S Price: $0.067562 (-3.83%)
Gas: 55 Gwei

Contract

0x744552b3358B55874F6F9455a8a51AB9a1BAe4e1

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

Please try again later

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EmergencyFacet

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion, MIT license
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "../../PetalsVault.sol";
import "../../storage/PetalsStorageLayout.sol";
import "../../00_libraries/types.sol";
import "../../00_libraries/RoleChecker.sol";

/**
 * @title EmergencyFacet
 * @author Petals Protocol
 * @notice Handles all emergency operations for the Petals Protocol Diamond
 * @dev Extracted from ControllerFacet to reduce contract size and isolate critical emergency logic
 * 
 * This facet contains emergency functionality:
 * - Protocol-wide panic (pause all vaults of a protocol)
 * - Protocol-wide unpause (resume all vaults of a protocol)
 * - Fault-tolerant batch operations
 * 
 * Security:
 * - All functions require MASTER_ROLE
 * - ReentrancyGuard protects against reentrancy attacks
 * - Continues operation even if individual vaults fail (fault-tolerant)
 */
contract EmergencyFacet is ReentrancyGuard {
    
    // ============ Access Control ============
    
    modifier onlyRole(uint64 role) {
        if (!RoleChecker.hasRole(role, msg.sender)) {
            revert UnauthorizedUpdate();
        }
        _;
    }
    
    // ============ Events ============
    
    event ProtocolPanicInitiated(
        bytes32 indexed baseProtocol,
        uint256 totalVaults,
        uint256 successCount,
        uint256 failureCount
    );
    
    event ProtocolUnpaused(
        bytes32 indexed baseProtocol,
        uint256 totalVaults,
        uint256 successCount,
        uint256 failureCount
    );
    
    event VaultPanicFailed(address indexed vault, bytes reason);
    event VaultUnpauseFailed(address indexed vault, bytes reason);
    
    // ============ PROTOCOL-WIDE EMERGENCY OPERATIONS ============
    
    /**
     * @notice Emergency panic for all vaults of a specific underlying protocol
     * @dev Uses direct protocol→vault mapping for O(n) complexity where n = vaults in protocol
     * Fault-tolerant: continues even if individual vaults fail to panic
     * @param baseProtocol The base protocol to panic (e.g., bytes32("Shadow"))
     * @return totalVaults Total vaults in this protocol
     * @return successCount Number of vaults successfully panicked
     * @return failureCount Number of vaults that failed to panic
     */
    function panicProtocol(bytes32 baseProtocol)
        external
        onlyRole(RoleChecker.MASTER_ROLE)
        nonReentrant
        returns (
            uint256 totalVaults,
            uint256 successCount,
            uint256 failureCount
        )
    {
        PetalsStorageLayout.AppStorage storage s = PetalsStorageLayout.getStorage();

        // Direct O(1) lookup of vaults for this protocol
        address[] storage protocolVaults = s.vaultsByProtocol[baseProtocol];
        totalVaults = protocolVaults.length;

        // Verify protocol has vaults
        if (totalVaults == 0) revert ProtocolNotFound(baseProtocol);

        // Iterate only the relevant vaults (not all vaults!)
        for (uint256 i = 0; i < totalVaults;) {
            address vault = protocolVaults[i];

            // Try to pause vault (fault-tolerant)
            try PetalsVault(vault).pause() {
                successCount++;
            } catch (bytes memory reason) {
                failureCount++;
                emit VaultPanicFailed(vault, reason);
            }

            unchecked { ++i; }
        }

        emit ProtocolPanicInitiated(
            baseProtocol,
            totalVaults,
            successCount,
            failureCount
        );
    }

    /**
     * @notice Unpause all vaults for a specific protocol after emergency resolution
     * @dev Mirror of panicProtocol for recovery operations
     * @param baseProtocol The base protocol to unpause
     * @return totalVaults Total vaults in this protocol
     * @return successCount Number of vaults successfully unpaused
     * @return failureCount Number of vaults that failed to unpause
     */
    function unpauseProtocol(bytes32 baseProtocol)
        external
        onlyRole(RoleChecker.MASTER_ROLE)
        nonReentrant
        returns (
            uint256 totalVaults,
            uint256 successCount,
            uint256 failureCount
        )
    {
        PetalsStorageLayout.AppStorage storage s = PetalsStorageLayout.getStorage();

        address[] storage protocolVaults = s.vaultsByProtocol[baseProtocol];
        totalVaults = protocolVaults.length;

        if (totalVaults == 0) revert ProtocolNotFound(baseProtocol);

        for (uint256 i = 0; i < totalVaults;) {
            address vault = protocolVaults[i];

            try PetalsVault(vault).unpause() {
                successCount++;
            } catch (bytes memory reason) {
                failureCount++;
                emit VaultUnpauseFailed(vault, reason);
            }

            unchecked { ++i; }
        }

        emit ProtocolUnpaused(
            baseProtocol,
            totalVaults,
            successCount,
            failureCount
        );
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/interfaces/IERC4626.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "../interfaces/strategies/IPetalsStrategy.sol";
import "../interfaces/internal/IPetalsVault.sol";
import "../interfaces/internal/IPetalsController.sol";
import {VaultStoredData} from "./00_libraries/types.sol";
import "../interfaces/common/ICommonErrors.sol";
import "../interfaces/common/ICommonEvents.sol";
import "../interfaces/IPermissionCache.sol";

/**
 * @title PetalsVault
 * @author Petals Protocol
 * @notice A fully ERC4626-compliant vault with advanced security features and clone compatibility
 *
 * @dev The PetalsVault is a sophisticated yield-bearing vault that implements the ERC4626 standard
 * with extensive security protections and gas optimizations. It operates as a minimal proxy
 * (clone) pointing to a master implementation, enabling efficient deployment of multiple vaults.
 *
 * **Core Architecture:**
 * - **ERC4626 Compliance**: Full standard compliance with proper asset/share conversions
 * - **Clone Pattern**: Minimal proxy implementation for gas-efficient deployment
 * - **Strategy Integration**: Seamless integration with yield-generating strategies
 * - **Two-Phase Lifecycle**: Deploy → Register workflow for controlled onboarding
 *
 * **Security Features:**
 * - **Donation Attack Protection**: Mints dead shares on first deposit to prevent manipulation
 * - **Fee-on-Transfer Support**: Accurate accounting for tokens with transfer fees
 * - **Role-Based Access Control**: Cached permissions with three-tier hierarchy

 * - **Emergency Controls**: Pause/unpause functionality for crisis management
 *
 * **Fee-on-Transfer Token Behavior:**
 * - `deposit()`: Fully supported - shares calculated based on actual tokens received
 * - `mint()`: Will revert for fee-on-transfer tokens to maintain ERC4626 compliance
 * - `withdraw()`/`redeem()`: Supported - users may receive slightly less due to token fees
 *
 * **Gas Optimizations:**
 * - Cached state variables in critical functions
 * - Minimal storage reads/writes
 * - Efficient approval patterns
 * - Optimized conversion calculations
 *
 * @notice All events emit actual amounts transferred, which may differ from requested amounts
 * for fee-on-transfer tokens due to the token's fee mechanism
 */
contract PetalsVault is ERC20, IERC4626, ReentrancyGuard, ICommonErrors, ICommonEvents {
    using SafeERC20 for IERC20;
    using Math for uint256;

    // ============ SECURITY: DONATION ATTACK PROTECTION ============

    /// @notice Number of dead shares minted on first deposit to prevent donation attacks
    /// @dev Makes manipulation cost equal to buying entire vault (economically impossible)
    /// These shares are minted to a dead address and can never be redeemed
    uint256 private constant DEAD_SHARES = 1000;

    /// @notice Dead address for burning shares (0x000...dead)
    /// @dev Using a recognizable dead address instead of address(0) for OpenZeppelin compatibility
    address private constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD;

    // ============ Core State Variables ============

    /// @notice The underlying asset token for this vault
    /// @dev Private to enforce access through asset() function
    IERC20 private _asset;

    /// @notice The strategy contract that generates yield for this vault
    /// @dev Strategy is immutable once set during initialization
    IPetalsStrategy public strategy;

    /// @notice The controller contract that manages this vault
    /// @dev Used for permission validation and lifecycle management
    address public controller;

    /// @notice Initialization state to prevent double-initialization
    /// @dev Required for clone pattern compatibility
    bool public initialized;

    /// @notice Whether the vault is actively accepting deposits
    /// @dev Can be controlled by emergency role for crisis management
    bool public active;

    /// @notice Whether this vault is registered with the protocol
    /// @dev Unregistered vaults are experimental and not tracked
    bool public isRegistered;

    /// @notice Cached decimals of the underlying asset
    /// @dev Stored to avoid external calls in critical functions
    uint8 private _assetDecimals;

    // ============ Clone ERC20 Storage ============

    /// @notice The name of the vault token
    /// @dev Stored separately for clone compatibility
    string private _vaultName;

    /// @notice The symbol of the vault token
    /// @dev Stored separately for clone compatibility
    string private _vaultSymbol;



    // ============ Cached Permission System ============

    /// @notice Role definitions that must match the controller
    /// @dev These constants define the three-tier permission hierarchy
    uint64 public constant MASTER_ROLE = 0; // DEFAULT_ADMIN_ROLE
    uint64 public constant STRATEGIST_ROLE = 1;
    uint64 public constant GUARDIAN_ROLE = 2;



    /// @notice The fee recipient address that receives performance fees from this vault
    /// @dev Receives performance fees but has no management permissions
    address public feeRecipient;

    // ============ Strategist Pause Cooldown ============
    
    /// @notice Cooldown period for strategist pause (prevents spam)
    uint256 public constant STRATEGIST_PAUSE_COOLDOWN = 6 hours;
    
    /// @notice Track last pause time per address to enforce cooldown
    mapping(address => uint256) public lastPauseTime;

    // ============ EVENTS ============

    event VaultStatusChanged(bool active);
    event ControllerUpdateFailed(address strategy, uint256 yield, uint256 previousTotalAssets);

    event VaultRegistered(address indexed vault, address indexed newFeeRecipient);
    event DonationProtectionActivated(uint256 deadShares);

    event UserDeposited(address indexed user, address indexed vault, uint256 amount, uint256 timestamp);
    
    // Emergency degraded mode events
    event StrategyTotalAssetsFailed(address indexed strategy);
    event StrategyPanicFailed(address indexed strategy, bytes reason);

    // ============ ERRORS ============

    error VaultInactive();
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    error AlreadyRegistered();
    error AssetMismatch();
    error OnlyControllerCanRegister();
    error FeeOnTransferNotSupportedInMint();

    // ============ MODIFIERS ============

    modifier onlyRole(uint64 role) {
        if (!hasRole(role, msg.sender)) {
            revert UnauthorizedUpdate();
        }
        _;
    }

    modifier whenActive() {
        if (!active) revert VaultInactive();
        _;
    }

    // ============ CONSTRUCTOR ============

    constructor() ERC20("", "") { }

    // ============ EXTERNAL FUNCTIONS ============

    /**
     * @notice Initialize the vault clone with strategy, metadata, and ownership configuration
     * @dev One-time initialization for minimal proxy clones. Sets up ERC4626 compliance, security roles,
     * and integrates with the controller's permission caching system for gas efficiency.
     * @param _strategy The yield strategy contract that manages the underlying assets
     * @param name_ Human-readable name for the vault token (e.g., "Shadow wS-SHADOW Vault")
     * @param symbol_ Token symbol for the vault shares (e.g., "psS-SHADOW")
     * @param _feeRecipient Address that will receive performance fees from this vault
     */
    function initialize(
        IPetalsStrategy _strategy,
        string memory name_,
        string memory symbol_,
        address _feeRecipient
    )
        external
    {
        if (initialized) revert AlreadyInitialized();
        if (address(_strategy) == address(0)) revert InvalidStrategy(address(_strategy));

        initialized = true;
        active = true; // Explicitly set active state for clones
        isRegistered = false; // Vaults start unregistered
        strategy = _strategy;
        feeRecipient = _feeRecipient; // Set fee recipient directly

        // Set asset from strategy
        _asset = IERC20(_strategy.asset());

