Contract

0x6fAE97a08D4877CD7aefC8A1a807e4a78a2596f6

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

-

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
CombatantsHelper

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 9999999 runs

Other Settings:
cancun EvmVersion
File 1 of 31 : CombatantsHelper.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {IClans} from "../interfaces/IClans.sol";
import {IPlayers} from "../interfaces/IPlayers.sol";
import {ICombatants} from "../interfaces/ICombatants.sol";

import {AdminAccess} from "../AdminAccess.sol";

import {ClanRank} from "../globals/clans.sol";

import {EstforLibrary} from "../EstforLibrary.sol";

// This contract allows setting both territory and locked vault combatants in a single transaction
// And more efficiently checking if they are already combatants in either territory or locked vaults
// as the same player cannot be in both
contract CombatantsHelper is UUPSUpgradeable, OwnableUpgradeable {
  error NotOwnerOfPlayerAndActive();
  error RankNotHighEnough();
  error PlayerCannotBeInAssignedMoreThanOnce();
  error PlayerAlreadyExistingCombatant();
  error SetCombatantsIncorrectly();
  error NotSettingCombatants();
  error NotAdminAndBeta();
  error PlayerCombatantCooldownTimestamp();
  error PlayerIdsNotSortedOrDuplicates();
  error NotMemberOfClan();
  error PlayerNotUpgraded(uint256 playerId);

  struct PlayerInfo {
    uint40 combatantCooldownTimestamp;
  }

  mapping(uint256 playerId => PlayerInfo playerInfos) private _playerInfos;
  AdminAccess private _adminAccess;
  bool private _isBeta;
  IClans private _clans;
  IPlayers private _players;
  ICombatants private _territories;
  uint24 private _combatantChangeCooldown;
  ICombatants private _lockedVaults;
  ICombatants private _raids;

  modifier isOwnerOfPlayerAndActive(uint256 playerId) {
    require(_players.isOwnerOfPlayerAndActive(_msgSender(), playerId), NotOwnerOfPlayerAndActive());
    _;
  }

  modifier isMinimumRank(uint256 clanId, uint256 playerId, ClanRank clanRank) {
    require(_clans.getRank(clanId, playerId) >= clanRank, RankNotHighEnough());
    _;
  }

  modifier isAdminAndBeta() {
    require(_adminAccess.isAdmin(_msgSender()) && _isBeta, NotAdminAndBeta());
    _;
  }

  /// @custom:oz-upgrades-unsafe-allow constructor
  constructor() {
    _disableInitializers();
  }

  function initialize(
    IPlayers players,
    IClans clans,
    ICombatants territories,
    ICombatants lockedVaults,
    ICombatants raids,
    AdminAccess adminAccess,
    bool isBeta
  ) external initializer {
    __Ownable_init(_msgSender());
    __UUPSUpgradeable_init();

    _players = players;
    _clans = clans;
    _territories = territories;
    _lockedVaults = lockedVaults;
    _raids = raids;

    _adminAccess = AdminAccess(adminAccess);
    _isBeta = isBeta;

    _combatantChangeCooldown = isBeta ? 5 minutes : 3 days;
  }

  function assignCombatants(
    uint256 clanId,
    bool setTerritoryCombatants,
    uint64[] calldata territoryPlayerIds,
    bool setLockedVaultCombatants,
    uint64[] calldata lockedVaultPlayerIds,
    bool setRaidCombatants,
    uint64[] calldata raidPlayerIds,
    uint256 leaderPlayerId
  ) external isOwnerOfPlayerAndActive(leaderPlayerId) isMinimumRank(clanId, leaderPlayerId, ClanRank.COLONEL) {
    require(setTerritoryCombatants || setLockedVaultCombatants || setRaidCombatants, NotSettingCombatants());

    _checkAndSetAssignCombatants(
      _territories,
      setTerritoryCombatants,
      territoryPlayerIds,
      _lockedVaults,
      setLockedVaultCombatants,
      lockedVaultPlayerIds,
      _raids,
      setRaidCombatants,
      raidPlayerIds,
      clanId,
      leaderPlayerId
    );
    _checkAndSetAssignCombatants(
      _lockedVaults,
      setLockedVaultCombatants,
      lockedVaultPlayerIds,
      _territories,
      setTerritoryCombatants,
      territoryPlayerIds,
      _raids,
      setRaidCombatants,
      raidPlayerIds,
      clanId,
      leaderPlayerId
    );
    _checkAndSetAssignCombatants(
      _raids,
      setRaidCombatants,
      raidPlayerIds,
      _lockedVaults,
      setLockedVaultCombatants,
      lockedVaultPlayerIds,
      _territories,
      setTerritoryCombatants,
      territoryPlayerIds,
      clanId,
      leaderPlayerId
    );
  }

