBorrowerCollateralValue`
        collateralAssetsToLiquidate = valueToAssetsByRatio(
            collateralValueToLiquidate, _totalBorrowerCollateralAssets, _totalBorrowerCollateralValue
        );
    }

    /// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LT
    /// where Dv: debt value, Cv: collateral value, LT: expected LT, f: liquidation fee, x: is value we looking for
    /// @notice in case math fail to calculate repay value, eg when collateral is not enough to cover repay and fee
    /// function will return full debt value and full collateral value, it will not revert. It is up to liquidator
    /// to make decision if it will be profitable
    /// @param _totalBorrowerCollateralValue regular and protected
    /// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
    function maxLiquidationPreview(
        uint256 _totalBorrowerCollateralValue,
        uint256 _totalBorrowerDebtValue,
        uint256 _ltvAfterLiquidation,
        uint256 _liquidationFee
    ) internal pure returns (uint256 collateralValueToLiquidate, uint256 repayValue) {
        repayValue = estimateMaxRepayValue(
            _totalBorrowerDebtValue, _totalBorrowerCollateralValue, _ltvAfterLiquidation, _liquidationFee
        );

        collateralValueToLiquidate = calculateCollateralToLiquidate(
            repayValue, _totalBorrowerCollateralValue, _liquidationFee
        );
    }

    /// @param _maxDebtToCover assets or value, but must be in sync with `_totalCollateral`
    /// @param _sumOfCollateral assets or value, but must be in sync with `_maxDebtToCover`
    /// @return toLiquidate depends on inputs, it might be collateral value or collateral assets
    function calculateCollateralToLiquidate(uint256 _maxDebtToCover, uint256 _sumOfCollateral, uint256 _liquidationFee)
        internal
        pure
        returns (uint256 toLiquidate)
    {
        uint256 fee = _maxDebtToCover * _liquidationFee / _PRECISION_DECIMALS;

        toLiquidate = _maxDebtToCover + fee;

        if (toLiquidate > _sumOfCollateral) {
            toLiquidate = _sumOfCollateral;
        }
    }

    /// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LTV
    /// where 
    ///    Dv: debt value,
    ///    Cv: collateral value,
    ///    LTV: expected LTV after liquidation,
    ///    f: liquidation fee,
    ///    x: is value we looking for
    /// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f)
    /// result also take into consideration the dust
    /// @notice protocol does not uses this method, because in protocol our input is debt to cover in assets
    /// however this is useful to figure out what is max debt to cover.
    /// @param _totalBorrowerCollateralValue regular and protected
    /// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
    /// @return repayValue max repay value that is allowed for partial liquidation. if this value equals
    /// `_totalBorrowerDebtValue`, that means dust threshold was triggered and result force to do full liquidation
    function estimateMaxRepayValue( // solhint-disable-line code-complexity
        uint256 _totalBorrowerDebtValue,
        uint256 _totalBorrowerCollateralValue,
        uint256 _ltvAfterLiquidation,
        uint256 _liquidationFee
    ) internal pure returns (uint256 repayValue) {
        if (_totalBorrowerDebtValue == 0) return 0;
        if (_liquidationFee >= _PRECISION_DECIMALS) return 0;

        // this will cover case, when _totalBorrowerCollateralValue == 0
        if (_totalBorrowerDebtValue >= _totalBorrowerCollateralValue) return _totalBorrowerDebtValue;
        if (_ltvAfterLiquidation == 0) return _totalBorrowerDebtValue; // full liquidation

        // x = (Dv - LTV * Cv) / (DP - LTV - LTV * f) ==> (Dv - LTV * Cv) / (DP - (LTV + LTV * f))
        uint256 ltCv = _ltvAfterLiquidation * _totalBorrowerCollateralValue;
        // to lose as low precision as possible, instead of `ltCv/1e18`, we increase precision of DebtValue
        _totalBorrowerDebtValue *= _PRECISION_DECIMALS;

        // negative value means our current LTV is lower than _ltvAfterLiquidation
        if (ltCv >= _totalBorrowerDebtValue) return 0;

        uint256 dividerR; // LTV + LTV * f

        unchecked {
            // safe because of above `LTCv >= _totalBorrowerDebtValue`
            repayValue = _totalBorrowerDebtValue - ltCv;
            // we checked at begin `_liquidationFee >= _PRECISION_DECIMALS`
            // mul on DP will not overflow on uint256, div is safe
            dividerR = _ltvAfterLiquidation + _ltvAfterLiquidation * _liquidationFee / _PRECISION_DECIMALS;
        }

        // now we can go back to proper precision
        unchecked { _totalBorrowerDebtValue /= _PRECISION_DECIMALS; }

        // if dividerR is more than 100%, means it is impossible to go down to _ltvAfterLiquidation, return all
        if (dividerR >= _PRECISION_DECIMALS) {
             return _totalBorrowerDebtValue;
        }

        unchecked { repayValue /= (_PRECISION_DECIMALS - dividerR); }

        // early return so we do not have to check for dust
        if (repayValue > _totalBorrowerDebtValue) return _totalBorrowerDebtValue;

        // here is weird case, sometimes it is impossible to go down to target LTV, however math can calculate it
        // eg with negative numerator and denominator and result will be positive, that's why we simply return all
        // we also cover dust case here
        return repayValue * _PRECISION_DECIMALS / _totalBorrowerDebtValue > _DEBT_DUST_LEVEL
            ? _totalBorrowerDebtValue
            : repayValue;
    }

    /// @dev protected collateral is prioritized
    /// @param _borrowerProtectedAssets available users protected collateral
    function splitReceiveCollateralToLiquidate(uint256 _collateralToLiquidate, uint256 _borrowerProtectedAssets)
        internal
        pure
        returns (uint256 withdrawAssetsFromCollateral, uint256 withdrawAssetsFromProtected)
    {
        if (_collateralToLiquidate == 0) return (0, 0);

        unchecked {
            (
                withdrawAssetsFromCollateral, withdrawAssetsFromProtected
            ) = _collateralToLiquidate > _borrowerProtectedAssets
                // safe to uncheck because of above condition
                ? (_collateralToLiquidate - _borrowerProtectedAssets, _borrowerProtectedAssets)
                : (0, _collateralToLiquidate);
        }
    }

    /// @notice must stay private because this is not for general LTV, only for ltv after internally
    function _calculateLtvAfter(
        uint256 _sumOfCollateralValue,
        uint256 _totalDebtValue,
        uint256 _collateralValueToLiquidate,
        uint256 _debtValueToCover
    )
        private
        pure
        returns (uint256 ltvAfterLiquidation)
    {
        if (_sumOfCollateralValue <= _collateralValueToLiquidate || _totalDebtValue <= _debtValueToCover) {
            return 0;
        }

        unchecked { // all subs are safe because these values are chunks of total, so we will not underflow
            ltvAfterLiquidation = _ltvAfter(
                _sumOfCollateralValue - _collateralValueToLiquidate,
                _totalDebtValue - _debtValueToCover
            );
        }
    }

    /// @notice must stay private because this is not for general LTV, only for ltv after
    function _ltvAfter(uint256 _collateral, uint256 _debt) private pure returns (uint256 ltv) {
        // previous calculation of LTV
        ltv = _debt * _PRECISION_DECIMALS;
        ltv = Math.ceilDiv(ltv, _collateral); // Rounding.LTV is up/ceil
    }
}

File 35 of 44 : IERC3156FlashBorrower.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IERC3156FlashBorrower {
    /// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
    /// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
    /// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
    /// @dev Receive a flash loan.
    /// @param _initiator The initiator of the loan.
    /// @param _token The loan currency.
    /// @param _amount The amount of tokens lent.
    /// @param _fee The additional amount of tokens to repay.
    /// @param _data Arbitrary data structure, intended to contain user-defined parameters.
    /// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
    function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
        external
        returns (bytes32);
}