        // Get asset decimals
        try IERC20Metadata(address(_asset)).decimals() returns (uint8 decimals_) {
            _assetDecimals = decimals_;
        } catch {
            _assetDecimals = 18;
        }

        // Set ERC20 metadata
        _vaultName = name_;
        _vaultSymbol = symbol_;

        // Set controller (msg.sender should be controller/factory)
        controller = msg.sender;

        // Note: Permission caching removed - simplified access control
    }

    /**
     * @notice Register this vault (controller only)
     * @dev Transfers control to protocol and marks as registered
     * @param newFeeRecipient New fee recipient (protocol fee recipient)
     */
    function registerVault(address newFeeRecipient) external {
        if (msg.sender != controller) revert OnlyControllerCanRegister();
        if (isRegistered) revert AlreadyRegistered();

        isRegistered = true;
        address previousFeeRecipient = feeRecipient;
        feeRecipient = newFeeRecipient;
        emit FeeRecipientUpdated(previousFeeRecipient, newFeeRecipient);

        emit VaultRegistered(address(this), newFeeRecipient);
    }



    /**
     * @notice Update fee recipient address (receives performance fees)
     * @param newFeeRecipient New fee recipient address
     * @dev Can be called by current fee recipient or STRATEGIST_ROLE
     * Also updates the strategy's fee recipient to keep them synchronized
     */
    function setFeeRecipient(address newFeeRecipient) external {
        // Allow either current fee recipient or STRATEGIST_ROLE to update fee recipient
        if (msg.sender != feeRecipient && !hasRole(STRATEGIST_ROLE, msg.sender)) {
            revert UnauthorizedUpdate();
        }
        
        if (newFeeRecipient == address(0)) revert ZeroAddress();
        address previousFeeRecipient = feeRecipient;
        feeRecipient = newFeeRecipient;
        
        // Also update the strategy's fee recipient to keep them synchronized
        try IPetalsStrategy(address(strategy)).setFeeRecipient(newFeeRecipient) {
            // Success - strategy fee recipient updated
        } catch {
            // Strategy doesn't support setFeeRecipient (older implementation), continue
        }
        
        emit FeeRecipientUpdated(previousFeeRecipient, newFeeRecipient);
    }

    /**
     * @notice Execute harvest to claim and compound strategy rewards
     * @dev Delegates to strategy's harvest function, which claims rewards and reinvests them
     */
    function harvest() external nonReentrant {
        strategy.harvest(msg.sender);
    }

    /**
     * @notice Emergency pause to stop all vault operations and trigger strategy panic mode
     * @dev GUARDIAN_ROLE can pause anytime, STRATEGIST_ROLE can pause their own vaults with cooldown
     * @dev Disables deposits/withdrawals and calls strategy.panic() to secure funds during emergencies
     * @dev Uses try-catch to ensure vault pause succeeds even if strategy panic fails
     */
    function pause() external {
        bool isGuardian = hasRole(GUARDIAN_ROLE, msg.sender);
        bool isStrategist = hasRole(STRATEGIST_ROLE, msg.sender);
        
        if (!isGuardian && !isStrategist) {
            revert UnauthorizedUpdate();
        }
        
        // Strategist-specific checks
        if (isStrategist && !isGuardian) {
            // Verify strategist is the deployer of this vault
            address vaultDeployer = _getVaultDeployer();
            if (msg.sender != vaultDeployer) {
                revert UnauthorizedUpdate();
            }
            
            // Enforce cooldown
            if (block.timestamp < lastPauseTime[msg.sender] + STRATEGIST_PAUSE_COOLDOWN) {
                revert UnauthorizedUpdate();
            }
            
            // Update cooldown tracker
            lastPauseTime[msg.sender] = block.timestamp;
        }
        
        // Execute pause
        active = false;  // Vault is paused regardless of strategy panic result
        
        // Try to panic strategy (best-effort)
        try strategy.panic() {
            // Strategy successfully secured funds from protocol
        } catch (bytes memory reason) {
            // Strategy panic failed - vault is still paused but funds remain in protocol
            // This is acceptable - vault pause is more critical than strategy panic
            // Admin must investigate why panic failed and take manual recovery action
            emit StrategyPanicFailed(address(strategy), reason);
        }
        
        emit VaultStatusChanged(false);
    }

    /**
     * @notice Unpause vault operations to resume normal functionality
     * @dev Re-enables deposits and withdrawals after emergency situation is resolved
     */
    function unpause() external onlyRole(GUARDIAN_ROLE) {
        active = true;
        emit VaultStatusChanged(true);
    }

    /**
     * @notice Update the controller contract address for permission and operation management
     * @param _controller New controller contract address
     */
    function setController(address _controller) external onlyRole(MASTER_ROLE) {
        controller = _controller;
    }

    /**
     * @notice Retire the strategy and deactivate the vault (MASTER_ROLE only)
     * @dev Calls retireStrat() on the strategy to withdraw all funds and deactivate
     * This provides a clean interface for MASTER_ROLE to retire strategies
     */
    function retireStrategy() external onlyRole(MASTER_ROLE) {
        strategy.retireStrat();
        active = false;
        emit VaultStatusChanged(false);
    }



    /**
     * @notice Get comprehensive vault status and asset information in a single call
     * @dev Aggregates key vault metrics for efficient frontend queries and monitoring dashboards
     * @return totalAssets_ Total assets under management (vault + strategy balances)
     * @return vaultBalance_ Assets currently held in the vault contract
     * @return strategyBalance_ Assets currently deployed in the yield strategy
     * @return pricePerShare_ Current price per vault share (1e18 precision)
     * @return isActive_ Whether the vault is accepting deposits and processing operations
     */
    function vaultInfo()
        external
        view
        returns (
            uint256 totalAssets_,
            uint256 vaultBalance_,
            uint256 strategyBalance_,
            uint256 pricePerShare_,
            bool isActive_
        )
    {
        totalAssets_ = totalAssets();
        vaultBalance_ = _asset.balanceOf(address(this));
        strategyBalance_ = strategy.totalAssets();
        pricePerShare_ = convertToAssets(1e18);
        isActive_ = active;
    }



    // ============ PUBLIC FUNCTIONS ============

    /**
     * @notice Check if account has role (uses cached permissions)
     * @param role Role to check
     * @param account Account to check
     * @return hasRole Whether account has role
     */
    function hasRole(uint64 role, address account) public view returns (bool) {
        if (controller == address(0)) return false;
        
        // Check role directly via controller (which delegates to AccessManager)
        try IPetalsControllerForStrategy(controller).hasContractRole(address(this), role, account) returns (bool roleExists) {
            return roleExists;
        } catch {
            return false;
        }
    }
    
    /**
     * @notice Get the deployer of this vault from controller
     * @dev Used for strategist pause permission checks
     * @return deployer Address of the vault deployer (strategist)
     */
    function _getVaultDeployer() internal view returns (address deployer) {
        // Call getVaultDataSimple(address) from DataProviderFacet
        (bool success, bytes memory data) = controller.staticcall(
            abi.encodeWithSignature("getVaultDataSimple(address)", address(this))
        );
        
        if (success && data.length > 0) {
            VaultStoredData memory vaultData = abi.decode(data, (VaultStoredData));
            return vaultData.strategy.deployer;
        }
        
        return address(0);
    }

    // ============ ERC20 Metadata Overrides (Clone Compatibility) ============

    /// @notice Returns the vault token name stored during initialization
    function name() public view override(ERC20, IERC20Metadata) returns (string memory) {
        return _vaultName;
    }

    /// @notice Returns the vault token symbol stored during initialization
    function symbol() public view override(ERC20, IERC20Metadata) returns (string memory) {
        return _vaultSymbol;
    }

    /// @notice Returns the decimal precision matching the underlying asset
    function decimals() public view override(IERC20Metadata, ERC20) returns (uint8) {
        return _assetDecimals;
    }

    /// @inheritdoc IERC4626
    function asset() public view returns (address) {
        return address(_asset);
    }

    /// @inheritdoc IERC4626
    /// @dev Uses try-catch for emergency resilience - prevents vault bricking if strategy fails
    function totalAssets() public view returns (uint256) {
        uint256 vaultBalance = _asset.balanceOf(address(this));
        
        // Try to get strategy balance
        try strategy.totalAssets() returns (uint256 strategyBalance) {
            // Normal operation - return full vault value
            return vaultBalance + strategyBalance;
        } catch {
            // DEGRADED MODE: Strategy totalAssets() failed
            // This enables emergency recovery - users can withdraw vault balance
            // Admin should monitor for StrategyTotalAssetsFailed events and take action
            // Note: Can't emit event from view function, will be emitted during next state change
            return vaultBalance;  // Return only vault balance (strategy balance hidden)
        }
    }

    /// @inheritdoc IERC4626
    function convertToShares(uint256 assets) public view returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function convertToAssets(uint256 shares) public view returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function maxDeposit(address) public view returns (uint256) {
        return active ? type(uint256).max : 0;
    }

    /// @inheritdoc IERC4626
    function maxMint(address) public view returns (uint256) {
        return active ? type(uint256).max : 0;
    }

    /// @inheritdoc IERC4626
    function maxWithdraw(address account) public view returns (uint256) {
        return _convertToAssets(balanceOf(account), Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function maxRedeem(address account) public view returns (uint256) {
        return balanceOf(account);
    }

    /// @inheritdoc IERC4626
    function previewDeposit(uint256 assets) public view returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    function previewMint(uint256 shares) public view returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /// @inheritdoc IERC4626
    function previewWithdraw(uint256 assets) public view returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /// @inheritdoc IERC4626
    function previewRedeem(uint256 shares) public view returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /// @inheritdoc IERC4626
    /// @dev PROTECTED: Includes donation attack protection on first deposit + fee-on-transfer support
    function deposit(uint256 assets, address receiver) public nonReentrant whenActive returns (uint256 shares) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        // === GAS OPTIMIZATION: Cache state variables ===
        uint256 currentTotalAssets = totalAssets();
        uint256 currentTotalSupply = totalSupply();

        // DONATION ATTACK PROTECTION: Mint dead shares on first deposit
        if (currentTotalSupply == 0) {
            _mint(DEAD_ADDRESS, DEAD_SHARES);
            emit DonationProtectionActivated(DEAD_SHARES);
            currentTotalSupply = DEAD_SHARES; // Update for conversion
        }

        // FEE-ON-TRANSFER PROTECTION: Measure actual balance change
        uint256 balanceBefore = _asset.balanceOf(address(this));
        _asset.safeTransferFrom(_msgSender(), address(this), assets);
        uint256 balanceAfter = _asset.balanceOf(address(this));
        uint256 actualAssetsReceived = balanceAfter - balanceBefore;

        // Calculate shares based on vault state BEFORE deposit (ERC4626 standard)
        // For first real deposit (after dead shares), use 1:1 conversion
        if (currentTotalAssets == 0 && currentTotalSupply == DEAD_SHARES) {
            shares = actualAssetsReceived;
        } else {
            shares = _convertToShares(actualAssetsReceived, currentTotalSupply, currentTotalAssets, Math.Rounding.Floor);
        }

        // Update total assets for controller reporting
        uint256 updatedTotalAssets = currentTotalAssets + actualAssetsReceived;

        // Mint shares and emit event with actual amounts
        _mint(receiver, shares);
        emit Deposit(_msgSender(), receiver, actualAssetsReceived, shares);
        emit UserDeposited(receiver, address(this), actualAssetsReceived, block.timestamp);
        _investInStrategy();
    }

    /// @inheritdoc IERC4626
    /// @dev PROTECTED: Includes donation attack protection on first mint + fee-on-transfer protection
    /// @notice For fee-on-transfer tokens, this function will revert to maintain ERC4626 compliance
    /// (must mint exact shares requested). Use deposit() instead for FOT support, or ensure no fee is deducted.
    /// Example: If previewMint(100) returns 100 assets but token deducts 1% fee, it reverts.
    function mint(uint256 shares, address receiver) public nonReentrant whenActive returns (uint256 assets) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        // === GAS OPTIMIZATION: Cache state variables ===
        uint256 currentTotalAssets = totalAssets();
        uint256 currentTotalSupply = totalSupply();