  function _checkAndSetAssignCombatants(
    ICombatants combatants,
    bool setCombatants,
    uint64[] calldata playerIds,
    ICombatants otherCombatants,
    bool setOtherCombatants,
    uint64[] calldata otherPlayerIds,
    ICombatants otherCombatants1,
    bool setOtherCombatants1,
    uint64[] calldata otherPlayerIds1,
    uint256 clanId,
    uint256 leaderPlayerId
  ) private {
    if (setCombatants) {
      uint256 newCombatantCooldownTimestamp = block.timestamp + _combatantChangeCooldown;
      // Check they are not being placed as a warrior in another  a locked vault combatant
      IClans clans = _clans;
      for (uint256 i; i < playerIds.length; ++i) {
        uint64 playerId = playerIds[i];
        if (setOtherCombatants) {
          if (otherPlayerIds.length != 0) {
            uint256 searchIndex = EstforLibrary.binarySearchMemory(otherPlayerIds, playerId);
            require(searchIndex == type(uint256).max, PlayerCannotBeInAssignedMoreThanOnce());
          }
        } else {
          require(!otherCombatants.isCombatant(clanId, playerId), PlayerAlreadyExistingCombatant());
        }

        if (setOtherCombatants1) {
          if (otherPlayerIds1.length != 0) {
            uint256 searchIndex = EstforLibrary.binarySearchMemory(otherPlayerIds1, playerId);
            require(searchIndex == type(uint256).max, PlayerCannotBeInAssignedMoreThanOnce());
          }
        } else {
          require(!otherCombatants1.isCombatant(clanId, playerId), PlayerAlreadyExistingCombatant());
        }

        PlayerInfo storage playerInfo = _playerInfos[playerId];

        // Check the cooldown periods on combatant assignment.
        // They might have just joined from another clan or assigned from territory to locked vaults
        require(playerInfo.combatantCooldownTimestamp <= block.timestamp, PlayerCombatantCooldownTimestamp());

        // Check they are part of the clan
        require(clans.getRank(clanId, playerId) != ClanRank.NONE, NotMemberOfClan());

        if (i != playerIds.length - 1) {
          require(playerIds[i] < playerIds[i + 1], PlayerIdsNotSortedOrDuplicates());
        }
        require(_players.isPlayerEvolved(playerId), PlayerNotUpgraded(playerId));

        playerInfo.combatantCooldownTimestamp = uint40(newCombatantCooldownTimestamp);
      }
      combatants.assignCombatants(clanId, playerIds, newCombatantCooldownTimestamp, leaderPlayerId);
    } else {
      require(playerIds.length == 0, SetCombatantsIncorrectly());
    }
  }

  function clearCooldowns(uint64[] calldata playerIds) public isAdminAndBeta {
    for (uint256 i; i < playerIds.length; ++i) {
      _playerInfos[playerIds[i]].combatantCooldownTimestamp = 0;
    }
  }

  // solhint-disable-next-line no-empty-blocks
  function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}

File 2 of 31 : OwnableUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly ("memory-safe") {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 31 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly ("memory-safe") {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 4 of 31 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.20;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

File 5 of 31 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 6 of 31 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

File 7 of 31 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

File 8 of 31 : IBeacon.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 9 of 31 : ERC1967Utils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.21;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

File 10 of 31 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 11 of 31 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 12 of 31 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly ("memory-safe") {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 13 of 31 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 14 of 31 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 15 of 31 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 16 of 31 : AdminAccess.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {OwnableUpgradeable} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";

contract AdminAccess is UUPSUpgradeable, OwnableUpgradeable {
  mapping(address admin => bool isAdmin) private _admins;
  mapping(address admin => bool isAdmin) private _promotionalAdmins;

  /// @custom:oz-upgrades-unsafe-allow constructor
  constructor() {
    _disableInitializers();
  }

  function initialize(address[] calldata admins, address[] calldata promotionalAdmins) public initializer {
    __Ownable_init(_msgSender());
    __UUPSUpgradeable_init();