File 36 of 44 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../token/ERC721/IERC721.sol";

File 37 of 44 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 38 of 44 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();
}

File 39 of 44 : Panic.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 40 of 44 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

File 41 of 44 : SiloStdLib.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;

import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";

import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {SiloMathLib} from "./SiloMathLib.sol";

library SiloStdLib {
    using SafeERC20 for IERC20;

    uint256 internal constant _PRECISION_DECIMALS = 1e18;

    /// @notice Returns flash fee amount
    /// @param _config address of config contract for Silo
    /// @param _token for which fee is calculated
    /// @param _amount for which fee is calculated
    /// @return fee flash fee amount
    function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) {
        if (_amount == 0) return 0;

        // all user set fees are in 18 decimals points
        (,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this));
        require(_token == asset, ISilo.Unsupported());
        if (flashloanFee == 0) return 0;

        fee = _amount * flashloanFee / _PRECISION_DECIMALS;

        // round up
        if (fee == 0) return 1;
    }

    /// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares)
    /// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on
    ///      updated numbers, interest should be added on the fly.
    /// @param _configData for a single token for which to do calculations
    /// @param _assetType used to read proper storage data
    /// @return totalAssets total assets in Silo with interest for given asset type
    /// @return totalShares total shares in Silo for given asset type
    function getTotalAssetsAndTotalSharesWithInterest(
        ISiloConfig.ConfigData memory _configData,
        ISilo.AssetType _assetType
    )
        internal
        view
        returns (uint256 totalAssets, uint256 totalShares)
    {
        if (_assetType == ISilo.AssetType.Protected) {
            totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected);
            totalShares = IShareToken(_configData.protectedShareToken).totalSupply();
        } else if (_assetType == ISilo.AssetType.Collateral) {
            totalAssets = getTotalCollateralAssetsWithInterest(
                _configData.silo,
                _configData.interestRateModel,
                _configData.daoFee,
                _configData.deployerFee
            );

            totalShares = IShareToken(_configData.collateralShareToken).totalSupply();
        } else { // ISilo.AssetType.Debt
            totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel);
            totalShares = IShareToken(_configData.debtShareToken).totalSupply();
        }
    }

    /// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset
    /// @param _silo Silo address
    /// @return daoFeeReceiver Address of the DAO fee receiver
    /// @return deployerFeeReceiver Address of the deployer fee receiver
    /// @return daoFee DAO fee amount in 18 decimals points
    /// @return deployerFee Deployer fee amount in 18 decimals points
    /// @return asset Address of the associated asset
    function getFeesAndFeeReceiversWithAsset(ISilo _silo)
        internal
        view
        returns (
            address daoFeeReceiver,
            address deployerFeeReceiver,
            uint256 daoFee,
            uint256 deployerFee,
            address asset
        )
    {
        (daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo));
        (daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo));
    }

    /// @notice Calculates the total collateral assets with accrued interest
    /// @dev Do not use this method when accrueInterest were executed already, in that case total does not change
    /// @param _silo Address of the silo contract
    /// @param _interestRateModel Interest rate model to fetch compound interest rates
    /// @param _daoFee DAO fee in 18 decimals points
    /// @param _deployerFee Deployer fee in 18 decimals points
    /// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest
    function getTotalCollateralAssetsWithInterest(
        address _silo,
        address _interestRateModel,
        uint256 _daoFee,
        uint256 _deployerFee
    ) internal view returns (uint256 totalCollateralAssetsWithInterest) {
        uint256 rcomp;

        try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
            rcomp = r;
        } catch {
            // do not lock silo
        }

        (uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage();

        (totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest(
            collateralAssets, debtAssets, rcomp, _daoFee, _deployerFee
        );
    }

    /// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0`
    function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached)
        internal
        view
        returns (uint256 shares, uint256 totalSupply)
    {
        if (_balanceCached == 0) {
            (shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner);
        } else {
            shares = _balanceCached;
            totalSupply = IShareToken(_shareToken).totalSupply();
        }
    }

    /// @notice Calculates the total debt assets with accrued interest
    /// @param _silo Address of the silo contract
    /// @param _interestRateModel Interest rate model to fetch compound interest rates
    /// @return totalDebtAssetsWithInterest Accumulated debt amount with interest
    function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel)
        internal
        view
        returns (uint256 totalDebtAssetsWithInterest)
    {
        uint256 rcomp;

        try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
            rcomp = r;
        } catch {
            // do not lock silo
        }

        (
            totalDebtAssetsWithInterest,
        ) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp);
    }
}

File 42 of 44 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 43 of 44 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 44 of 44 : IInterestRateModel.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;

interface IInterestRateModel {
    event InterestRateModelError();

    /// @dev Sets config address for all Silos that will use this model
    /// @param _irmConfig address of IRM config contract
    function initialize(address _irmConfig) external;

    /// @dev get compound interest rate and update model storage for current block.timestamp
    /// @param _collateralAssets total silo collateral assets
    /// @param _debtAssets total silo debt assets
    /// @param _interestRateTimestamp last IRM timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    function getCompoundInterestRateAndUpdate(
        uint256 _collateralAssets,
        uint256 _debtAssets,
        uint256 _interestRateTimestamp
    )
        external
        returns (uint256 rcomp);

    /// @dev get compound interest rate
    /// @param _silo address of Silo for which interest rate should be calculated
    /// @param _blockTimestamp current block timestamp
    /// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
    function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        returns (uint256 rcomp);

    /// @dev get current annual interest rate
    /// @param _silo address of Silo for which interest rate should be calculated
    /// @param _blockTimestamp current block timestamp
    /// @return rcur current annual interest rate (1e18 == 100%)
    function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
        external
        view
        returns (uint256 rcur);

    /// @dev returns decimal points used by model
    function decimals() external view returns (uint256);
}