        // DONATION ATTACK PROTECTION: Mint dead shares on first deposit
        if (currentTotalSupply == 0) {
            _mint(DEAD_ADDRESS, DEAD_SHARES);
            emit DonationProtectionActivated(DEAD_SHARES);
            currentTotalSupply = DEAD_SHARES; // Update for conversion
        }

        // Calculate expected assets needed (rounded up for safety)
        // For first real deposit (after dead shares), use 1:1 conversion
        if (currentTotalAssets == 0 && currentTotalSupply == DEAD_SHARES) {
            assets = shares;
        } else {
            assets = _convertToAssets(shares, currentTotalSupply, currentTotalAssets, Math.Rounding.Ceil);
        }

        // FEE-ON-TRANSFER PROTECTION: Ensure exact amount received
        uint256 balanceBefore = _asset.balanceOf(address(this));
        _asset.safeTransferFrom(_msgSender(), address(this), assets);
        uint256 balanceAfter = _asset.balanceOf(address(this));
        uint256 actualAssetsReceived = balanceAfter - balanceBefore;

        // CRITICAL: mint() must mint exact shares requested or revert (ERC4626 compliance)
        if (actualAssetsReceived != assets) {
            revert FeeOnTransferNotSupportedInMint();
        }

        // Update total assets for controller reporting
        uint256 updatedTotalAssets = currentTotalAssets + actualAssetsReceived;

        // Mint exact shares requested and emit event
        _mint(receiver, shares);
        emit Deposit(_msgSender(), receiver, assets, shares);
        emit UserDeposited(receiver, address(this), actualAssetsReceived, block.timestamp);
        _investInStrategy();
    }

    /// @inheritdoc IERC4626
    /// @dev PROTECTED: Includes fee-on-transfer support
    /// @notice For fee-on-transfer tokens, user may receive slightly less than requested due to token fees
    function withdraw(
        uint256 assets,
        address receiver,
        address shareOwner
    )
        public
        nonReentrant
        returns (uint256 shares)
    {
        uint256 maxAssets = maxWithdraw(shareOwner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(shareOwner, assets, maxAssets);
        }

        uint256 currentTotalAssets = totalAssets();
        uint256 currentTotalSupply = totalSupply();

        // Calculate shares to burn for requested assets
        shares = _convertToShares(assets, currentTotalSupply, currentTotalAssets, Math.Rounding.Ceil);

        // Execute withdrawal with proper allowance handling
        if (_msgSender() != shareOwner) {
            _spendAllowance(shareOwner, _msgSender(), shares);
        }

        // Ensure we have enough assets
        uint256 vaultBalance = _asset.balanceOf(address(this));
        if (vaultBalance < assets) {
            strategy.withdraw(assets - vaultBalance);
        }

        // FEE-ON-TRANSFER TRACKING: Measure actual amount sent for accurate events
        uint256 balanceBefore = _asset.balanceOf(address(this));
        _asset.safeTransfer(receiver, assets);
        uint256 balanceAfter = _asset.balanceOf(address(this));
        uint256 actualAssetsSent = balanceBefore - balanceAfter;

        // Burn the calculated shares and emit with actual amounts
        _burn(shareOwner, shares);
        emit Withdraw(_msgSender(), receiver, shareOwner, actualAssetsSent, shares);
    }

    /// @inheritdoc IERC4626
    /// @dev PROTECTED: Includes fee-on-transfer support
    /// @notice For fee-on-transfer tokens, user may receive slightly less than expected due to token fees
    function redeem(
        uint256 shares,
        address receiver,
        address shareOwner
    )
        public
        nonReentrant
        returns (uint256 assets)
    {
        uint256 maxShares = maxRedeem(shareOwner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(shareOwner, shares, maxShares);
        }

        uint256 currentTotalAssets = totalAssets();
        uint256 currentTotalSupply = totalSupply();

        // Calculate assets to send for the shares being redeemed
        assets = _convertToAssets(shares, currentTotalSupply, currentTotalAssets, Math.Rounding.Floor);

        // Execute redemption with proper allowance handling
        if (_msgSender() != shareOwner) {
            _spendAllowance(shareOwner, _msgSender(), shares);
        }

        // Ensure we have enough assets
        uint256 vaultBalance = _asset.balanceOf(address(this));
        if (vaultBalance < assets) {
            strategy.withdraw(assets - vaultBalance);
        }

        // FEE-ON-TRANSFER TRACKING: Measure actual amount sent for accurate events
        uint256 balanceBefore = _asset.balanceOf(address(this));
        _asset.safeTransfer(receiver, assets);
        uint256 balanceAfter = _asset.balanceOf(address(this));
        uint256 actualAssetsSent = balanceBefore - balanceAfter;

        // Burn the exact shares requested and emit with actual amounts
        _burn(shareOwner, shares);
        emit Withdraw(_msgSender(), receiver, shareOwner, actualAssetsSent, shares);

        // Return actual assets sent (may be less than calculated for fee-on-transfer tokens)
        assets = actualAssetsSent;
    }

    // ============ INTERNAL FUNCTIONS ============

    /**
     * @notice Convert asset amount to vault shares using current exchange rate
     * @dev Standard ERC4626 conversion with configurable rounding for different operations
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view returns (uint256) {
        uint256 supply = totalSupply();
        return supply == 0 ? assets : assets.mulDiv(supply, totalAssets(), rounding);
    }

    /**
     * @notice Convert vault shares to asset amount using current exchange rate
     * @dev Standard ERC4626 conversion with configurable rounding for different operations
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view returns (uint256) {
        uint256 supply = totalSupply();
        return supply == 0 ? shares : shares.mulDiv(totalAssets(), supply, rounding);
    }

    /**
     * @notice Gas-optimized share conversion using pre-calculated totals
     * @dev Avoids redundant external calls when totals are already cached in memory
     */
    function _convertToShares(
        uint256 assets,
        uint256 totalSupply_,
        uint256 totalAssets_,
        Math.Rounding rounding
    )
        internal
        pure
        returns (uint256)
    {
        return totalSupply_ == 0 ? assets : assets.mulDiv(totalSupply_, totalAssets_, rounding);
    }

    /**
     * @notice Gas-optimized asset conversion using pre-calculated totals
     * @dev Avoids redundant external calls when totals are already cached in memory
     */
    function _convertToAssets(
        uint256 shares,
        uint256 totalSupply_,
        uint256 totalAssets_,
        Math.Rounding rounding
    )
        internal
        pure
        returns (uint256)
    {
        return totalSupply_ == 0 ? shares : shares.mulDiv(totalAssets_, totalSupply_, rounding);
    }

    /**
     * @notice Deploy idle vault assets into the yield strategy for compounding
     * @dev Called after deposits to ensure all assets are actively earning yield
     */
    function _investInStrategy() internal {
        uint256 balance = _asset.balanceOf(address(this));
        if (balance > 0) {
            _asset.safeTransfer(address(strategy), balance);
            strategy.deposit();
        }
    }
}

File 4 of 29 : PetalsStorageLayout.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "../00_libraries/types.sol";
import "../../interfaces/common/IStrategyFactory.sol";
import "../../interfaces/routing/RouterTypes.sol";

/**
 * @title PetalsStorageLayout
 * @notice Storage layout library for the upgradeable PetalsVaultController
 * @dev This library defines the storage layout that will be used by all versions
 * of the controller implementation. It uses the diamond storage pattern to
 * prevent storage collisions and ensure upgrade compatibility.
 */
library PetalsStorageLayout {
    /// @notice Unique storage slot identifier to prevent collisions
    /// @dev Using a unique namespace for this protocol's storage
    bytes32 constant STORAGE_SLOT = keccak256("com.petals.protocol.storage.main");

    /**
     * @notice Complete storage layout for the Petals Protocol
     * @dev All state variables from PetalsVaultController are defined here
     * This struct represents the entire persistent state of the protocol
     * that will be preserved across all logic contract upgrades
     */
    struct AppStorage {
        // ============ Strategy Registry ============
        
        /// @notice Mapping from strategy to vault (reverse lookup)
        /// @dev Forward lookup (vault => strategy) is in vaultData[vault].strategy.strategyAddress
        mapping(address => address) strategyToVault;

        // ============ Access Control & Permission Registry ============
        /// @notice Contract-specific role assignments: contractAddr => role => account => hasRole
        mapping(address => mapping(uint64 => mapping(address => bool))) contractRoles;
        
        // ============ Core Infrastructure ============
        
        /// @notice The master vault implementation used for all vault clones
        address masterVault;
        
        /// @notice The data provider contract for aggregated queries
        address dataProvider;
        
        /// @notice Price oracle contract for USD valuations
        address priceOracle;
        
        /// @notice Wrapped native token address for this chain
        address wrappedNativeToken;
        
        /// @notice Fee manager contract for all fee-related operations
        address feeManager;
        
        /// @notice Access manager contract for all permission-related operations
        address accessManager;

        /// @notice The master address that receives ownership of registered vaults and strategies
        address masterAddress;
        
        /// @notice Timelock controller for critical operations (optional, address(0) = no timelock)
        address timelockController;

        // ============ Vault Registry ============
        
        /// @notice Array of all deployed vault addresses
        address[] allVaults;
        
        /// @notice Quick lookup to verify if an address is a registered vault
        mapping(address => bool) isVault;
        
        /// @notice Comprehensive data storage for each vault
        /// @dev Stores all persistent vault data (identity, metadata, metrics, strategy, UI)
        mapping(address => VaultStoredData) vaultData;

        // ============ Indexing System ============
        
        /// @notice Vaults organized by underlying asset for efficient discovery
        mapping(address => address[]) vaultsByAsset;
        
            /// @notice Vaults organized by fee recipient for management interfaces
        mapping(address => address[]) vaultsByFeeRecipient;

        /// @notice Array of retired vault addresses for archiving
        address[] retiredVaults;
        /// @notice Quick check if a vault is retired
        mapping(address => bool) isRetired;

        // ============ Performance Tracking ============
        
        /// @notice Running count of total vaults deployed through this controller
        uint256 totalVaultsDeployed;

        // ============ Duplicate Prevention ============
        
        /// @notice Prevents duplicate registrations of the same asset+strategyType combination
        /// @dev Key: [asset][strategyType] → vault
        /// @dev Allows multiple strategy types per asset (e.g., USDC with Shadow-V1, Shadow-V2, Aave)
        mapping(address => mapping(bytes32 => address)) assetStrategyTypeVault;

        // ============ Protocol-Wide Operations ============
        
        /// @notice Direct mapping from base protocol to all vaults using it
        /// @dev Enables O(1) protocol-wide operations (panic, analytics)
        mapping(bytes32 => address[]) vaultsByProtocol;
        
        /// @notice Index mapping for efficient vault removal from protocol array
        mapping(bytes32 => mapping(address => uint256)) vaultsByProtocolIndex;

        // ============ Deployment Management ============
        
        /// @notice Vault deployments queued for admin approval before registration
        /// @dev Mapping-only design (no array) to prevent DOS attacks via queue spam
        /// @dev Admin discovers vaults via off-chain events/indexer, approves by direct address lookup
        /// @dev Multiple vaults can queue for same asset - admin chooses best during approval
        mapping(address => VaultStoredData) queuedVaults;


        
        // ============ Configurable Protocol Constants ============
        
        /// @notice Standard basis points denominator (configurable)
        uint256 basisPoints;
        
        /// @notice Maximum slippage tolerance for strategy operations (configurable)
        uint256 maxSlippage;
        
        /// @notice Minimum delay between harvests (configurable)
        uint256 minHarvestDelay;
        
        /// @notice Default performance fee for new vaults (configurable)
        uint256 defaultPerformanceFee;
        
        /// @notice Default slippage tolerance for strategies (configurable)
        uint256 defaultSlippageTolerance;
        uint256 defaultCollateralFactor; // Default collateral factor for lending strategies in basis points

        // ============ Essential Indexing System ============
        mapping(address => uint256) allVaultsIndex;
        mapping(address => mapping(address => uint256)) vaultsByAssetIndex;  // asset => vault => index