    _updateAdmins(admins, true);
    _updatePromotionalAdmins(promotionalAdmins, true);
  }

  function _updateAdmins(address[] calldata admins, bool hasAdmin) internal {
    uint256 bounds = admins.length;
    for (uint256 i; i < bounds; ++i) {
      _admins[admins[i]] = hasAdmin;
    }
  }

  function _updatePromotionalAdmins(address[] calldata promotionalAdmins, bool hasAdmin) internal {
    uint256 bounds = promotionalAdmins.length;
    for (uint256 i; i < bounds; ++i) {
      _promotionalAdmins[promotionalAdmins[i]] = hasAdmin;
    }
  }

  function isAdmin(address admin) external view returns (bool) {
    return _admins[admin];
  }

  function addAdmins(address[] calldata admins) external onlyOwner {
    _updateAdmins(admins, true);
  }

  function removeAdmins(address[] calldata admins) external onlyOwner {
    _updateAdmins(admins, false);
  }

  function isPromotionalAdmin(address admin) external view returns (bool) {
    return _promotionalAdmins[admin];
  }

  function addPromotionalAdmins(address[] calldata admins) external onlyOwner {
    _updatePromotionalAdmins(admins, true);
  }

  function removePromotionalAdmins(address[] calldata admins) external onlyOwner {
    _updatePromotionalAdmins(admins, false);
  }

  // solhint-disable-next-line no-empty-blocks
  function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}
}

File 17 of 31 : EstforLibrary.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IPlayers} from "./interfaces/IPlayers.sol";

// solhint-disable-next-line no-global-import
import "./globals/all.sol";

// This file contains methods for interacting with generic functions like trimming strings, lowercase etc.
// Also has some shared functions for rewards
library EstforLibrary {
  error RandomRewardsMustBeInOrder(uint16 chance1, uint16 chance2);
  error RandomRewardNoDuplicates();
  error GuaranteedRewardsNoDuplicates();
  error TooManyGuaranteedRewards();
  error TooManyRandomRewards();

  function isWhitespace(bytes1 _char) internal pure returns (bool) {
    return
      _char == 0x20 || // Space
      _char == 0x09 || // Tab
      _char == 0x0a || // Line feed
      _char == 0x0D || // Carriage return
      _char == 0x0B || // Vertical tab
      _char == 0x00; // empty byte
  }

  function leftTrim(string memory str) internal pure returns (string memory) {
    bytes memory b = bytes(str);
    uint256 strLen = b.length;
    uint256 start = type(uint256).max;
    // Find the index of the first non-whitespace character
    for (uint256 i = 0; i < strLen; ++i) {
      bytes1 char = b[i];
      if (!isWhitespace(char)) {
        start = i;
        break;
      }
    }

    if (start == type(uint256).max) {
      return "";
    }
    // Copy the remainder to a new string
    bytes memory trimmedBytes = new bytes(strLen - start);
    for (uint256 i = start; i < strLen; ++i) {
      trimmedBytes[i - start] = b[i];
    }
    return string(trimmedBytes);
  }

  function rightTrim(string calldata str) internal pure returns (string memory) {
    bytes memory b = bytes(str);
    uint256 strLen = b.length;
    if (strLen == 0) {
      return "";
    }
    int end = -1;
    // Find the index of the last non-whitespace character
    for (int i = int(strLen) - 1; i >= 0; --i) {
      bytes1 char = b[uint256(i)];
      if (!isWhitespace(char)) {
        end = i;
        break;
      }
    }

    if (end == -1) {
      return "";
    }

    bytes memory trimmedBytes = new bytes(uint256(end) + 1);
    for (uint256 i = 0; i <= uint256(end); ++i) {
      trimmedBytes[i] = b[i];
    }
    return string(trimmedBytes);
  }

  function trim(string calldata str) external pure returns (string memory) {
    return leftTrim(rightTrim(str));
  }

  // Assumes the string is already trimmed
  function containsValidNameCharacters(string calldata name) external pure returns (bool) {
    bytes memory b = bytes(name);
    bool lastCharIsWhitespace;
    for (uint256 i = 0; i < b.length; ++i) {
      bytes1 char = b[i];

      bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
      bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
      bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
      bool isSpecialCharacter = (char == 0x2D) || (char == 0x5F) || (char == 0x2E) || (char == 0x20); // "-", "_", ".", and " "
      bool _isWhitespace = isWhitespace(char);
      bool hasMultipleWhitespaceInRow = lastCharIsWhitespace && _isWhitespace;
      lastCharIsWhitespace = _isWhitespace;
      if ((!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isSpecialCharacter) || hasMultipleWhitespaceInRow) {
        return false;
      }
    }
    return true;
  }