Settings
{
  "remappings": [
    "forge-std/=gitmodules/forge-std/src/",
    "silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
    "properties/=gitmodules/crytic/properties/contracts/",
    "silo-core/=silo-core/",
    "silo-oracles/=silo-oracles/",
    "silo-vaults/=silo-vaults/",
    "ve-silo/=ve-silo/",
    "@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/",
    "morpho-blue/=gitmodules/morpho-blue/src/",
    "openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
    "openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
    "chainlink/=gitmodules/chainlink/contracts/src/",
    "chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
    "uniswap/=gitmodules/uniswap/",
    "@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
    "balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/",
    "balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/",
    "balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/",
    "@balancer-labs/=node_modules/@balancer-labs/",
    "@ensdomains/=node_modules/@ensdomains/",
    "@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
    "@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/",
    "@solidity-parser/=node_modules/@solidity-parser/",
    "ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
    "crytic/=gitmodules/crytic/",
    "ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
    "halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
    "hardhat/=node_modules/hardhat/",
    "openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
    "openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
    "openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/",
    "prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/",
    "proposals/=node_modules/proposals/",
    "solmate/=gitmodules/crytic/properties/lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AlreadyConfigured","type":"error"},{"inputs":[],"name":"CantRemoveActiveGauge","type":"error"},{"inputs":[],"name":"EmptyGaugeAddress","type":"error"},{"inputs":[],"name":"EmptySiloConfig","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FullLiquidationRequired","type":"error"},{"inputs":[],"name":"GaugeAlreadyConfigured","type":"error"},{"inputs":[],"name":"GaugeIsNotConfigured","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidShareToken","type":"error"},{"inputs":[],"name":"NoDebtToCover","type":"error"},{"inputs":[],"name":"NoRepayAssets","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"RequestNotSupported","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UnexpectedCollateralToken","type":"error"},{"inputs":[],"name":"UnexpectedDebtToken","type":"error"},{"inputs":[],"name":"UnknownRatio","type":"error"},{"inputs":[],"name":"UserIsSolvent","type":"error"},{"inputs":[],"name":"WrongGaugeShareToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"gauge","type":"address"},{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"silo","type":"address"},{"indexed":false,"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"indexed":false,"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"name":"HookConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"liquidator","type":"address"},{"indexed":true,"internalType":"address","name":"silo","type":"address"},{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"repayDebtAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"indexed":false,"internalType":"bool","name":"receiveSToken","type":"bool"}],"name":"LiquidationCall","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_action","type":"uint256"},{"internalType":"bytes","name":"_inputAndOutput","type":"bytes"}],"name":"afterAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"beforeAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"name":"configuredGauges","outputs":[{"internalType":"contract IGaugeLike","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"contract IGaugeLike","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"}],"name":"hookReceiverConfig","outputs":[{"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ISiloConfig","name":"_siloConfig","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralAsset","type":"address"},{"internalType":"address","name":"_debtAsset","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxDebtToCover","type":"uint256"},{"internalType":"bool","name":"_receiveSToken","type":"bool"}],"name":"liquidationCall","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxLiquidation","outputs":[{"internalType":"uint256","name":"collateralToLiquidate","type":"uint256"},{"internalType":"uint256","name":"debtToRepay","type":"uint256"},{"internalType":"bool","name":"sTokenRequired","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"removeGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IGaugeLike","name":"_gauge","type":"address"},{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"setGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"shareToken","outputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"siloConfig","outputs":[{"internalType":"contract ISiloConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561000f575f5ffd5b50338061003557604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61003e81610055565b50610047610071565b6100505f610055565b610173565b600380546001600160a01b031916905561006e81610122565b50565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff16156100c15760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b039081161461006e5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a150565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b61339e806101805f395ff3fe608060405234801561000f575f5ffd5b5060043610610105575f3560e01c8063a37d94111161009e578063d1f578941161006e578063d1f578941461023b578063d714fd191461024e578063e30c397814610260578063e4784fa914610271578063f2fde38b146102db575f5ffd5b8063a37d9411146101bd578063a6f19c84146101e5578063aef28235146101f8578063bd02d8481461020b575f5ffd5b80636c9fa59e116100d95780636c9fa59e14610171578063715018a61461019c57806379ba5097146101a45780638da5cb5b146101ac575f5ffd5b8062a718a914610109578063237e6d641461013657806335cb10991461014b5780633a0451451461015e575b5f5ffd5b61011c610117366004612d5e565b6102ee565b604080519283526020830191909152015b60405180910390f35b610149610144366004612dc2565b610824565b005b610149610159366004612e37565b610a25565b61014961016c366004612e8f565b610a3e565b600554610184906001600160a01b031681565b6040516001600160a01b03909116815260200161012d565b610149610be5565b610149610bf8565b6002546001600160a01b0316610184565b6101846101cb366004612e8f565b60066020525f90815260409020546001600160a01b031681565b600454610184906001600160a01b031681565b610149610206366004612e37565b610c41565b61021e610219366004612e8f565b610ddd565b60408051938452602084019290925215159082015260600161012d565b610149610249366004612eaa565b610e04565b5f54610184906001600160a01b031681565b6003546001600160a01b0316610184565b6102bf61027f366004612e8f565b6001600160a01b03165f9081526001602090815260409182902082518084019093525462ffffff8082168085526301000000909204169290910182905291565b6040805162ffffff93841681529290911660208301520161012d565b6101496102e9366004612e8f565b610f54565b5f805481906001600160a01b03168061031a576040516379c39cf960e01b815260040160405180910390fd5b845f0361033a576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610372575f5ffd5b505af1158015610384573d5f5f3e3d5ffd5b505050505f5f610396838b8b8b610fc5565b915091505f5f5f5f5f6103b187878f8f8b6101a001516111e2565b909b50919450925090506103c48161127f565b8b8911156103e55760405163d65db62d60e01b815260040160405180910390fd5b60608601516103ff906001600160a01b031633308c6112c4565b61042586604001518a88606001516001600160a01b031661132b9092919063ffffffff16565b5f8b6104315730610433565b335b905061044c88604001518f83878c60a0015160016113b2565b955061046488604001518f83868c608001515f6113b2565b945050876001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561049f575f5ffd5b505af11580156104b1573d5f5f3e3d5ffd5b5050505085604001516001600160a01b031663acb708158a8f6040518363ffffffff1660e01b81526004016104f99291909182526001600160a01b0316602082015260400190565b6020604051808303815f875af1158015610515573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105399190612efb565b508a1561063c5784156105bb5786604001516001600160a01b031663a7d6e44b8660016040518363ffffffff1660e01b8152600401610579929190612f3a565b602060405180830381865afa158015610594573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105b89190612efb565b99505b83156106375786604001516001600160a01b031663a7d6e44b855f6040518363ffffffff1660e01b81526004016105f3929190612f3a565b602060405180830381865afa15801561060e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106329190612efb565b8a0199505b61073d565b84156106bc5786604001516001600160a01b031663da53766086333060016040518563ffffffff1660e01b81526004016106799493929190612f4e565b6020604051808303815f875af1158015610695573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106b99190612efb565b99505b831561073d5786604001516001600160a01b031663da5376608533305f6040518563ffffffff1660e01b81526004016106f89493929190612f4e565b6020604051808303815f875af1158015610714573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107389190612efb565b8a0199505b5f6040518060c00160405280336001600160a01b0316815260200188604001516001600160a01b031681526020018f6001600160a01b031681526020018b81526020018c81526020018d1515815250905080604001516001600160a01b031681602001516001600160a01b0316825f01516001600160a01b03167f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a9846060015185608001518660a001516040516108099392919092835260208301919091521515604082015260600190565b60405180910390a45050505050505050509550959350505050565b61082c611517565b6001600160a01b0382166108535760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316632ad87c6f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610899573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108bd9190612f89565b6001600160a01b0316146108e45760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f9081526006602052604090205416801561091d5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa15801561095a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061097e9190612f89565b90505f61098b8285611544565b90505f6109978361164d565b905061040082176109a782821790565b91506109b4845f84611673565b6001600160a01b038681165f8181526006602090815260409182902080546001600160a01b0319168c86161790556004548251941684528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b604051632a188cb160e21b815260040160405180910390fd5b610a46611517565b6001600160a01b038082165f908152600660205260409020541680610a7e57604051632e77844760e21b815260040160405180910390fd5b806001600160a01b0316639c868ac06040518163ffffffff1660e01b8152600401602060405180830381865afa158015610aba573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ade9190612faf565b610afb57604051630d0ab16560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b5c9190612f89565b90505f610b698285611544565b90505f610b758361164d565b8219169050610b85835f83611673565b6001600160a01b0385165f8181526006602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050505050565b610bed611517565b610bf65f611756565b565b60035433906001600160a01b03168114610c355760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610c3e81611756565b50565b335f908152600660205260409020546001600160a01b031680610c7757604051632e77844760e21b815260040160405180910390fd5b806001600160a01b0316639c868ac06040518163ffffffff1660e01b8152600401602060405180830381865afa158015610cb3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cd79190612faf565b15610ce25750610dd7565b610cf584610cef8761164d565b81161490565b610cff5750610dd7565b5f610d3e84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061176f92505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015f604051808303815f87803b158015610dbe575f5ffd5b505af1158015610dd0573d5f5f3e3d5ffd5b5050505050505b50505050565b5f805481908190610df7906001600160a01b031685611813565b9250925092509193909250565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f81158015610e495750825b90505f8267ffffffffffffffff166001148015610e655750303b155b905081158015610e73575080155b15610e915760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff191660011785558315610ebb57845460ff60401b1916600160401b1785555b5f610ec887890189612e8f565b90506001600160a01b038116610ef1576040516354a4010f60e01b815260040160405180910390fd5b610efa896119fa565b610f0381611756565b508315610f4a57845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b610f5c611517565b600380546001600160a01b0383166001600160a01b03199091168117909155610f8d6002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b610fcd612cb2565b610fd5612cb2565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa15801561101a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061103e9190613118565b604081015191935091506001600160a01b031661106e57604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b0316146110a45760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b0316146110da5760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af115801561111b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061113f9190612efb565b5080604001516001600160a01b031682604001516001600160a01b0316146111d95781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af11580156111a2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111c69190612efb565b506111d082611a6b565b6111d981611a6b565b94509492505050565b5f5f5f5f5f6111f58a8a8a5f5f5f611af1565b90505f611252826040518060c001604052808e610160015181526020018e606001516001600160a01b031681526020018d606001516001600160a01b031681526020018b81526020018a81526020018e6101800151815250611d6e565b6040850151919650945090915061126a908290611e7f565b909c909b509399509197509195505050505050565b6001600160e01b031981165f036112935750565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b6040516001600160a01b038481166024830152838116604483015260648201839052610dd79186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050611eb2565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611378573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061139c9190612efb565b9050610dd784846113ad8585613161565b611f18565b5f835f036113c157505f61150d565b61149784886001600160a01b031663b6d821c7856040518263ffffffff1660e01b81526004016113f19190613174565b602060405180830381865afa15801561140c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114309190612efb565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561146c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114909190612efb565b5f86611fa7565b9050805f036114a757505f61150d565b604051633661585b60e21b81526001600160a01b03878116600483015286811660248301526044820183905284169063d985616c906064015f604051808303815f87803b1580156114f6575f5ffd5b505af1158015611508573d5f5f3e3d5ffd5b505050505b9695505050505050565b6002546001600160a01b03163314610bf65760405163118cdaa760e01b8152336004820152602401610c2c565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa158015611592573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115b6919061318e565b925092509250816001600160a01b0316856001600160a01b0316036115e2576108009350505050611647565b826001600160a01b0316856001600160a01b031603611608576110009350505050611647565b806001600160a01b0316856001600160a01b03160361162e576120009350505050611647565b60405163d938fa3760e01b815260040160405180910390fd5b92915050565b6001600160a01b03165f908152600160205260409020546301000000900462ffffff1690565b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561173b575f5ffd5b505af115801561174d573d5f5f3e3d5ffd5b50505050505050565b600380546001600160a01b0319169055610c3e81611fe4565b6117b46040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b6040516394c0527d60e01b81526001600160a01b0382811660048301525f918291829182918291908816906394c0527d9060240161044060405180830381865afa158015611863573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118879190613118565b604081015191935091506001600160a01b03166118ae575f5f5f94509450945050506119f3565b5f6118be8383895f60015f611af1565b905080608001515f036118dc575f5f5f9550955095505050506119f3565b5f5f6118f18386606001518660600151612035565b915091505f8360600151846040015161190a9190613161565b9050825f0361192b578084608001515f9850985098505050505050506119f3565b5f611936838561218b565b90508661016001518111611959575f5f5f995099509950505050505050506119f3565b61197582858760800151868b61018001518c6101a001516121a8565b809a50819b5050505f60028b01905087604001516001600160a01b0316630910a5106040518163ffffffff1660e01b8152600401602060405180830381865afa1580156119c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119e89190612efb565b109750505050505050505b9250925092565b6001600160a01b038116611a21576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b031615611a4a576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b8061020001518015611a89575060e08101516001600160a01b031615155b15610c3e5760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015611ad8575f5ffd5b505af1158015611aea573d5f5f3e3d5ffd5b5050505050565b611b306040518060a001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81525090565b85606001516001600160a01b031687606001516001600160a01b031614611b9a576001846001811115611b6557611b65612f12565b14611b79578660e001518660e00151611b86565b8661010001518661010001515b6001600160a01b0390811660208401521681525b5f5f611bab8960800151885f6121fb565b80935081925