        // ============ Fee Config Storage ============
        /// @notice Vault-specific fee configurations stored in the diamond
        mapping(address => VaultFeeConfig) vaultFeeConfigs;
        /// @notice Universal fee configuration used as default when no override
        UniversalFeeConfig universalFeeConfig;
        
        /// @notice Claimable fees per recipient address
        /// @dev Fees accumulate here instead of direct transfer for better composability
        mapping(address => uint256) claimableFees;

        // ============ Routing System ============
        /// @notice Registry of router libraries: RouterType => library address
        mapping(RouterType => address) routerLibraries;
        
        /// @notice Centralized fees library for all strategies
        address feesLibrary;
        
        /// @notice Last route change timestamp per strategy
        mapping(address => uint256) strategyLastRouteChange;
        
        /// @notice Total route updates per strategy
        mapping(address => uint256) strategyRouteUpdateCount;

        // ============ Metadata Registry (NEW) ============
        
        /// @notice Chain metadata for this deployment (single static struct)
        ChainMetadata chainMetadata;
        
        /// @notice Token category information (dynamic registry)
        mapping(bytes32 => TokenCategoryInfo) tokenCategories;
        bytes32[] registeredCategories;
        
        /// @notice Token metadata registry for UI display
        mapping(address => TokenMetadata) tokenMetadata;
        address[] registeredTokens;
        
        /// @notice Tokens organized by category for filtering
        mapping(bytes32 => address[]) tokensByCategory; // categoryId => tokens[]

        // ============ Vault Tag Registry ============
        
        /// @notice Vault tag definitions
        mapping(bytes32 => VaultTagInfo) vaultTags;
        bytes32[] registeredTags;
        
        /// @notice Reverse index: tagId => vault addresses (for filtering)
        mapping(bytes32 => address[]) vaultsByTag;

        // ============ Universal Factory Registry ============
        
        /// @notice Protocol registry: baseProtocol => registration data
        /// @dev Primary access by bytes32 name (stable, readable API)
        mapping(bytes32 => ProtocolRegistration) universalFactoryProtocols;
        
        /// @notice All registered protocols (for enumeration)
        /// @dev Array indices match ProtocolRegistration.protocolIndex
        bytes32[] universalFactoryRegisteredProtocols;
        
        /// @notice Strategy type registry: baseProtocol => strategyType => registration data
        /// @dev Two-level mapping for protocol → type hierarchy
        mapping(bytes32 => mapping(bytes32 => StrategyTypeRegistration)) universalFactoryStrategyTypes;
        
        /// @notice Protocol strategy types (for enumeration): baseProtocol => strategyType[]
        /// @dev Array indices match StrategyTypeRegistration.typeIndex
        mapping(bytes32 => bytes32[]) universalFactoryProtocolStrategyTypes;
        
        /// @notice Tracks all strategies deployed by UniversalFactory for O(1) validation
        /// @dev Only UniversalFactory can set this to true, making it unspoofable
        mapping(address => bool) universalFactoryDeployedStrategies;

        // ============ Oracle Storage ============
        
        /// @notice Chainlink price feeds: asset => feed address
        mapping(address => address) chainlinkFeeds;
        
        /// @notice DEX routers with their types for price discovery
        OracleRouterInfo[] dexRouters;
        mapping(address => bool) approvedRouters;
        
        /// @notice Base tokens for routing (USDC, WETH, etc.)
        address[] baseTokens;
        mapping(address => bool) isBaseToken;
        mapping(address => uint256) baseTokenPriority;
        
        /// @notice Cached price data: asset => PriceData
        mapping(address => PriceData) cachedPrices;
        
        /// @notice LP token detection cache
        mapping(address => bool) isLPTokenCache;
        mapping(address => bool) isLPTokenSet;
        
        /// @notice Manual price overrides (emergency)
        mapping(address => PriceData) manualPrices;
        mapping(address => bool) useManualPrice;
        
        /// @notice Custom price staleness per asset
        mapping(address => uint256) maxPriceAge;

        // ============ Asset Registry Storage ============
        
        /// @notice Asset metadata registry (LP tokens, complex assets)
        /// @dev Populated by ChainRegistryFacet, queried by OracleFacet and ControllerFacet
        mapping(address => AssetMetadata) assetRegistry;
        
        /// @notice Quick lookup: Is this address a registered asset?
        mapping(address => bool) isRegisteredAsset;
        
        /// @notice Enumeration: All registered assets
        address[] registeredAssets;
        
        /// @notice Index by RouterType (for Oracle optimization)
        /// @dev Allows O(1) lookup of all assets for a given DEX type
        mapping(RouterType => address[]) assetsByRouterType;

        // ============ Storage Gap ============
        /// @notice Storage gap for future upgrades - reserves 100 slots
        /// @dev This prevents storage collisions when adding new state variables in future versions
        /// @dev Increased to 100 for better long-term flexibility
        uint256[100] __gap;
    }

    /**
     * @notice Get a storage pointer to the AppStorage struct
     * @dev Uses assembly to return a storage pointer at the designated slot
     * This is the standard diamond storage pattern for upgradeable contracts
     * @return s Storage pointer to the AppStorage struct
     */
    function getStorage() internal pure returns (AppStorage storage s) {
        bytes32 slot = STORAGE_SLOT;
        assembly {
            s.slot := slot
        }
    }
}

File 5 of 29 : types.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "../../interfaces/common/IStrategyFactory.sol";
import "../../interfaces/routing/RouterTypes.sol";

/**
 * ╔══════════════════════════════════════════════════════════════════════════════╗
 * ║                     PETALS PROTOCOL DATA ARCHITECTURE                        ║
 * ╚══════════════════════════════════════════════════════════════════════════════╝
 * 
 * This file defines the complete data structure hierarchy for the Petals Protocol.
 * 
 * ┌─────────────────────────────────────────────────────────────────────────────┐
 * │                          TWO MAIN DATA STRUCTURES                           │
 * └─────────────────────────────────────────────────────────────────────────────┘
 * 
 * 1. VaultRowData
 *    ├─ Purpose: Lightweight data for vault list display (/vaults page)
 *    ├─ Usage: Batch queries of 500+ vaults
 *    ├─ Contains: Essential metrics + UI branding
 *    └─ Returned by: DataProviderFacet.getVaultRowsBatch()
 * 
 * 2. VaultCompleteData
 *    ├─ Purpose: Complete vault data for detail pages (/vaults/[id])
 *    ├─ Usage: Single vault detailed view
 *    ├─ Contains: ALL vault data in one call (stored + computed + derived)
 *    └─ Returned by: DataProviderFacet.getVaultData()
 * 
 * ┌─────────────────────────────────────────────────────────────────────────────┐
 * │                        DATA LAYER ORGANIZATION                              │
 * └─────────────────────────────────────────────────────────────────────────────┘
 * 
 * LAYER 1: STORED DATA (Persisted in Diamond Storage)
 * ────────────────────────────────────────────────────
 * VaultStoredData
 *  ├─ VaultIdentity      → Who/what/when (addresses, timestamps)
 *  ├─ VaultMetadata      → Name, protocol, category, branding
 *  ├─ VaultMetrics       → Performance history (APY, harvests)
 *  ├─ StrategyData       → Strategy configuration
 *  └─ VaultUIMetadata    → Logos, links, LP token info
 * 
 * LAYER 2: COMPUTED DATA (Calculated On-Demand from Contracts)
 * ────────────────────────────────────────────────────────────
 *  ├─ VaultStateData     → Real-time vault state (totalAssets, sharePrice)
 *  ├─ UserPortfolioData  → User-specific balances and allowances
 *  ├─ VaultFeeData       → Fee configuration from FeeManager
 *  └─ HarvestData        → Harvest readiness and pending rewards
 * 
 * LAYER 3: DERIVED DATA (Computed from Logic)
 * ────────────────────────────────────────────
 *  └─ VaultStatus        → Active/Paused/Retired (enum)
 * 
 * ┌─────────────────────────────────────────────────────────────────────────────┐
 * │                           DATA FLOW DIAGRAM                                 │
 * └─────────────────────────────────────────────────────────────────────────────┘
 * 
 * Diamond Storage: vaultData[address] → VaultStoredData
 *                                           │
 *                                           ├─► VaultIdentity
 *                                           ├─► VaultMetadata
 *                                           ├─► VaultMetrics
 *                                           ├─► StrategyData
 *                                           └─► VaultUIMetadata
 *                                           
 * DataProviderFacet._getVaultCompleteData() reads storage + computes real-time:
 *                                           
 * VaultCompleteData
 *  ├─ [STORED] identity, metadata, metrics, strategy, ui
 *  ├─ [COMPUTED] state ──────► Query vault.totalAssets(), vault.totalSupply()
 *  ├─ [COMPUTED] user ───────► Query vault.balanceOf(user), asset.balanceOf(user)
 *  ├─ [COMPUTED] fees ───────► Query feeManager.getVaultFeeConfig(vault)
 *  ├─ [COMPUTED] harvest ────► Query strategy.totalRewardsAvailable()
 *  └─ [DERIVED] status ──────► Compute from vault.active() + strategy.paused()
 * 
 * ┌─────────────────────────────────────────────────────────────────────────────┐
 * │                         FRONTEND USAGE GUIDE                                │
 * └─────────────────────────────────────────────────────────────────────────────┘
 * 
 * For Vault List Page (/vaults):
 * ────────────────────────────────
 * const rows = await dataProvider.getVaultRowsBatch(vaults, user);
 * // Access: row.name, row.protocol, row.estAPY, row.vaultLogoURI
 * 
 * For Vault Detail Page (/vaults/[id]):
 * ───────────────────────────────────────
 * const data = await dataProvider.getVaultData(vault, user);
 * // Access all fields:
 * // - data.identity.vaultAddress
 * // - data.metadata.name
 * // - data.ui.vaultLogoURI, data.ui.websiteURI
 * // - data.state.totalAssets, data.state.sharePrice
 * // - data.user.userBalance
 * // - data.harvest.canHarvest
 */

// ════════════════════════════════════════════════════════════════════════════════
// MAIN DATA STRUCTURES
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Lightweight vault data optimized for list display
 * @dev Used by: Frontend /vaults page for displaying 500+ vaults efficiently
 * @dev Returned by: DataProviderFacet.getVaultRowsBatch()
 * 
 * Contains:
 * - Essential identification (address, name, protocol)
 * - Key metrics (APY, TVL, risk level)
 * - User portfolio (balances)
 * - UI branding (logos)
 * - Status indicator
 */
struct VaultRowData {
    // === IDENTITY ===
    address vaultAddress;        // Vault contract address
    bytes name;                  // Vault name (full length, no truncation)
    bytes32 protocol;            // Protocol name (e.g., "Shadow", "Aave")
    bytes32 category;            // Category (e.g., "Stable", "Volatile")
    
    // === KEY METRICS ===
    uint256 estAPY;              // Last APY in basis points (10000 = 100%)
    uint256 tvlUSD;              // TVL estimate in USD (6 decimals)
    uint8 riskLevel;             // Risk level 1-10
    uint8 status;                // 0=Active, 1=Paused, 2=Retired
    
    // === USER PORTFOLIO ===
    uint256 userAvailable;       // User's underlying asset balance
    uint256 userHoldings;        // User's vault share balance
    uint256 userPositionUSD;     // User's vault position in USD (6 decimals) - 0 if unavailable
    uint256 userAvailableUSD;    // User's available balance in USD (6 decimals) - 0 if unavailable
    
    // === USD PRICING ===
    uint256 assetPriceUSD;       // Asset price in USD (18 decimals) - 0 if unavailable
    uint8 priceConfidence;       // Oracle confidence (0-100) - 0 if no oracle
    
    // === UI METADATA ===
    bytes vaultLogoURI;          // Vault logo (IPFS/HTTP) - bytes for gas efficiency
    bytes protocolLogoURI;       // Protocol logo (IPFS/HTTP) - bytes for gas efficiency
}