  function containsValidDiscordCharacters(string calldata discord) external pure returns (bool) {
    bytes memory discordBytes = bytes(discord);
    for (uint256 i = 0; i < discordBytes.length; ++i) {
      bytes1 char = discordBytes[i];

      bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
      bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
      bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
      if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit) {
        return false;
      }
    }

    return true;
  }

  function containsValidTelegramCharacters(string calldata telegram) external pure returns (bool) {
    bytes memory telegramBytes = bytes(telegram);
    for (uint256 i = 0; i < telegramBytes.length; ++i) {
      bytes1 char = telegramBytes[i];

      bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
      bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
      bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
      bool isPlus = char == 0x2B; // "+"
      if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isPlus) {
        return false;
      }
    }

    return true;
  }

  function containsValidTwitterCharacters(string calldata twitter) external pure returns (bool) {
    bytes memory twitterBytes = bytes(twitter);
    for (uint256 i = 0; i < twitterBytes.length; ++i) {
      bytes1 char = twitterBytes[i];

      bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
      bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
      bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
      if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit) {
        return false;
      }
    }

    return true;
  }

  function containsBaselineSocialNameCharacters(string calldata socialMediaName) external pure returns (bool) {
    bytes memory socialMediaNameBytes = bytes(socialMediaName);
    for (uint256 i = 0; i < socialMediaNameBytes.length; ++i) {
      bytes1 char = socialMediaNameBytes[i];

      bool isUpperCaseLetter = (char >= 0x41) && (char <= 0x5A); // A-Z
      bool isLowerCaseLetter = (char >= 0x61) && (char <= 0x7A); // a-z
      bool isDigit = (char >= 0x30) && (char <= 0x39); // 0-9
      bool isUnderscore = char == 0x5F; // "_"
      bool isPeriod = char == 0x2E; // "."
      bool isPlus = char == 0x2B; // "+"
      if (!isUpperCaseLetter && !isLowerCaseLetter && !isDigit && !isUnderscore && !isPeriod && !isPlus) {
        return false;
      }
    }

    return true;
  }

  function toLower(string memory str) internal pure returns (string memory) {
    bytes memory lowerStr = abi.encodePacked(str);
    for (uint256 i = 0; i < lowerStr.length; ++i) {
      bytes1 char = lowerStr[i];
      if ((char >= 0x41) && (char <= 0x5A)) {
        // So we add 32 to make it lowercase
        lowerStr[i] = bytes1(uint8(char) + 32);
      }
    }
    return string(lowerStr);
  }

  // This should match the one below, useful when a calldata array is needed and for external testing
  function _binarySearchMemory(uint64[] calldata array, uint256 target) internal pure returns (uint256) {
    uint256 low = 0;
    uint256 high = array.length - 1;

    while (low <= high) {
      uint256 mid = low + (high - low) / 2;

      if (array[mid] == target) {
        return mid; // Element found
      } else if (array[mid] < target) {
        low = mid + 1;
      } else {
        // Check to prevent underflow
        if (mid != 0) {
          high = mid - 1;
        } else {
          // If mid is 0 and _arr[mid] is not the target, the element is not in the array
          break;
        }
      }
    }

    return type(uint256).max; // Element not found
  }

  function binarySearchMemory(uint64[] calldata array, uint256 target) external pure returns (uint256) {
    return _binarySearchMemory(array, target);
  }

  // This should match the one above
  function _binarySearch(uint64[] storage array, uint256 target) internal view returns (uint256) {
    uint256 low = 0;
    uint256 high = array.length - 1;

    while (low <= high) {
      uint256 mid = low + (high - low) / 2;

      if (array[mid] == target) {
        return mid; // Element found
      } else if (array[mid] < target) {
        low = mid + 1;
      } else {
        // Check to prevent underflow
        if (mid != 0) {
          high = mid - 1;
        } else {
          // If mid is 0 and _arr[mid] is not the target, the element is not in the array
          break;
        }
      }
    }

    return type(uint256).max; // Element not found
  }

  function binarySearch(uint64[] storage array, uint256 target) external view returns (uint256) {
    return _binarySearch(array, target);
  }

  function _shuffleArray(uint64[] memory array, uint256 randomNumber) internal pure returns (uint64[] memory output) {
    for (uint256 i; i < array.length; ++i) {
      uint256 n = i + (randomNumber % (array.length - i));
      if (i != n) {
        uint64 temp = array[n];
        array[n] = array[i];
        array[i] = temp;
      }
    }
    return array;
  }