050505f5f8a604001516001600160a01b031663ffbaaf7a6040518163ffffffff1660e01b81526004016040805180830381865afa158015611bf4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c1891906131d8565b91509150611c298382865f5f6122e3565b604086015260a08b0151611c3e908a5f6121fb565b945092506001876001811115611c5657611c56612f12565b14611c615781611c7d565b611c7d8b604001518c61012001518d5f01518e60200151612312565b9150611c8d8383865f60016122e3565b606086015260c08a0151611ca2908a886121fb565b945092505f6001886001811115611cbb57611cbb612f12565b14611d35578a604001516001600160a01b031663b6d821c760026040518263ffffffff1660e01b8152600401611cf19190613174565b602060405180830381865afa158015611d0c573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d309190612efb565b611d48565b611d488b604001518c6101200151612408565b9050611d59848287600160026122e3565b608087015250939a9950505050505050505050565b5f5f5f5f85604001518660600151611d869190613161565b905085608001515f1480611d9c57506060850151155b15611db757505f92508291506317ff0e0960e11b90506119f3565b805f03611dee575f8660800151866060015111611dd8578560600151611dde565b86608001515b5f60e01b935093509350506119f3565b5f5f5f611e048989602001518a604001516124fb565b92509250925080885f015110611e2e57505f9550859450632f13551560e11b93506119f392505050565b5f611e418286868d60800151878e612551565b91995097509050871580611e53575086155b15611e7357505f965086955063676a56f360e11b94506119f39350505050565b50505050509250925092565b5f5f835f03611e9257505f905080611eab565b828411611ea0575f84611ea5565b828403835b90925090505b9250929050565b5f611ec66001600160a01b0384168361262b565b905080515f14158015611eea575080806020019051810190611ee89190612faf565b155b15611f1357604051635274afe760e01b81526001600160a01b0384166004820152602401610c2c565b505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052611f698482612638565b610dd7576040516001600160a01b0384811660248301525f6044830152611f9d91869182169063095ea7b3906064016112f9565b610dd78482611eb2565b5f5f5f611fb58787866126d5565b91509150815f03611fca578792505050611fdb565b611fd688838388612730565b925050505b95945050505050565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f5f8560600151866040015161204c9190613161565b905080156120de5785516001600160a01b031661206957806120db565b85516040516313b0be3360e01b8152600481018390526001600160a01b038781166024830152909116906313b0be3390604401602060405180830381865afa1580156120b7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120db9190612efb565b92505b6080860151156121825760208601516001600160a01b031661210457856080015161217f565b602086015160808701516040516313b0be3360e01b815260048101919091526001600160a01b038681166024830152909116906313b0be3390604401602060405180830381865afa15801561215b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061217f9190612efb565b91505b50935093915050565b5f6121a183670de0b6b3a7640000846001612730565b9392505050565b5f5f5f5f6121b88988888861277d565b915091506121c7828b8b6127a3565b935060028411156121dd576002840393506121e1565b5f93505b6121ec8189896127a3565b92505050965096945050505050565b5f5f825f036122755760405163dce5c2db60e01b81526001600160a01b03858116600483015286169063dce5c2db906024016040805180830381865afa158015612247573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061226b91906131d8565b90925090506122db565b829150846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156122b4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906122d89190612efb565b90505b935093915050565b5f5f5f6122f18787866126d5565b91509150815f03612306578792505050611fdb565b611fd688828488612730565b6040516367efe7fd60e11b81526001600160a01b0385811660048301524260248301525f91829186169063cfdfcffa90604401602060405180830381865afa92505050801561237e575060408051601f3d908101601f1916820190925261237b91810190612efb565b60015b156123865790505b5f5f876001600160a01b03166339c5c5056040518163ffffffff1660e01b81526004016040805180830381865afa1580156123c3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123e791906131d8565b915091506123f882828589896127d9565b50919a9950505050505050505050565b6040516367efe7fd60e11b81526001600160a01b0383811660048301524260248301525f91829184169063cfdfcffa90604401602060405180830381865afa925050508015612474575060408051601f3d908101601f1916820190925261247191810190612efb565b60015b1561247c5790505b60405163b6d821c760e01b81526124f2906001600160a01b0386169063b6d821c7906124ad90600290600401613174565b602060405180830381865afa1580156124c8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906124ec9190612efb565b8261283f565b50949350505050565b5f5f5f612509868686612035565b90935091508215801561251a575081155b1561252c57505f915081905080612548565b825f0361253b57505f19612548565b612545828461218b565b90505b93509350939050565b5f5f5f5f5f670de0b6b3a76400008b10612590578786606001511161257a57856060015161257c565b875b935061258984888a6127a3565b90506125f1565b5f6125a5888b8960a001518a60800151612887565b90508781036125b9578894508791506125ef565b5f6125c5828b8b6127a3565b9050808860600151116125dc5787606001516125de565b805b95506125eb868a8c6127a3565b9250505b505b612600818a8860800151612990565b915061260d828b8b6127a3565b945061261b898884846129d1565b9250505096509650969350505050565b60606121a183835f6129fb565b5f5f5f846001600160a01b03168460405161265391906131fa565b5f604051808303815f865af19150503d805f811461268c576040519150601f19603f3d011682016040523d82523d5f602084013e612691565b606091505b50915091508180156126bb5750805115806126bb5750808060200190518101906126bb9190612faf565b8015611fdb5750505050506001600160a01b03163b151590565b5f5f835f036126e2575f94505b60028360028111156126f6576126f6612f12565b14612721576127076003600a6132eb565b6127119085613161565b61271c866001613161565b612724565b83855b90969095509350505050565b5f61275d61273d83612a91565b801561275857505f8480612753576127536132f6565b868809115b151590565b612768868686612abd565b6127729190613161565b90505b949350505050565b5f5f61278b85878686612887565b9050612798818785612990565b915094509492505050565b5f815f036127c45760405163658c7bff60e11b815260040160405180910390fd5b816127cf848661330a565b6127759190613321565b5f5f5f5f6127e7888861283f565b90935090508585016128028282670de0b6b3a7640000612b7a565b92505f61280f8484613334565b90505f61281d8c5f19613334565b90508181101561282b578091505b818c01965050505095509550955095915050565b5f8083158061284c575082155b1561285b57508290505f611eab565b61286e8484670de0b6b3a7640000612b7a565b9050808401915083821015611eab575091925f92509050565b5f845f0361289657505f612775565b670de0b6b3a764000082106128ac57505f612775565b8385106128ba575083612775565b825f036128c8575083612775565b5f6128d3858561330a565b90506128e7670de0b6b3a76400008761330a565b95508581106128f9575f915050612775565b670de0b6b3a76400008087049682900392508385028190048501908110612924578692505050612775565b80670de0b6b3a764000003838161293d5761293d6132f6565b04925086831115612952578692505050612775565b670c7d713b49da00008761296e670de0b6b3a76400008661330a565b6129789190613321565b116129835782612985565b865b979650505050505050565b5f80670de0b6b3a76400006129a5848761330a565b6129af9190613321565b90506129bb8186613161565b9150838211156129c9578391505b509392505050565b5f82851115806129e15750818411155b156129ed57505f612775565b612772838603838603612bc2565b606081471015612a275760405163cf47918160e01b815247600482015260248101839052604401610c2c565b5f5f856001600160a01b03168486604051612a4291906131fa565b5f6040518083038185875af1925050503d805f8114612a7c576040519150601f19603f3d011682016040523d82523d5f602084013e612a81565b606091505b509150915061150d868383612be1565b5f6002826003811115612aa657612aa6612f12565b612ab09190613347565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03612af157838281612ae757612ae76132f6565b04925050506121a1565b808411612b0f57612b0f8415612b08576011612c3d565b6012612c3d565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f835f03612b8957505f6121a1565b5082820282848281612b9d57612b9d6132f6565b0414612baa57505f6121a1565b818181612bb957612bb96132f6565b04949350505050565b5f612bd5670de0b6b3a76400008361330a565b90506121a18184612c4e565b606082612bf657612bf182612c89565b6121a1565b8151158015612c0d57506001600160a01b0384163b155b15612c3657604051639996b31560e01b81526001600160a01b0385166004820152602401610c2c565b50806121a1565b634e487b715f52806020526024601cfd5b5f815f03612c6057612c606012612c3d565b8215612c8157816001840381612c7857612c786132f6565b046001016121a1565b505f92915050565b805115612c995780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114610c3e575f5ffd5b8015158114610c3e575f5ffd5b5f5f5f5f5f60a08688031215612d72575f5ffd5b8535612d7d81612d3d565b94506020860135612d8d81612d3d565b93506040860135612d9d81612d3d565b9250606086013591506080860135612db481612d51565b809150509295509295909350565b5f5f60408385031215612dd3575f5ffd5b8235612dde81612d3d565b91506020830135612dee81612d3d565b809150509250929050565b5f5f83601f840112612e09575f5ffd5b50813567ffffffffffffffff811115612e20575f5ffd5b602083019150836020828501011115611eab575f5ffd5b5f5f5f5f60608587031215612e4a575f5ffd5b8435612e5581612d3d565b935060208501359250604085013567ffffffffffffffff811115612e77575f5ffd5b612e8387828801612df9565b95989497509550505050565b5f60208284031215612e9f575f5ffd5b81356121a181612d3d565b5f5f5f60408486031215612ebc575f5ffd5b8335612ec781612d3d565b9250602084013567ffffffffffffffff811115612ee2575f5ffd5b612eee86828701612df9565b9497909650939450505050565b5f60208284031215612f0b575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b60028110612f3657612f36612f12565b9052565b828152604081016121a16020830184612f26565b8481526001600160a01b0384811660208301528316604082015260808101611fdb6060830184612f26565b8051612f8481612d3d565b919050565b5f60208284031215612f99575f5ffd5b81516121a181612d3d565b8051612f8481612d51565b5f60208284031215612fbf575f5ffd5b81516121a181612d51565b604051610220810167ffffffffffffffff81118282101715612ffa57634e487b7160e01b5f52604160045260245ffd5b60405290565b5f6102208284031215613011575f5ffd5b613019612fca565b8251815260208084015190820152905061303560408301612f79565b604082015261304660608301612f79565b606082015261305760808301612f79565b608082015261306860a08301612f79565b60a082015261307960c08301612f79565b60c082015261308a60e08301612f79565b60e082015261309c6101008301612f79565b6101008201526130af6101208301612f79565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526130f96101e08301612f79565b6101e082015261310c6102008301612fa4565b61020082015292915050565b5f5f610440838503121561312a575f5ffd5b6131348484613000565b9150613144846102208501613000565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156116475761164761314d565b602081016003831061318857613188612f12565b91905290565b5f5f5f606084860312156131a0575f5ffd5b83516131ab81612d3d565b60208501519093506131bc81612d3d565b60408501519092506131cd81612d3d565b809150509250925092565b5f5f604083850312156131e9575f5ffd5b505080516020909101519092909150565b5f82518060208501845e5f920191825250919050565b6001815b60018411156122db5780850481111561322f5761322f61314d565b600184161561323d57908102905b60019390931c928002613214565b5f8261325957506001611647565b8161326557505f611647565b816001811461327b5760028114613285576132a1565b6001915050611647565b60ff8411156132965761329661314d565b50506001821b611647565b5060208310610133831016604e8410600b84101617156132c4575081810a611647565b6132d05f198484613210565b805f19048211156132e3576132e361314d565b029392505050565b5f6121a1838361324b565b634e487b7160e01b5f52601260045260245ffd5b80820281158282048414176116475761164761314d565b5f8261332f5761332f6132f6565b500490565b818103818111156116475761164761314d565b5f60ff831680613359576133596132f6565b8060ff8416069150509291505056fea264697066735822122081369fcf87abbe4cbe73a75a3975275918be964a3bd35da3f00eba0edcc8900764736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610105575f3560e01c8063a37d94111161009e578063d1f578941161006e578063d1f578941461023b578063d714fd191461024e578063e30c397814610260578063e4784fa914610271578063f2fde38b146102db575f5ffd5b8063a37d9411146101bd578063a6f19c84146101e5578063aef28235146101f8578063bd02d8481461020b575f5ffd5b80636c9fa59e116100d95780636c9fa59e14610171578063715018a61461019c57806379ba5097146101a45780638da5cb5b146101ac575f5ffd5b8062a718a914610109578063237e6d641461013657806335cb10991461014b5780633a0451451461015e575b5f5ffd5b61011c610117366004612d5e565b6102ee565b604080519283526020830191909152015b60405180910390f35b610149610144366004612dc2565b610824565b005b610149610159366004612e37565b610a25565b61014961016c366004612e8f565b610a3e565b600554610184906001600160a01b031681565b6040516001600160a01b03909116815260200161012d565b610149610be5565b610149610bf8565b6002546001600160a01b0316610184565b6101846101cb366004612e8f565b60066020525f90815260409020546001600160a01b031681565b600454610184906001600160a01b031681565b610149610206366004612e37565b610c41565b61021e610219366004612e8f565b610ddd565b60408051938452602084019290925215159082015260600161012d565b610149610249366004612eaa565b610e04565b5f54610184906001600160a01b031681565b6003546001600160a01b0316610184565b6102bf61027f366004612e8f565b6001600160a01b03165f9081526001602090815260409182902082518084019093525462ffffff8082168085526301000000909204169290910182905291565b6040805162ffffff93841681529290911660208301520161012d565b6101496102e9366004612e8f565b610f54565b5f805481906001600160a01b03168061031a576040516379c39cf960e01b815260040160405180910390fd5b845f0361033a576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610372575f5ffd5b505af1158015610384573d5f5f3e3d5ffd5b505050505f5f610396838b8b8b610fc5565b915091505f5f5f5f5f6103b187878f8f8b6101a001516111e2565b909b50919450925090506103c48161127f565b8b8911156103e55760405163d65db62d60e01b815260040160405180910390fd5b60608601516103ff906001600160a01b031633308c6112c4565b61042586604001518a88606001516001600160a01b031661132b9092919063ffffffff16565b5f8b6104315730610433565b335b905061044c88604001518f83878c60a0015160016113b2565b955061046488604001518f83868c608001515f6113b2565b945050876001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561049f575f5ffd5b505af11580156104b1573d5f5f3e3d5ffd5b5050505085604001516001600160a01b031663acb708158a8f6040518363ffffffff1660e01b81526004016104f99291909182526001600160a01b0316602082015260400190565b6020604051808303815f875af1158015610515573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105399190612efb565b508a1561063c5784156105bb5786604001516001600160a01b031663a7d6e44b8660016040518363ffffffff1660e01b8152600401610579929190612f3a565b602060405180830381865afa158015610594573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105b89190612efb565b99505b83156106375786604001516001600160a01b031663a7d6e44b855f6040518363ffffffff1660e01b81526004016105f3929190612f3a565b602060405180830381865afa15801561060e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106329190612efb565b8a0199505b61073d565b84156106bc5786604001516001600160a01b031663da53766086333060016040518563ffffffff1660e01b81526004016106799493929190612f4e565b6020604051808303815f875af1158015610695573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106b99190612efb565b99505b831561073d5786604001516001600160a01b031663da5376608533305f6040518563ffffffff1660e01b81526004016106f89493929190612f4e565b6020604051808303815f875af1158015610714573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107389190612efb565b8a0199505b5f6040518060c00160405280336001600160a01b0316815260200188604001516001600160a01b031681526020018f6001600160a01b031681526020018b81526020018c81526020018d1515815250905080604001516001600160a01b031681602001516001600160a01b0316825f01516001600160a01b03167f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a9846060015185608001518660a001516040516108099392919092835260208301919091521515604082015260600190565b60405180910390a45050505050505050509550959350505050565b61082c611517565b6001600160a01b0382166108535760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316632ad87c6f6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610899573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108bd9190612f89565b6001600160a01b0316146108e45760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f9081526006602052604090205416801561091d5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa15801561095a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061097e9190612f89565b90505f61098b8285611544565b90505f6109978361164d565b905061040082176109a782821790565b91506109b4845f84611673565b6001600160a01b038681165f8181526006602090815260409182902080546001600160a01b0319168c86161790556004548251941684528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b604051632a188cb160e21b815260040160405180910390fd5b610a46611517565b6001600160a01b038082165f908152600660205260409020541680610a7e57604051632e77844760e21b815260040160405180910390fd5b806001600160a01b0316639c868ac06040518163ffffffff1660e01b8152600401602060405180830381865afa158015610aba573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ade9190612faf565b610afb57604051630d0ab16560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa158015610b38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610b5c9190612f89565b90505f610b698285611544565b90505f610b758361164d565b8219169050610b85835f83611673565b6001600160a01b0385165f8181526006602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050505050565b610bed611517565b610bf65f611756565b565b60035433906001600160a01b03168114610c355760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610c3e81611756565b50565b335f908152600660205260409020546001600160a01b031680610c7757604051632e77844760e21b815260040160405180910390fd5b806001600160a01b0316639c868ac06040518163ffffffff1660e01b8152600401602060405180830381865afa158015