/**
 * @notice Complete vault data with all information in a single structure
 * @dev Used by: Frontend /vaults/[id] detail page
 * @dev Returned by: DataProviderFacet.getVaultData()
 * 
 * Architecture:
 * ├─ STORED DATA (from Diamond storage - VaultStoredData)
 * │  ├─ identity: Basic vault identity
 * │  ├─ metadata: Name, description, branding
 * │  ├─ metrics: Performance history
 * │  ├─ strategy: Strategy configuration
 * │  └─ ui: Logos, links, LP token info
 * │
 * ├─ COMPUTED DATA (from contracts - calculated on-demand)
 * │  ├─ state: Real-time vault state
 * │  ├─ user: User-specific portfolio data
 * │  ├─ fees: Fee configuration
 * │  └─ harvest: Harvest readiness
 * │
 * └─ DERIVED DATA (from logic)
 *    └─ status: Active/Paused/Retired
 */
struct VaultCompleteData {
    // ═══════════════════════════════════════════════════════════════════════════
    // STORED DATA (Persisted in Diamond Storage)
    // ═══════════════════════════════════════════════════════════════════════════
    
    /// @notice Basic vault identity (addresses, IDs, timestamps)
    VaultIdentity identity;
    
    /// @notice Vault metadata (name, protocol, category, descriptions)
    VaultMetadata metadata;
    
    /// @notice Performance metrics (APY history, harvest counts)
    VaultMetrics metrics;
    
    /// @notice Strategy configuration
    StrategyData strategy;
    
    /// @notice UI metadata (logos, links, LP token info)
    VaultUIMetadata ui;
    
    // ═══════════════════════════════════════════════════════════════════════════
    // COMPUTED DATA (Calculated On-Demand from Contracts)
    // ═══════════════════════════════════════════════════════════════════════════
    
    /// @notice Real-time vault state (totalAssets, sharePrice, etc.)
    VaultStateData state;
    
    /// @notice User-specific portfolio data (balances, allowances)
    UserPortfolioData user;
    
    /// @notice Fee configuration (performance, withdrawal, deposit fees)
    VaultFeeData fees;
    
    /// @notice Harvest data (pending rewards, readiness)
    HarvestData harvest;
    
    // ═══════════════════════════════════════════════════════════════════════════
    // DERIVED DATA (Computed from Logic)
    // ═══════════════════════════════════════════════════════════════════════════
    
    /// @notice Computed vault status
    VaultStatus status;
}

// ════════════════════════════════════════════════════════════════════════════════
// STORED SUB-STRUCTURES (Layer 1: Persisted in Diamond Storage)
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Complete stored vault data (what's actually in Diamond storage)
 * @dev This is what gets stored in: PetalsStorageLayout.vaultData[address]
 * @dev Contains all persistent vault information that survives between transactions
 * 
 * Used internally by:
 * - ControllerFacet (for registration and updates)
 * - DataProviderFacet (for reading and building VaultCompleteData)
 * 
 * ┌──────────────────────────────────────────────────────────────────────────────┐
 * │ STORAGE OWNERSHIP - CRITICAL: DO NOT VIOLATE THIS SEPARATION                │
 * ├──────────────┬───────────────────────┬────────────────────────────────────────┤
 * │ Field        │ Written By            │ When                                   │
 * ├──────────────┼───────────────────────┼────────────────────────────────────────┤
 * │ identity     │ ControllerFacet       │ Registration (once)                    │
 * │ metadata     │ VaultMetadataFacet  │ Initialization & updates               │
 * │ metrics      │ ControllerFacet       │ Registration + after harvests          │
 * │ strategy     │ ControllerFacet       │ Registration (once)                    │
 * │ ui           │ VaultMetadataFacet  │ Initialization & updates               │
 * └──────────────┴───────────────────────┴────────────────────────────────────────┘
 * 
 * IMPORTANT RULES:
 * 1. ControllerFacet writes: identity, strategy (immutable after registration)
 * 2. ControllerFacet writes: metrics (updated after harvests)
 * 3. VaultMetadataFacet writes: metadata, ui (mutable, admin-controlled)
 * 4. NO OTHER FACETS should write to these fields
 * 5. Initialization order: ControllerFacet (core) → VaultMetadataFacet (properties)
 * 
 * Violating this can cause:
 * - Data corruption (two facets writing same field)
 * - Broken initialization (properties set before core data)
 * - Audit failures (unclear ownership boundaries)
 */
struct VaultStoredData {
    VaultIdentity identity;      // ControllerFacet ONLY - immutable after registration
    VaultMetadata metadata;      // VaultMetadataFacet ONLY - mutable
    VaultMetrics metrics;        // ControllerFacet ONLY - updated after harvests
    StrategyData strategy;       // ControllerFacet ONLY - immutable after registration
    VaultUIMetadata ui;          // VaultMetadataFacet ONLY - mutable
}

/**
 * @notice Basic vault identity information
 * @dev Core identification fields for vault tracking
 */
struct VaultIdentity {
    address vaultAddress;        // Vault contract address
    bytes32 vaultId;             // Unique vault identifier
    uint256 createdAt;           // Vault creation timestamp
    uint256 registeredAt;        // Registration timestamp in controller
    address deployer;            // Address that deployed the vault
}

/**
 * @notice Vault metadata for display and categorization
 * @dev Human-readable information about the vault
 */
struct VaultMetadata {
    bytes name;                  // Vault name - dynamic length for complex multi-token pools (e.g., "BeethovenX USDC-DAI-USDT Stable Pool")
    bytes32 symbol;              // Vault symbol (e.g., "P-wS-SHADOW") - always short, keep bytes32
    bytes32 protocol;            // Protocol name (e.g., "Shadow", "Aave") - always short, keep bytes32
    bytes32 category;            // Category (e.g., "Stable", "Volatile", "Blue-chip") - always short, keep bytes32
    uint8 riskLevel;             // Risk level 1-10
    bytes description;           // Vault description
    bytes strategyDescription;   // Strategy description
}

/**
 * @notice Performance metrics tracked over time
 * @dev Updated after each harvest to maintain historical performance data
 */
struct VaultMetrics {
    uint256 lastAPY;             // APY from most recent harvest (basis points)
    uint256 totalHarvests;       // Total number of harvests executed
    uint64 lastHarvest;          // Timestamp of last harvest
    uint256 supplyApy;           // Supply APY for lending strategies
    uint256 borrowApy;           // Borrow APY for lending strategies
    uint256 _reserved1;          // Reserved for future metrics
    uint256 _reserved2;          // Reserved for future metrics
}

/**
 * @notice Strategy configuration and deployment info
 * @dev Static information about the strategy contract
 */
struct StrategyData {
    address strategyAddress;     // Strategy contract address
    address underlyingAsset;     // Asset the strategy manages
    bytes32 strategyType;        // Strategy type identifier (e.g., "Shadow-Volatile-V1")
    uint64 registeredAt;         // When strategy was registered
    address deployer;            // Who deployed the strategy
    uint256 collateralFactor;    // Collateral factor for lending (basis points)
    uint16 slippageTolerance;    // Slippage tolerance in basis points (0-1000 = 0-10%)
}

/**
 * @notice UI metadata for frontend display
 * @dev All data needed for rich vault UI (logos, links, LP token info)
 * @dev Uses bytes instead of string for gas efficiency (~50% savings)
 * @dev Frontend decodes with ethers.toUtf8String(bytesData)
 * 
 * Contains:
 * - Branding: Vault and protocol logos
 * - Links: Website, docs, social media (in socials array)
 * - LP Info: Underlying token addresses and metadata (supports N tokens for Curve/Balancer/BeethovenX)
 * 
 * Use Cases:
 * - Display vault branding on list and detail pages
 * - Provide direct links to protocol websites/docs
 * - Show LP token composition without additional RPC calls
 * - Enable token selection dropdowns with proper symbols and logos
 * - Support multi-token pools (2+ tokens)
 * 
 * Socials Array Convention:
 * - socials[0] = website
 * - socials[1] = docs
 * - socials[2] = discord
 * - socials[3] = twitter
 * 
 * Multi-Token Pool Support:
 * - For UniV2/Solidly pairs: lpTokens.length = 2
 * - For Curve 3pool: lpTokens.length = 3
 * - For Balancer weighted pools: lpTokens.length = 2-8
 * - Arrays are parallel: lpTokens[i], lpTokenSymbols[i], lpTokenLogos[i]
 */
struct VaultUIMetadata {
    // === BRANDING ===
    bytes vaultLogoURI;          // Vault-specific logo (IPFS/HTTP)
    bytes protocolLogoURI;       // Protocol logo
    
    // === LINKS (Array for gas efficiency) ===
    bytes[] socials;             // [website, docs, discord, twitter]
    
    // === LP TOKEN INFO (flexible for multi-token pools) ===
    address[] lpTokens;          // Underlying token addresses (2+ for multi-token pools)
    bytes32[] lpTokenSymbols;    // Cached symbols (parallel to lpTokens)
    bytes[] lpTokenLogos;        // Logo URIs (parallel to lpTokens)
    
    // === TAGS (for filtering and discovery) ===
    bytes32[] tags;              // Tag IDs applied to this vault (e.g., [TAG_LP_STRATEGY, TAG_AUDITED])
}

// ════════════════════════════════════════════════════════════════════════════════
// COMPUTED SUB-STRUCTURES (Layer 2: Calculated On-Demand from Contracts)
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Real-time vault state data
 * @dev Computed by querying vault and strategy contracts
 * @dev NOT stored - calculated fresh on each DataProviderFacet.getVaultData() call
 * 
 * Data Sources:
 * - vault.totalAssets()
 * - vault.totalSupply()
 * - strategy.totalAssets()
 * - vault.maxDeposit(user)
 * - oracle.getPrice(asset)
 */
struct VaultStateData {
    uint256 totalAssets;         // Total assets in vault (underlying asset)
    uint256 totalSupply;         // Total vault token supply
    uint256 strategyBalance;     // Assets deployed in strategy
    uint256 sharePrice;          // Current share price (18 decimals)
    uint256 tvlEstimateUSD;      // Oracle-based TVL estimate (6 decimals)
    uint256 maxDeposit;          // Maximum deposit allowed (ERC4626)
    uint256 maxWithdraw;         // Maximum withdrawal allowed (ERC4626)
    uint256 maxRedeem;           // Maximum redemption allowed (ERC4626)
    bytes32 assetSymbol;         // Asset symbol (gas-efficient bytes32)
    uint8 assetDecimals;         // Asset decimal places
    bool vaultActive;            // Vault operational status
    bool strategyPaused;         // Strategy pause status
    uint256 assetPriceUSD;       // Asset price in USD (18 decimals) - 0 if unavailable
    uint8 priceConfidence;       // Oracle confidence level (0-100) - 0 if no oracle
}

/**
 * @notice User-specific portfolio data
 * @dev Computed by querying vault and asset contracts for user balances
 * @dev Pass address(0) to skip user-specific data
 * 
 * Data Sources:
 * - vault.balanceOf(user)
 * - asset.balanceOf(user)
 * - asset.allowance(user, vault)
 */
struct UserPortfolioData {
    uint256 userBalance;         // User's vault share balance
    uint256 userAssetBalance;    // User's underlying asset balance
    uint256 userAllowance;       // User's asset allowance to vault
    uint256 positionValueUSD;    // User's vault position value in USD (6 decimals) - 0 if unavailable
    uint256 availableValueUSD;   // User's available asset balance in USD (6 decimals) - 0 if unavailable
}

/**
 * @notice Fee configuration data
 * @dev Computed by querying fee configuration from Diamond storage
 * @dev Only performance fees are charged - deposit/withdrawal fees removed
 * 
 * Data Sources:
 * - s.vaultFeeConfigs[vault] or s.universalFeeConfig
 * - controller.defaultPerformanceFee (fallback)
 */
struct VaultFeeData {
    uint256 performanceFee;      // Performance fee in basis points (only fee charged)
    uint256 supplyApy;           // Supply APY for lending strategies
    uint256 borrowApy;           // Borrow APY for lending strategies
    uint256 collateralFactor;    // Collateral factor for lending (basis points)
}

/**
 * @notice Harvest readiness and reward data
 * @dev Computed by querying strategy contract for pending rewards
 * @dev Used to determine if harvest() can be called profitably
 * 
 * Data Sources:
 * - strategy.totalRewardsAvailable()
 * - strategy.lastHarvest()
 * - strategy.paused()
 */
struct HarvestData {
    uint256 pendingRewards;      // Total pending rewards available
    uint256 lastHarvestTime;     // Timestamp of last harvest
    uint256 timeSinceLastHarvest; // Calculated time since last harvest
    uint256 totalHarvests;       // Total number of harvests executed
    address[] rewardTokens;      // Array of reward token addresses
    uint256[] rewardAmounts;     // Array of pending reward amounts
    bool canHarvest;             // Whether harvest can be called now
    uint256 callRewardValueUSD;  // Harvester reward value in USD (6 decimals) - 0 if unavailable
    uint256 pendingRewardsValueUSD; // Total pending rewards value in USD (6 decimals) - 0 if unavailable
}

// ════════════════════════════════════════════════════════════════════════════════
// DERIVED DATA (Layer 3: Computed from Logic)
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Vault status enumeration
 * @dev Computed from vault.active() and strategy.paused()
 */
enum VaultStatus {
    Active,    // Vault is active and strategy is not paused
    Paused,    // Strategy is paused (deposits/withdrawals may be restricted)
    Retired    // Vault is retired (no longer operational)
}

// ════════════════════════════════════════════════════════════════════════════════
// METADATA REGISTRY STRUCTURES
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Chain metadata for the current deployment
 * @dev Each Diamond deployment is chain-specific, so only one ChainMetadata per deployment
 * @dev Stored once per chain, provides UI with chain-specific information
 * 
 * Use Cases:
 * - Display chain name and logo in UI
 * - Provide explorer links for contract addresses
 * - Enable wallet RPC configuration
 */
struct ChainMetadata {
    uint256 chainId;             // Chain ID (e.g., 146 for Sonic)
    bytes32 name;                // Chain name (e.g., "Sonic")
    bytes32 nativeCurrency;      // Native currency symbol (e.g., "S")
    bytes logoURI;               // Chain logo (IPFS/HTTP)
    bytes explorerBaseURL;       // Block explorer base URL (e.g., "https://sonicscan.org")
    bytes rpcURL;                // RPC endpoint for wallet connections
    bool isSet;                  // Whether metadata has been configured
}

/**
 * @notice Dynamic token category information
 * @dev Replaces enum to allow runtime category management
 * @dev Categories can be added/updated without contract redeployment
 * 
 * Use Cases:
 * - Filter tokens by category in UI
 * - Organize token selection dropdowns
 * - Display category-specific metadata
 */
struct TokenCategoryInfo {
    bytes32 categoryId;          // Unique identifier (e.g., keccak256("STABLECOIN"))
    bytes32 displayName;         // UI display name (e.g., "Stablecoin")
    bytes description;           // Category description for UI
    bool isActive;               // Whether category is active
    uint256 createdAt;           // Creation timestamp
}

/**
 * @notice Complete token metadata for UI display
 * @dev Stored per token address in MetadataRegistry
 * @dev Uses bytes instead of string for gas efficiency
 * 
 * Use Cases:
 * - Display token symbols and logos in vault list
 * - Enable "Create Vault" UI with token dropdowns
 * - Show rich token information in AssetsTab
 * - Filter tokens by category
 */
struct TokenMetadata {
    address tokenAddress;        // Token contract address
    bytes32 symbol;              // Token symbol (e.g., "USDC") - bytes32 for gas efficiency
    bytes32 name;                // Token name (e.g., "USD Coin")
    uint8 decimals;              // Token decimals
    bytes32 category;            // References TokenCategoryInfo.categoryId
    bytes logoURI;               // Token logo (IPFS/HTTP) - bytes for flexibility
    bytes description;           // Rich description for AssetsTab (supports markdown)
    bool isActive;               // Whether token is active for new vaults
    uint256 addedAt;             // Timestamp when token was registered
}

// Default category constants for initialization
bytes32 constant CATEGORY_STABLECOIN = keccak256("STABLECOIN");
bytes32 constant CATEGORY_GOVERNANCE = keccak256("GOVERNANCE");
bytes32 constant CATEGORY_LP_TOKEN = keccak256("LP_TOKEN");
bytes32 constant CATEGORY_WRAPPED_NATIVE = keccak256("WRAPPED_NATIVE");
bytes32 constant CATEGORY_YIELD_BEARING = keccak256("YIELD_BEARING");
bytes32 constant CATEGORY_BRIDGE_TOKEN = keccak256("BRIDGE_TOKEN");

/**
 * @notice Vault tag information for filtering and discovery
 * @dev Tags are dynamic, reusable labels that can be applied to multiple vaults
 * @dev Examples: "LP Strategy", "Single Asset", "Lending"
 * 
 * Use Cases:
 * - Filter vaults by strategy type
 * - Display strategy badges in UI
 * - Group vaults by characteristics
 * - Enable advanced search and discovery
 */
struct VaultTagInfo {
    bytes32 tagId;               // Unique identifier (e.g., keccak256("LP_STRATEGY"))
    bytes32 displayName;         // UI display name (e.g., "LP Strategy")
    bytes description;           // Tag description for tooltips
    bool isActive;               // Whether tag is active
}

// Minimal tag constants for auto-tagging logic (used by ControllerFacet)
bytes32 constant TAG_LP_STRATEGY = keccak256("LP_STRATEGY");
bytes32 constant TAG_SINGLE_ASSET = keccak256("SINGLE_ASSET");
bytes32 constant TAG_LENDING = keccak256("LENDING");

// ════════════════════════════════════════════════════════════════════════════════
// FEE SYSTEM STRUCTURES
// ════════════════════════════════════════════════════════════════════════════════

/**
 * @notice Fee configuration for a specific vault
 * @dev Simplified to only performance fees - deposit/withdrawal fees removed (unused)
 */
struct VaultFeeConfig {
    uint16 performanceFee;       // Performance fee in basis points (only fee charged)
    address[] recipients;        // Fee recipients
    uint256[] ratios;            // Fee ratios (basis points, should sum to 10000)
    bytes32[] labels;            // Labels for identification
    uint256 lastUpdated;         // Last update timestamp
    bool isOverride;             // Whether this overrides universal config
}

/**
 * @notice Universal fee configuration (default for all vaults)
 * @dev Used when vault doesn't have a specific fee override
 */
struct UniversalFeeConfig {
    address[] recipients;        // Fee recipients
    uint256[] ratios;            // Fee ratios (basis points, should sum to 10000)
    bytes32[] labels;            // Labels for identification
    uint256 lastUpdated;         // Last update timestamp
}

// Note: ProtocolInfo struct removed - use UniversalFactory instead
// Migration: UniversalFactoryFacet.getProtocolRegistration(baseProtocol)

// ════════════════════════════════════════════════════════════════════════════════
// SHARED EVENTS
// ════════════════════════════════════════════════════════════════════════════════

/// @notice Vault operations
event VaultDeployed(
    address indexed vault,
    address indexed strategy,
    address indexed asset,
    bytes name,  // Full-length name (no truncation)
    bytes32 symbol,
    bytes32 strategyType,
    bytes32 baseProtocol
);

event VaultUpdated(address indexed vault, uint256 indexed updateType, bytes data);

event HarvestExecuted(address indexed vault, address indexed harvester, uint256 yield, uint256 lastAPY, uint256 totalAssets);

event FeeConfigUpdated(address indexed vault, VaultFeeConfig config, bool isUniversal);

event ProtocolConfigured(
    bytes32 indexed protocolType, address indexed factory, address indexed implementation, bool isActive
);

event ProtocolConstantsUpdated(
    uint256 basisPoints, uint256 maxSlippage, uint256 minHarvestDelay, uint256 defaultPerformanceFee, uint256 defaultSlippageTolerance
);

event RolesTransferredOnRegistration(
    address indexed vault, address indexed strategy, bool managerRole, bool emergencyRole
);

event VaultUIMetadataUpdated(address indexed vault, VaultUIMetadata uiMetadata);

event VaultMetadataUpdated(
    address indexed vault,
    bytes name,
    bytes32 protocol,
    bytes32 category,
    uint8 riskLevel
);

event VaultTagsUpdated(address indexed vault, bytes32[] oldTags, bytes32[] newTags);

/// @notice Strategy operations
event StrategyUpdated(address indexed newStrategy);
event StrategyConfigUpdated(uint8 indexed updateType, bytes data);

event StrategyDeployed(address indexed strategy, bytes32 indexed protocolType, address indexed deployer);
event StrategyDeployedDetailed(
    address indexed strategy,
    address indexed vault,
    bytes32 indexed strategyType,
    address deployer,
    address asset,
    uint256 timestamp
);

/// @notice Deployment queue operations
event DeploymentQueued(address indexed vault, address indexed strategy, address indexed asset, address deployer);

event DeploymentConfirmed(address indexed vault, bool managerRoleTransferred, bool emergencyRoleTransferred);

event DeploymentRejected(address indexed vault, address indexed strategy, address indexed asset);

/// @notice Permission system
event RoleCacheUpdated(bytes32 indexed role, address indexed account, bool granted);

    event FeeRecipientUpdated(address indexed previousFeeRecipient, address indexed newFeeRecipient);

/// @notice Rewards and routing
event RewardTokensSet(address[] rewardTokens);

event RewardConfigurationUpdated(address[] rewardTokens, address[][] routes);

event NativeToLp0RouteSet(address[] route);

event NativeToLp1RouteSet(address[] route);

event EmergencyWithdrawFailed(bytes reason);

// ════════════════════════════════════════════════════════════════════════════════
// SHARED ERRORS
// ════════════════════════════════════════════════════════════════════════════════

/// @notice General errors
error ZeroAddress();
error InvalidAsset();
error InvalidRouter();
error InvalidStrategy(address strategy);
error InvalidVault(address vault);
error InvalidShadowToken();
error InvalidRecipient();
error OnlyVault();
error VaultNotFound(address vault);
error StrategyNotFound();
error ProtocolNotFound(bytes32 protocol);
error ProtocolInactive(bytes32 protocol);
error AlreadyInitialized();
error UnauthorizedUpdate();
error EmptyArray();
error NoRewardTokens();
error NativeTokenNotConfigured();

/// @notice Fee system errors
error FeeTooHigh(uint256 fee, uint256 maxFee);
error TotalFeesExceeded(uint256 totalFees, uint256 maxFees);
error InvalidConfiguration();

/// @notice Registration errors
error VaultAlreadyRegistered();
error VaultNotConnectedToStrategy();
error StrategyOwnershipTransferFailed();
error DuplicateRegistration(address asset, bytes32 strategyType);

/// @notice Queue system errors
error DeploymentAlreadyQueued();
error DeploymentNotQueued();
error DeploymentAlreadyRegistered();
error NotValidDeployment();

// ============================================================================
// UNIVERSAL FACTORY TYPES
// ============================================================================

/// @notice Protocol registration in UniversalFactory
struct ProtocolRegistration {
    bytes32 baseProtocol;          // Protocol identifier (e.g., "Shadow")
    uint256 protocolIndex;         // Index in enumeration array
    bytes description;             // Protocol description
    bool isActive;                 // Whether protocol accepts new deployments
    bool exists;                   // Whether protocol is registered
    uint256 registeredAt;          // Registration timestamp
    uint256 totalDeployments;      // Total strategies deployed across all types
    bytes logoURI;                 // Protocol logo (IPFS/HTTP) for UI display
    bytes[] socials;               // Social links [website, docs, discord, twitter]
}

/// @notice Strategy type registration in UniversalFactory
struct StrategyTypeRegistration {
    bytes32 strategyType;          // Strategy type identifier (e.g., "Shadow-Volatile")
    uint256 typeIndex;             // Index within protocol's strategy types
    address implementation;        // Master implementation address
    bytes name;                    // Human-readable name
    bytes description;             // Strategy description
    bool isActive;                 // Whether type accepts new deployments
    bool exists;                   // Whether type is registered
    uint256 registeredAt;          // Registration timestamp
    uint256 deployCount;           // Number of strategies deployed
}

// ============================================================================
// ORACLE TYPES
// ============================================================================

/// @notice Price data with metadata
struct PriceData {
    uint256 price;          // Price in USD (18 decimals)
    uint8 confidence;       // Confidence level (0-100)
    uint256 lastUpdate;     // Last update timestamp
    bytes32 method;         // Pricing method used
}