  function _getRandomInRange16(
    uint256 randomWord,
    uint256 shift,
    int16 minValue,
    int16 maxValue
  ) internal pure returns (int16) {
    return int16(minValue + (int16(int256((randomWord >> shift) & 0xFFFF) % (maxValue - minValue + 1))));
  }

  function _getRandomFromArray16(
    uint256 randomWord,
    uint256 shift,
    uint16[] storage arr,
    uint256 arrLength
  ) internal view returns (uint16) {
    return arr[_getRandomIndexFromArray16(randomWord, shift, arrLength)];
  }

  function _getRandomFrom3ElementArray16(
    uint256 randomWord,
    uint256 shift,
    uint16[3] memory arr
  ) internal pure returns (uint16) {
    return arr[_getRandomIndexFromArray16(randomWord, shift, arr.length)];
  }

  function _getRandomIndexFromArray16(
    uint256 randomWord,
    uint256 shift,
    uint256 arrLength
  ) internal pure returns (uint16) {
    return uint16(((randomWord >> shift) & 0xFFFF) % arrLength);
  }

  function setActionGuaranteedRewards(
    GuaranteedReward[] calldata guaranteedRewards,
    ActionRewards storage actionRewards
  ) external {
    _setActionGuaranteedRewards(guaranteedRewards, actionRewards);
  }

  function setActionRandomRewards(RandomReward[] calldata randomRewards, ActionRewards storage actionRewards) external {
    _setActionRandomRewards(randomRewards, actionRewards);
  }

  function _setActionGuaranteedRewards(
    GuaranteedReward[] calldata guaranteedRewards,
    ActionRewards storage actionRewards
  ) internal {
    uint256 guaranteedRewardsLength = guaranteedRewards.length;
    if (guaranteedRewardsLength != 0) {
      actionRewards.guaranteedRewardTokenId1 = guaranteedRewards[0].itemTokenId;
      actionRewards.guaranteedRewardRate1 = guaranteedRewards[0].rate;
    }
    if (guaranteedRewardsLength > 1) {
      actionRewards.guaranteedRewardTokenId2 = guaranteedRewards[1].itemTokenId;
      actionRewards.guaranteedRewardRate2 = guaranteedRewards[1].rate;
      require(
        actionRewards.guaranteedRewardTokenId1 != actionRewards.guaranteedRewardTokenId2,
        GuaranteedRewardsNoDuplicates()
      );
    }
    if (guaranteedRewardsLength > 2) {
      actionRewards.guaranteedRewardTokenId3 = guaranteedRewards[2].itemTokenId;
      actionRewards.guaranteedRewardRate3 = guaranteedRewards[2].rate;

      uint256 bounds = guaranteedRewardsLength - 1;
      for (uint256 i; i < bounds; ++i) {
        require(
          guaranteedRewards[i].itemTokenId != guaranteedRewards[guaranteedRewardsLength - 1].itemTokenId,
          GuaranteedRewardsNoDuplicates()
        );
      }
    }
    require(guaranteedRewardsLength <= 3, TooManyGuaranteedRewards());
  }

  // Random rewards have most common one first
  function _setActionRandomRewards(
    RandomReward[] calldata randomRewards,
    ActionRewards storage actionRewards
  ) internal {
    uint256 randomRewardsLength = randomRewards.length;
    if (randomRewardsLength != 0) {
      actionRewards.randomRewardTokenId1 = randomRewards[0].itemTokenId;
      actionRewards.randomRewardChance1 = randomRewards[0].chance;
      actionRewards.randomRewardAmount1 = randomRewards[0].amount;
    }
    if (randomRewardsLength > 1) {
      actionRewards.randomRewardTokenId2 = randomRewards[1].itemTokenId;
      actionRewards.randomRewardChance2 = randomRewards[1].chance;
      actionRewards.randomRewardAmount2 = randomRewards[1].amount;

      require(
        actionRewards.randomRewardChance2 <= actionRewards.randomRewardChance1,
        RandomRewardsMustBeInOrder(randomRewards[0].chance, randomRewards[1].chance)
      );
      require(actionRewards.randomRewardTokenId1 != actionRewards.randomRewardTokenId2, RandomRewardNoDuplicates());
    }
    if (randomRewardsLength > 2) {
      actionRewards.randomRewardTokenId3 = randomRewards[2].itemTokenId;
      actionRewards.randomRewardChance3 = randomRewards[2].chance;
      actionRewards.randomRewardAmount3 = randomRewards[2].amount;