610cb3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610cd79190612faf565b15610ce25750610dd7565b610cf584610cef8761164d565b81161490565b610cff5750610dd7565b5f610d3e84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f9201919091525061176f92505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015f604051808303815f87803b158015610dbe575f5ffd5b505af1158015610dd0573d5f5f3e3d5ffd5b5050505050505b50505050565b5f805481908190610df7906001600160a01b031685611813565b9250925092509193909250565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f81158015610e495750825b90505f8267ffffffffffffffff166001148015610e655750303b155b905081158015610e73575080155b15610e915760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff191660011785558315610ebb57845460ff60401b1916600160401b1785555b5f610ec887890189612e8f565b90506001600160a01b038116610ef1576040516354a4010f60e01b815260040160405180910390fd5b610efa896119fa565b610f0381611756565b508315610f4a57845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b610f5c611517565b600380546001600160a01b0383166001600160a01b03199091168117909155610f8d6002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b610fcd612cb2565b610fd5612cb2565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa15801561101a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061103e9190613118565b604081015191935091506001600160a01b031661106e57604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b0316146110a45760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b0316146110da5760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af115801561111b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061113f9190612efb565b5080604001516001600160a01b031682604001516001600160a01b0316146111d95781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af11580156111a2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111c69190612efb565b506111d082611a6b565b6111d981611a6b565b94509492505050565b5f5f5f5f5f6111f58a8a8a5f5f5f611af1565b90505f611252826040518060c001604052808e610160015181526020018e606001516001600160a01b031681526020018d606001516001600160a01b031681526020018b81526020018a81526020018e6101800151815250611d6e565b6040850151919650945090915061126a908290611e7f565b909c909b509399509197509195505050505050565b6001600160e01b031981165f036112935750565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b6040516001600160a01b038481166024830152838116604483015260648201839052610dd79186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050611eb2565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611378573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061139c9190612efb565b9050610dd784846113ad8585613161565b611f18565b5f835f036113c157505f61150d565b61149784886001600160a01b031663b6d821c7856040518263ffffffff1660e01b81526004016113f19190613174565b602060405180830381865afa15801561140c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114309190612efb565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561146c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114909190612efb565b5f86611fa7565b9050805f036114a757505f61150d565b604051633661585b60e21b81526001600160a01b03878116600483015286811660248301526044820183905284169063d985616c906064015f604051808303815f87803b1580156114f6575f5ffd5b505af1158015611508573d5f5f3e3d5ffd5b505050505b9695505050505050565b6002546001600160a01b03163314610bf65760405163118cdaa760e01b8152336004820152602401610c2c565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa158015611592573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115b6919061318e565b925092509250816001600160a01b0316856001600160a01b0316036115e2576108009350505050611647565b826001600160a01b0316856001600160a01b031603611608576110009350505050611647565b806001600160a01b0316856001600160a01b03160361162e576120009350505050611647565b60405163d938fa3760e01b815260040160405180910390fd5b92915050565b6001600160a01b03165f908152600160205260409020546301000000900462ffffff1690565b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561173b575f5ffd5b505af115801561174d573d5f5f3e3d5ffd5b50505050505050565b600380546001600160a01b0319169055610c3e81611fe4565b6117b46040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b6040516394c0527d60e01b81526001600160a01b0382811660048301525f918291829182918291908816906394c0527d9060240161044060405180830381865afa158015611863573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906118879190613118565b604081015191935091506001600160a01b03166118ae575f5f5f94509450945050506119f3565b5f6118be8383895f60015f611af1565b905080608001515f036118dc575f5f5f9550955095505050506119f3565b5f5f6118f18386606001518660600151612035565b915091505f8360600151846040015161190a9190613161565b9050825f0361192b578084608001515f9850985098505050505050506119f3565b5f611936838561218b565b90508661016001518111611959575f5f5f995099509950505050505050506119f3565b61197582858760800151868b61018001518c6101a001516121a8565b809a50819b5050505f60028b01905087604001516001600160a01b0316630910a5106040518163ffffffff1660e01b8152600401602060405180830381865afa1580156119c4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119e89190612efb565b109750505050505050505b9250925092565b6001600160a01b038116611a21576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b031615611a4a576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b8061020001518015611a89575060e08101516001600160a01b031615155b15610c3e5760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015611ad8575f5ffd5b505af1158015611aea573d5f5f3e3d5ffd5b5050505050565b611b306040518060a001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81525090565b85606001516001600160a01b031687606001516001600160a01b031614611b9a576001846001811115611b6557611b65612f12565b14611b79578660e001518660e00151611b86565b8661010001518661010001515b6001600160a01b0390811660208401521681525b5f5f611bab8960800151885f6121fb565b80935081925050505f5f8a604001516001600160a01b031663ffbaaf7a6040518163ffffffff1660e01b81526004016040805180830381865afa158015611bf4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c1891906131d8565b91509150611c298382865f5f6122e3565b604086015260a08b0151611c3e908a5f6121fb565b945092506001876001811115611c5657611c56612f12565b14611c615781611c7d565b611c7d8b604001518c61012001518d5f01518e60200151612312565b9150611c8d8383865f60016122e3565b606086015260c08a0151611ca2908a886121fb565b945092505f6001886001811115611cbb57611cbb612f12565b14611d35578a604001516001600160a01b031663b6d821c760026040518263ffffffff1660e01b8152600401611cf19190613174565b602060405180830381865afa158015611d0c573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611d309190612efb565b611d48565b611d488b604001518c6101200151612408565b9050611d59848287600160026122e3565b608087015250939a9950505050505050505050565b5f5f5f5f85604001518660600151611d869190613161565b905085608001515f1480611d9c57506060850151155b15611db757505f92508291506317ff0e0960e11b90506119f3565b805f03611dee575f8660800151866060015111611dd8578560600151611dde565b86608001515b5f60e01b935093509350506119f3565b5f5f5f611e048989602001518a604001516124fb565b92509250925080885f015110611e2e57505f9550859450632f13551560e11b93506119f392505050565b5f611e418286868d60800151878e612551565b91995097509050871580611e53575086155b15611e7357505f965086955063676a56f360e11b94506119f39350505050565b50505050509250925092565b5f5f835f03611e9257505f905080611eab565b828411611ea0575f84611ea5565b828403835b90925090505b9250929050565b5f611ec66001600160a01b0384168361262b565b905080515f14158015611eea575080806020019051810190611ee89190612faf565b155b15611f1357604051635274afe760e01b81526001600160a01b0384166004820152602401610c2c565b505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052611f698482612638565b610dd7576040516001600160a01b0384811660248301525f6044830152611f9d91869182169063095ea7b3906064016112f9565b610dd78482611eb2565b5f5f5f611fb58787866126d5565b91509150815f03611fca578792505050611fdb565b611fd688838388612730565b925050505b95945050505050565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f5f8560600151866040015161204c9190613161565b905080156120de5785516001600160a01b031661206957806120db565b85516040516313b0be3360e01b8152600481018390526001600160a01b038781166024830152909116906313b0be3390604401602060405180830381865afa1580156120b7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120db9190612efb565b92505b6080860151156121825760208601516001600160a01b031661210457856080015161217f565b602086015160808701516040516313b0be3360e01b815260048101919091526001600160a01b038681166024830152909116906313b0be3390604401602060405180830381865afa15801561215b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061217f9190612efb565b91505b50935093915050565b5f6121a183670de0b6b3a7640000846001612730565b9392505050565b5f5f5f5f6121