/// @notice Router info for Oracle price queries
struct OracleRouterInfo {
    address routerAddress;  // DEX router address
    RouterType routerType;  // Router type (SOLIDLY, UNISWAP_V2, etc.)
}

/// @notice LP token data structure (supports multi-token pools)
/// @dev Uses arrays to support 2-token pairs AND multi-token pools (Balancer, Curve)
struct LPTokenData {
    bool isLP;              // Is this an LP token?
    address[] tokens;       // ALL tokens (2 for UniV2/Solidly, 3+ for Balancer/Curve)
    uint256[] reserves;     // ALL reserves (parallel to tokens array)
    uint256 totalSupply;    // Total LP token supply
    bool isStable;          // Stable vs volatile pool
    bytes metadata;         // Protocol-specific data (poolId, fees, etc.)
}

/// @notice Asset type classification
enum AssetType {
    STANDALONE_TOKEN,    // Regular ERC20 (USDC, WETH, SHADOW)
    LP_TOKEN_2,          // 2-token LP (UniswapV2, Solidly pairs)
    LP_TOKEN_MULTI,      // Multi-token LP (Balancer, Curve pools with 3+ tokens)
    YIELD_BEARING        // Yield-bearing tokens (aUSDC, cDAI - future support)
}

/// @notice Complete asset metadata for registry
/// @dev Used by ChainRegistryFacet for explicit asset registration
struct AssetMetadata {
    address assetAddress;        // Asset contract address
    AssetType assetType;         // Type classification
    RouterType routerType;       // For LP tokens: which DEX/router type
    
    // Composition (for LP tokens)
    address[] componentTokens;   // Underlying tokens (e.g., [SHADOW, wSONIC])
    
    // Display metadata
    bytes32 symbol;              // Asset symbol (e.g., "SHADOW-wSONIC-LP")
    bytes name;                  // Full name for UI display
    bytes logoURI;               // Asset logo URI (IPFS/HTTP)
    
    // Categorization & Status
    bytes32 category;            // Category ID (references TokenCategoryInfo)
    bool isActive;               // Whether asset can be used for new vaults
    uint256 registeredAt;        // Registration timestamp
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "../storage/PetalsStorageLayout.sol";

/**
 * @title RoleChecker
 * @author Petals Protocol
 * @notice Shared access control library for all Diamond facets
 * @dev Provides centralized role checking logic to avoid duplication across facets
 * 
 * Named RoleChecker (not AccessControl) to avoid conflicts with OpenZeppelin's AccessControl contract
 * 
 * Usage:
 *   import "../../00_libraries/RoleChecker.sol";
 *   
 *   modifier onlyRole(uint64 role) {
 *       if (!RoleChecker.hasRole(role, msg.sender)) {
 *           revert UnauthorizedUpdate();
 *       }
 *       _;
 *   }
 */
library RoleChecker {
    
    /// @notice Master role constant (admin/owner role)
    uint64 internal constant MASTER_ROLE = 0;
    
    /// @notice Strategist role constant
    uint64 internal constant STRATEGIST_ROLE = 1;
    
    /// @notice Guardian role constant (protocol-wide emergency powers)
    uint64 internal constant GUARDIAN_ROLE = 2;
    
    /**
     * @notice Check if an account has a specific role
     * @dev Checks in order:
     *      1. Is account the master address for MASTER_ROLE?
     *      2. Does account have role on this contract (address(this))?
     *      3. Does account have global role (address(0))?
     * @param role Role ID to check
     * @param account Account address to check
     * @return Whether account has the role
     */
    function hasRole(uint64 role, address account) internal view returns (bool) {
        PetalsStorageLayout.AppStorage storage s = PetalsStorageLayout.getStorage();
        
        // Master address always has MASTER_ROLE
        if (role == MASTER_ROLE && account == s.masterAddress) return true;
        
        // Check contract-specific role
        if (s.contractRoles[address(this)][role][account]) return true;
        
        // Check global role (address(0) = all contracts)
        if (s.contractRoles[address(0)][role][account]) return true;
        
        return false;
    }
    
    // Note: requireRole() function removed - use hasRole() with custom errors instead
    // Example: if (!RoleChecker.hasRole(role, msg.sender)) revert UnauthorizedUpdate();
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * Both values are immutable: they can only be set once during construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /// @inheritdoc IERC20
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /// @inheritdoc IERC20
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /// @inheritdoc IERC20
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner`'s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (interfaces/IERC4626.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

File 11 of 29 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.9.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IPetalsStrategy {
    // ERC4626 events
    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);
    event Withdraw(
        address indexed caller, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
    );

    // ERC4626 metadata functions
    function name() external view returns (string memory);
    function decimals() external view returns (uint8);

    // ERC4626-aligned view functions
    function asset() external view returns (address);
    function totalAssets() external view returns (uint256);
    function convertToShares(uint256 assets) external view returns (uint256);
    function convertToAssets(uint256 shares) external view returns (uint256);
    function maxDeposit(address receiver) external view returns (uint256);
    function maxMint(address receiver) external view returns (uint256);
    function maxWithdraw(address owner) external view returns (uint256);
    function maxRedeem(address owner) external view returns (uint256);
    function previewDeposit(uint256 assets) external view returns (uint256 shares);
    function previewMint(uint256 shares) external view returns (uint256 assets);
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    // Strategy-specific view functions
    function balanceOfPool() external view returns (uint256);
    function totalRewardsAvailable() external view returns (address[] memory tokens, uint256[] memory amounts);
    function callReward() external view returns (uint256);
    function lastHarvest() external view returns (uint256);
    
    // Strategy metadata (for deployment validation)
    function getFactory() external view returns (address);
    function getProtocolType() external view returns (bytes32);

    // Strategy-specific state-changing functions
    function deposit() external;
    function withdraw(uint256 assets) external;
    function retireStrat() external;
    function harvest(address harvester) external;
    function panic() external;
    function setVault(address vault) external;
    function setFeeRecipient(address newFeeRecipient) external;
    function setSlippageTolerance(uint256 tolerance) external;

    function balanceOf(address account) external view returns (uint256);
    function balanceOfWant() external view returns (uint256);
    function beforeDeposit() external;
    function pause() external;
    function unpause() external;
    function paused() external view returns (bool);
    function vault() external view returns (address);
    function want() external view returns (address);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title IPetalsVault
/// @notice Interface for PetalsVault contract used by strategies
interface IPetalsVault {
    function controller() external view returns (address);
}

/// @title IPetalsController
/// @notice Interface for PetalsController contract used by vaults
interface IPetalsController {
    function onVaultOperation(
        address user,
        uint256 newTotalAssets,
        uint256 newTotalSupply,
        uint256 depositAmount,
        uint256 withdrawAmount,
        bool isDeposit
    )
        external;

    function onStrategyHarvest(address vault, uint256 rewardAmount, uint256 previousTotalAssets) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "../../vaults/00_libraries/types.sol";

/// @title IPetalsControllerForStrategy
/// @notice Interface for PetalsController contract used by strategies
interface IPetalsControllerForStrategy {
    function wrappedNativeToken() external view returns (address);
    function updateStrategyRewardTokens(address vault, address[] calldata rewardTokens) external;
    function onStrategyHarvest(address vault, uint256 harvestYield, uint256 totalAssets) external;

    // Constants access for strategies
    function BASIS_POINTS() external view returns (uint256);
    function MAX_SLIPPAGE() external view returns (uint256);
    function MIN_HARVEST_DELAY() external view returns (uint256);
    function MAX_WITHDRAWAL_FEE() external view returns (uint256);
    function DEFAULT_PERFORMANCE_FEE() external view returns (uint256);
    function DEFAULT_SLIPPAGE_TOLERANCE() external view returns (uint256);
    function DEFAULT_CALL_REWARD() external view returns (uint256);

    // Fee management
    function getVaultFeeRatios(address vault) external view returns (VaultFeeConfig memory config);


    // Permission management for role-based access control
    function hasContractRole(address contractAddr, uint64 role, address account) external view returns (bool);

    // Route manager for universal DEX routing

}

File 15 of 29 : ICommonErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ICommonErrors
/// @notice Common error definitions used across multiple contracts
/// @dev Inherit this interface to access common errors and reduce code duplication
interface ICommonErrors {
    // ============ COMMON ERRORS ============

    error ZeroAddress();
    error UnauthorizedUpdate();
    error AlreadyInitialized();
    error InvalidStrategy(address strategy);
    error VaultNotFound();
    error EmptyArray();
    error InvalidAsset();
    error InvalidRouter();
    error NoRewardTokens();
    error NativeTokenNotConfigured();
    error InsufficientBalance();

    // ============ COMMON ACCESS ERRORS ============
    error OnlyVault();
    error InvalidRecipient();
}

File 16 of 29 : ICommonEvents.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title ICommonEvents
/// @notice Common event definitions used across multiple contracts
/// @dev Inherit this interface to access common events and reduce code duplication
interface ICommonEvents {
    // ============ ROLE MANAGEMENT EVENTS ============
    event RoleCacheUpdated(bytes32 indexed role, address indexed account, bool granted);
    event FeeRecipientUpdated(address indexed previousFeeRecipient, address indexed newFeeRecipient);

    // ============ STRATEGY LIFECYCLE EVENTS ============
    event StrategyUpdated(address indexed newStrategy);
    event StrategySet(address indexed strategy, bool wasRegistered);

    // ============ REWARD ROUTING EVENTS ============
    event RewardConfigurationUpdated(address[] tokens, bytes[] routes);
    event NativeToLp0RouteSet(bytes route);
    event NativeToLp1RouteSet(bytes route);

    // ============ FAILURE EVENTS (as events, not errors) ============
    event EmergencyWithdrawFailed(bytes reason);
    event SwapFailed(address indexed tokenIn, address indexed tokenOut, uint256 amountIn, string reason);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title IPermissionCache
/// @notice Interface for contracts that cache permissions from the central registry
interface IPermissionCache {
    /**
     * @notice Update cached role permissions (called by controller)
     * @param role Role to update
     * @param account Account to grant/revoke role
     * @param granted Whether to grant or revoke the role
     */
    function updateRoleCache(bytes32 role, address account, bool granted) external;

    /**
     * @notice Check if account has role (uses cached permissions)
     * @param role Role to check
     * @param account Account to check
     * @return hasRole Whether account has role
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /// @notice Permission cache events
    event RoleCacheUpdated(bytes32 indexed role, address indexed account, bool granted);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @notice Strategy factory interface for clone deployment
/// @dev Extended to support multi-type factories and Universal Factory pattern
interface IStrategyFactory {
    // ============ DEPLOYMENT ============
    
    /**
     * @notice Deploy a strategy clone with custom configuration
     * @param config ABI-encoded configuration (format depends on factory implementation)
     * @param owner Strategy owner address
     * @return strategy Deployed strategy address
     */
    function createStrategy(bytes calldata config, address owner) external returns (address strategy);
    
    // ============ LEGACY FUNCTIONS (for backward compatibility) ============
    
    /**
     * @notice Get master implementation address
     * @dev For single-type factories, returns the implementation
     * @dev For multi-type factories, may return address(0) or primary implementation
     * @return Implementation address
     */
    function implementation() external view returns (address);
    
    /**
     * @notice Get estimated gas cost for strategy deployment
     * @return Estimated gas cost
     */
    function getStrategyCreationGas() external view returns (uint256);
    
    // ============ MULTI-TYPE FACTORY SUPPORT (NEW) ============
    
    /**
     * @notice Get base protocol this factory serves
     * @dev Used by Universal Factory pattern to identify factory type
     * @return baseProtocol Base protocol identifier (e.g., bytes32("Shadow"))
     */
    function getBaseProtocol() external view returns (bytes32 baseProtocol);
    
    /**
     * @notice Get all strategy types this factory can deploy
     * @dev Used for enumeration and UI display
     * @return strategyTypes Array of strategy type identifiers
     */
    function getSupportedStrategyTypes() external view returns (bytes32[] memory strategyTypes);
}

File 19 of 29 : RouterTypes.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title RouterTypes
 * @notice Shared type definitions for the extensible routing system
 * @dev Enums and structs used across routing libraries and facets
 */

/// @notice Supported router types for different DEX protocols
enum RouterType {
    SOLIDLY,      // Shadow, Velodrome, Aerodrome, Thena (Solidly forks)
    UNIV2,        // UniswapV2, SushiSwap, PancakeSwap
    UNIV3,        // UniswapV3, PancakeSwap V3
    UNIVERSAL,    // Uniswap Universal Router
    CURVE,        // Curve Finance
    BALANCER      // Balancer
}

/// @notice Metadata about a route configuration update
struct RouteUpdateMetadata {
    uint256 timestamp;      // When the routes were last updated
    address updatedBy;      // Who updated the routes
    uint256 updateCount;    // Number of times routes have been updated
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity >=0.8.4;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 26 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 27 of 29 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 28 of 29 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"bytes32","name":"protocol","type":"bytes32"}],"name":"ProtocolNotFound","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"UnauthorizedUpdate","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"baseProtocol","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"totalVaults","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"successCount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"failureCount","type":"uint256"}],"name":"ProtocolPanicInitiated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"baseProtocol","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"totalVaults","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"successCount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"failureCount","type":"uint256"}],"name":"ProtocolUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"bytes","name":"reason","type":"bytes"}],"name":"VaultPanicFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"vault","type":"address"},{"indexed":false,"internalType":"bytes","name":"reason","type":"bytes"}],"name":"VaultUnpauseFailed","type":"event"},{"inputs":[{"internalType":"bytes32","name":"baseProtocol","type":"bytes32"}],"name":"panicProtocol","outputs":[{"internalType":"uint256","name":"totalVaults","type":"uint256"},{"internalType":"uint256","name":"successCount","type":"uint256"},{"internalType":"uint256","name":"failureCount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"baseProtocol","type":"bytes32"}],"name":"unpauseProtocol","outputs":[{"internalType":"uint256","name":"totalVaults","type":"uint256"},{"internalType":"uint256","name":"successCount","type":"uint256"},{"internalType":"uint256","name":"failureCount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

6080806040523460195760015f55610551908161001e8239f35b5f80fdfe60806040526004361015610011575f80fd5b5f3560e01c8063798005ef146101e957638c41aaa01461002f575f80fd5b346101c35760203660031901126101c35760043561004c3361042c565b156101da576100596104fd565b5f905f815f527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3a560205260405f209182549283156101c7575f5b84811061010b57505090610107917ffc22ca03598be37d54c9162d8ada3f6a09b697f865f38230c42c6dcb3d878abc604051806100e3858989846040919493926060820195825260208201520152565b0390a260015f55604051938493846040919493926060820195825260208201520152565b0390f35b6101158183610342565b905460039190911b1c6001600160a01b0316803b156101c357604051638456cb5960e01b81525f8160048183865af190816101b3575b506101a057906001917ff62389abd7b20ce1379928c965f54f7f0daa3085a0c9fdd24c18997f8cddeed76101966101896101836103c3565b986103a1565b9760405191829182610402565b0390a25b01610093565b50946101ad6001916103a1565b9561019a565b5f6101bd9161036b565b5f61014b565b5f80fd5b50636ad0e23560e11b5f5260045260245ffd5b634f1f214760e01b5f5260045ffd5b346101c35760203660031901126101c3576004356102063361042c565b156101da576102136104fd565b5f905f815f527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3a560205260405f209182549283156101c7575f5b84811061029d57505090610107917f82004bbe643dcf108a841b5ee7c395d9beeb495f9c7ea669969a4e2d03dedb76604051806100e3858989846040919493926060820195825260208201520152565b6102a78183610342565b905460039190911b1c6001600160a01b0316803b156101c357604051631fa5d41d60e11b81525f8160048183865af19081610332575b5061031f57906001917fb5c16890b883376985ff7ab3895d7c54c540b0b5209d72dd68a056e513240b706103156101896101836103c3565b0390a25b0161024d565b509461032c6001916103a1565b95610319565b5f61033c9161036b565b886102dd565b8054821015610357575f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b90601f8019910116810190811067ffffffffffffffff82111761038d57604052565b634e487b7160e01b5f52604160045260245ffd5b5f1981146103af5760010190565b634e487b7160e01b5f52601160045260245ffd5b3d156103fd573d9067ffffffffffffffff821161038d57604051916103f2601f8201601f19166020018461036b565b82523d5f602084013e565b606090565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b7f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd39a546001600160a01b038281169116146104f757305f9081527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3936020908152604080832083805282528083206001600160a01b038516845290915290205460ff166104f7576001600160a01b03165f9081527f577ffbf32e3154d879602fc33c6c618fd87b4f6285b5b7d95589de65fd7269d2602052604090205460ff166104f2575f90565b600190565b50600190565b60025f541461050c5760025f55565b633ee5aeb560e01b5f5260045ffdfea2646970667358221220715059d56d3de20888a3499e01a25fb1e624dd4898396974e67ae1bb0107733d64736f6c634300081a0033

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f3560e01c8063798005ef146101e957638c41aaa01461002f575f80fd5b346101c35760203660031901126101c35760043561004c3361042c565b156101da576100596104fd565b5f905f815f527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3a560205260405f209182549283156101c7575f5b84811061010b57505090610107917ffc22ca03598be37d54c9162d8ada3f6a09b697f865f38230c42c6dcb3d878abc604051806100e3858989846040919493926060820195825260208201520152565b0390a260015f55604051938493846040919493926060820195825260208201520152565b0390f35b6101158183610342565b905460039190911b1c6001600160a01b0316803b156101c357604051638456cb5960e01b81525f8160048183865af190816101b3575b506101a057906001917ff62389abd7b20ce1379928c965f54f7f0daa3085a0c9fdd24c18997f8cddeed76101966101896101836103c3565b986103a1565b9760405191829182610402565b0390a25b01610093565b50946101ad6001916103a1565b9561019a565b5f6101bd9161036b565b5f61014b565b5f80fd5b50636ad0e23560e11b5f5260045260245ffd5b634f1f214760e01b5f5260045ffd5b346101c35760203660031901126101c3576004356102063361042c565b156101da576102136104fd565b5f905f815f527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3a560205260405f209182549283156101c7575f5b84811061029d57505090610107917f82004bbe643dcf108a841b5ee7c395d9beeb495f9c7ea669969a4e2d03dedb76604051806100e3858989846040919493926060820195825260208201520152565b6102a78183610342565b905460039190911b1c6001600160a01b0316803b156101c357604051631fa5d41d60e11b81525f8160048183865af19081610332575b5061031f57906001917fb5c16890b883376985ff7ab3895d7c54c540b0b5209d72dd68a056e513240b706103156101896101836103c3565b0390a25b0161024d565b509461032c6001916103a1565b95610319565b5f61033c9161036b565b886102dd565b8054821015610357575f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b90601f8019910116810190811067ffffffffffffffff82111761038d57604052565b634e487b7160e01b5f52604160045260245ffd5b5f1981146103af5760010190565b634e487b7160e01b5f52601160045260245ffd5b3d156103fd573d9067ffffffffffffffff821161038d57604051916103f2601f8201601f19166020018461036b565b82523d5f602084013e565b606090565b602060409281835280519182918282860152018484015e5f828201840152601f01601f1916010190565b7f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd39a546001600160a01b038281169116146104f757305f9081527f4a095d6cb9b93a0f83522807df8d2f3070c21f3a0a4ca97d86925974cbbfd3936020908152604080832083805282528083206001600160a01b038516845290915290205460ff166104f7576001600160a01b03165f9081527f577ffbf32e3154d879602fc33c6c618fd87b4f6285b5b7d95589de65fd7269d2602052604090205460ff166104f2575f90565b600190565b50600190565b60025f541461050c5760025f55565b633ee5aeb560e01b5f5260045ffdfea2646970667358221220715059d56d3de20888a3499e01a25fb1e624dd4898396974e67ae1bb0107733d64736f6c634300081a0033

Deployed Bytecode Sourcemap

912:4133:27:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;912:4133:27;;;;;;1065:37;1091:10;1065:37;:::i;:::-;1064:38;1060:96;;2466:103:12;;:::i;:::-;912:4133:27;2313:1262;912:4133;;;;2759:18;912:4133;;;;;;;;2889:16;;;2885:59;;912:4133;3037:15;;;;;;912:4133;;;;;3433:135;912:4133;;3433:135;;;;;;912:4133;;;;;;;;;;;;;;;;;;3433:135;;;;912:4133;;1899:1:12;912:4133:27;;;;;;;;;;;;;;;;;;;;;;;;;;;;3022:13;3085:17;;;;:::i;:::-;912:4133;;;;;;;;-1:-1:-1;;;;;912:4133:27;3172:26;;;;;912:4133;;-1:-1:-1;;;3172:26:27;;912:4133;;;;;3172:26;;;;;;;3022:13;-1:-1:-1;3168:208:27;;3247:129;912:4133;3247:129;3330:31;;3293:14;3247:129;;:::i;:::-;3293:14;;:::i;:::-;912:4133;;;3330:31;;;;;:::i;:::-;;;;3168:208;912:4133;3022:13;;3168:208;3217:14;;;912:4133;3217:14;;:::i;:::-;3168:208;;;3172:26;912:4133;3172:26;;;:::i;:::-;;;;;912:4133;;;2885:59;4497:30;;;;912:4133;2914:30;912:4133;;;;2914:30;1060:96;1125:20;;;912:4133;1125:20;912:4133;;1125:20;912:4133;;;;;;-1:-1:-1;;912:4133:27;;;;;;1065:37;1091:10;1065:37;:::i;:::-;1064:38;1060:96;;2466:103:12;;:::i;:::-;912:4133:27;3990:1053;912:4133;;;;4380:18;912:4133;;;;;;;;4472:16;;;4468:59;;912:4133;4558:15;;;;;;912:4133;;;;;4907:129;912:4133;;4907:129;;;;;;912:4133;;;;;;;;;;;;;;;;;;4543:13;4606:17;;;;:::i;:::-;912:4133;;;;;;;;-1:-1:-1;;;;;912:4133:27;4642:28;;;;;912:4133;;-1:-1:-1;;;4642:28:27;;912:4133;;;;;4642:28;;;;;;;4543:13;-1:-1:-1;4638:212:27;;4719:131;912:4133;4719:131;4802:33;;4765:14;4719:131;;:::i;4802:33::-;;;;4638:212;912:4133;4543:13;;4638:212;4689:14;;;912:4133;4689:14;;:::i;:::-;4638:212;;;4642:28;912:4133;4642:28;;;:::i;:::-;;;;912:4133;;;;;;;;-1:-1:-1;912:4133:27;;-1:-1:-1;912:4133:27;;;-1:-1:-1;912:4133:27;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;-1:-1:-1;912:4133:27;;;;;-1:-1:-1;912:4133:27;;-1:-1:-1;;912:4133:27;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;912:4133:27;;;;;:::i;:::-;;;;-1:-1:-1;912:4133:27;;;;:::o;:::-;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;912:4133:27;;;;:::o;1429:590:24:-;1696:15;912:4133:27;-1:-1:-1;;;;;912:4133:27;;;;;1685:26:24;1658:66;;1811:4;-1:-1:-1;912:4133:27;;;1787:15:24;912:4133:27;;;;;;;;;;;;;;;;-1:-1:-1;;;;;912:4133:27;;;;;;;;;;;;1783:62:24;;-1:-1:-1;;;;;912:4133:27;-1:-1:-1;912:4133:27;;;;;;;;;;;;1922:59:24;;912:4133:27;1429:590:24;:::o;1922:59::-;1662:19;1970:11;:::o;1783:62::-;1834:11;1662:19;1834:11;:::o;2575:307:12:-;1899:1;2702:7;912:4133:27;2702:18:12;2698:86;;1899:1;2702:7;1899:1;2575:307::o;2698:86::-;2743:30;;;2702:7;2743:30;;2702:7;2743:30

Swarm Source

ipfs://715059d56d3de20888a3499e01a25fb1e624dd4898396974e67ae1bb0107733d

Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.