b88988888861277d565b915091506121c7828b8b6127a3565b935060028411156121dd576002840393506121e1565b5f93505b6121ec8189896127a3565b92505050965096945050505050565b5f5f825f036122755760405163dce5c2db60e01b81526001600160a01b03858116600483015286169063dce5c2db906024016040805180830381865afa158015612247573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061226b91906131d8565b90925090506122db565b829150846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156122b4573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906122d89190612efb565b90505b935093915050565b5f5f5f6122f18787866126d5565b91509150815f03612306578792505050611fdb565b611fd688828488612730565b6040516367efe7fd60e11b81526001600160a01b0385811660048301524260248301525f91829186169063cfdfcffa90604401602060405180830381865afa92505050801561237e575060408051601f3d908101601f1916820190925261237b91810190612efb565b60015b156123865790505b5f5f876001600160a01b03166339c5c5056040518163ffffffff1660e01b81526004016040805180830381865afa1580156123c3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906123e791906131d8565b915091506123f882828589896127d9565b50919a9950505050505050505050565b6040516367efe7fd60e11b81526001600160a01b0383811660048301524260248301525f91829184169063cfdfcffa90604401602060405180830381865afa925050508015612474575060408051601f3d908101601f1916820190925261247191810190612efb565b60015b1561247c5790505b60405163b6d821c760e01b81526124f2906001600160a01b0386169063b6d821c7906124ad90600290600401613174565b602060405180830381865afa1580156124c8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906124ec9190612efb565b8261283f565b50949350505050565b5f5f5f612509868686612035565b90935091508215801561251a575081155b1561252c57505f915081905080612548565b825f0361253b57505f19612548565b612545828461218b565b90505b93509350939050565b5f5f5f5f5f670de0b6b3a76400008b10612590578786606001511161257a57856060015161257c565b875b935061258984888a6127a3565b90506125f1565b5f6125a5888b8960a001518a60800151612887565b90508781036125b9578894508791506125ef565b5f6125c5828b8b6127a3565b9050808860600151116125dc5787606001516125de565b805b95506125eb868a8c6127a3565b9250505b505b612600818a8860800151612990565b915061260d828b8b6127a3565b945061261b898884846129d1565b9250505096509650969350505050565b60606121a183835f6129fb565b5f5f5f846001600160a01b03168460405161265391906131fa565b5f604051808303815f865af19150503d805f811461268c576040519150601f19603f3d011682016040523d82523d5f602084013e612691565b606091505b50915091508180156126bb5750805115806126bb5750808060200190518101906126bb9190612faf565b8015611fdb5750505050506001600160a01b03163b151590565b5f5f835f036126e2575f94505b60028360028111156126f6576126f6612f12565b14612721576127076003600a6132eb565b6127119085613161565b61271c866001613161565b612724565b83855b90969095509350505050565b5f61275d61273d83612a91565b801561275857505f8480612753576127536132f6565b868809115b151590565b612768868686612abd565b6127729190613161565b90505b949350505050565b5f5f61278b85878686612887565b9050612798818785612990565b915094509492505050565b5f815f036127c45760405163658c7bff60e11b815260040160405180910390fd5b816127cf848661330a565b6127759190613321565b5f5f5f5f6127e7888861283f565b90935090508585016128028282670de0b6b3a7640000612b7a565b92505f61280f8484613334565b90505f61281d8c5f19613334565b90508181101561282b578091505b818c01965050505095509550955095915050565b5f8083158061284c575082155b1561285b57508290505f611eab565b61286e8484670de0b6b3a7640000612b7a565b9050808401915083821015611eab575091925f92509050565b5f845f0361289657505f612775565b670de0b6b3a764000082106128ac57505f612775565b8385106128ba575083612775565b825f036128c8575083612775565b5f6128d3858561330a565b90506128e7670de0b6b3a76400008761330a565b95508581106128f9575f915050612775565b670de0b6b3a76400008087049682900392508385028190048501908110612924578692505050612775565b80670de0b6b3a764000003838161293d5761293d6132f6565b04925086831115612952578692505050612775565b670c7d713b49da00008761296e670de0b6b3a76400008661330a565b6129789190613321565b116129835782612985565b865b979650505050505050565b5f80670de0b6b3a76400006129a5848761330a565b6129af9190613321565b90506129bb8186613161565b9150838211156129c9578391505b509392505050565b5f82851115806129e15750818411155b156129ed57505f612775565b612772838603838603612bc2565b606081471015612a275760405163cf47918160e01b815247600482015260248101839052604401610c2c565b5f5f856001600160a01b03168486604051612a4291906131fa565b5f6040518083038185875af1925050503d805f8114612a7c576040519150601f19603f3d011682016040523d82523d5f602084013e612a81565b606091505b509150915061150d868383612be1565b5f6002826003811115612aa657612aa6612f12565b612ab09190613347565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03612af157838281612ae757612ae76132f6565b04925050506121a1565b808411612b0f57612b0f8415612b08576011612c3d565b6012612c3d565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f835f03612b8957505f6121a1565b5082820282848281612b9d57612b9d6132f6565b0414612baa57505f6121a1565b818181612bb957612bb96132f6565b04949350505050565b5f612bd5670de0b6b3a76400008361330a565b90506121a18184612c4e565b606082612bf657612bf182612c89565b6121a1565b8151158015612c0d57506001600160a01b0384163b155b15612c3657604051639996b31560e01b81526001600160a01b0385166004820152602401610c2c565b50806121a1565b634e487b715f52806020526024601cfd5b5f815f03612c6057612c606012612c3d565b8215612c8157816001840381612c7857612c786132f6565b046001016121a1565b505f92915050565b805115612c995780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114610c3e575f5ffd5b8015158114610c3e575f5ffd5b5f5f5f5f5f60a08688031215612d72575f5ffd5b8535612d7d81612d3d565b94506020860135612d8d81612d3d565b93506040860135612d9d81612d3d565b9250606086013591506080860135612db481612d51565b809150509295509295909350565b5f5f60408385031215612dd3575f5ffd5b8235612dde81612d3d565b91506020830135612dee81612d3d565b809150509250929050565b5f5f83601f840112612e09575f5ffd5b50813567ffffffffffffffff811115612e20575f5ffd5b602083019150836020828501011115611eab575f5ffd5b5f5f5f5f60608587031215612e4a575f5ffd5b8435612e5581612d3d565b935060208501359250604085013567ffffffffffffffff811115612e77575f5ffd5b612e8387828801612df9565b95989497509550505050565b5f60208284031215612e9f575f5ffd5b81356121a181612d3d565b5f5f5f60408486031215612ebc575f5ffd5b8335612ec781612d3d565b9250602084013567ffffffffffffffff811115612ee2575f5ffd5b612eee86828701612df9565b9497909650939450505050565b5f60208284031215612f0b575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b60028110612f3657612f36612f12565b9052565b828152604081016121a16020830184612f26565b8481526001600160a01b0384811660208301528316604082015260808101611fdb6060830184612f26565b8051612f8481612d3d565b919050565b5f60208284031215612f99575f5ffd5b81516121a181612d3d565b8051612f8481612d51565b5f60208284031215612fbf575f5ffd5b81516121a181612d51565b604051610220810167ffffffffffffffff81118282101715612ffa57634e487b7160e01b5f52604160045260245ffd5b60405290565b5f6102208284031215613011575f5ffd5b613019612fca565b8251815260208084015190820152905061303560408301612f79565b604082015261304660608301612f79565b606082015261305760808301612f79565b608082015261306860a08301612f79565b60a082015261307960c08301612f79565b60c082015261308a60e08301612f79565b60e082015261309c6101008301612f79565b6101008201526130af6101208301612f79565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526130f96101e08301612f79565b6101e082015261310c6102008301612fa4565b61020082015292915050565b5f5f610440838503121561312a575f5ffd5b6131348484613000565b9150613144846102208501613000565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156116475761164761314d565b602081016003831061318857613188612f12565b91905290565b5f5f5f606084860312156131a0575f5ffd5b83516131ab81612d3d565b60208501519093506131bc81612d3d565b60408501519092506131cd81612d3d565b809150509250925092565b5f5f604083850312156131e9575f5ffd5b505080516020909101519092909150565b5f82518060208501845e5f920191825250919050565b6001815b60018411156122db5780850481111561322f5761322f61314d565b600184161561323d57908102905b60019390931c928002613214565b5f8261325957506001611647565b8161326557505f611647565b816001811461327b5760028114613285576132a1565b6001915050611647565b60ff8411156132965761329661314d565b50506001821b611647565b5060208310610133831016604e8410600b84101617156132c4575081810a611647565b6132d05f198484613210565b805f19048211156132e3576132e361314d565b029392505050565b5f6121a1838361324b565b634e487b7160e01b5f52601260045260245ffd5b80820281158282048414176116475761164761314d565b5f8261332f5761332f6132f6565b500490565b818103818111156116475761164761314d565b5f60ff831680613359576133596132f6565b8060ff8416069150509291505056fea264697066735822122081369fcf87abbe4cbe73a75a3975275918be964a3bd35da3f00eba0edcc8900764736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.