      require(
        actionRewards.randomRewardChance3 <= actionRewards.randomRewardChance2,
        RandomRewardsMustBeInOrder(randomRewards[1].chance, randomRewards[2].chance)
      );

      uint256 bounds = randomRewardsLength - 1;
      for (uint256 i; i < bounds; ++i) {
        require(
          randomRewards[i].itemTokenId != randomRewards[randomRewardsLength - 1].itemTokenId,
          RandomRewardNoDuplicates()
        );
      }
    }
    if (randomRewards.length > 3) {
      actionRewards.randomRewardTokenId4 = randomRewards[3].itemTokenId;
      actionRewards.randomRewardChance4 = randomRewards[3].chance;
      actionRewards.randomRewardAmount4 = randomRewards[3].amount;
      require(
        actionRewards.randomRewardChance4 <= actionRewards.randomRewardChance3,
        RandomRewardsMustBeInOrder(randomRewards[2].chance, randomRewards[3].chance)
      );
      uint256 bounds = randomRewards.length - 1;
      for (uint256 i; i < bounds; ++i) {
        require(
          randomRewards[i].itemTokenId != randomRewards[randomRewards.length - 1].itemTokenId,
          RandomRewardNoDuplicates()
        );
      }
    }

    require(randomRewards.length <= 4, TooManyRandomRewards());
  }

  function _get16bitSlice(bytes memory b, uint256 index) internal pure returns (uint16) {
    uint256 key = index * 2;
    return uint16(b[key] | (bytes2(b[key + 1]) >> 8));
  }

  // Helper function to get random value between min and max (inclusive) for uint8
  function _getRandomInRange8(uint8 minValue, uint8 maxValue, uint8 randomness) internal pure returns (uint8) {
    if (maxValue <= minValue) {
      return minValue;
    }

    uint8 range = maxValue - minValue + 1;
    // Use modulo to get value in range and add minValue
    return uint8((uint16(randomness) % uint16(range)) + uint16(minValue));
  }
}

File 18 of 31 : actions.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill, Attire, CombatStyle, CombatStats} from "./misc.sol";
import {GuaranteedReward, RandomReward} from "./rewards.sol";

enum ActionQueueStrategy {
  OVERWRITE,
  APPEND,
  KEEP_LAST_IN_PROGRESS
}

struct QueuedActionInput {
  Attire attire;
  uint16 actionId;
  uint16 regenerateId; // Food (combat), maybe something for non-combat later
  uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
  uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
  uint16 leftHandEquipmentTokenId; // Shield, can be empty
  uint24 timespan; // How long to queue the action for
  uint8 combatStyle; // CombatStyle specific style of combat
  uint40 petId; // id of the pet (can be empty)
}

struct QueuedAction {
  uint16 actionId;
  uint16 regenerateId; // Food (combat), maybe something for non-combat later
  uint16 choiceId; // Melee/Ranged/Magic (combat), logs, ore (non-combat)
  uint16 rightHandEquipmentTokenId; // Axe/Sword/bow, can be empty
  uint16 leftHandEquipmentTokenId; // Shield, can be empty
  uint24 timespan; // How long to queue the action for
  uint24 prevProcessedTime; // How long the action has been processed for previously
  uint24 prevProcessedXPTime; // How much XP has been gained for this action so far
  uint64 queueId; // id of this queued action
  bytes1 packed; // 1st bit is isValid (not used yet), 2nd bit is for hasPet (decides if the 2nd storage slot is read)
  uint8 combatStyle;
  uint24 reserved;
  // Next storage slot
  uint40 petId; // id of the pet (can be empty)
}

// This is only used as an input arg (and events)
struct ActionInput {
  uint16 actionId;
  ActionInfo info;
  GuaranteedReward[] guaranteedRewards;
  RandomReward[] randomRewards;
  CombatStats combatStats;
}

struct ActionInfo {
  uint8 skill;
  bool actionChoiceRequired; // If true, then the user must choose an action choice
  uint24 xpPerHour;
  uint32 minXP;
  uint24 numSpawned; // Mostly for combat, capped respawn rate for xp/drops. Per hour, base 10000
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  uint8 successPercent; // 0-100
  uint8 worldLocation; // 0 is the main starting world
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
}

uint16 constant ACTIONCHOICE_MELEE_BASIC_SWORD = 1500;
uint16 constant ACTIONCHOICE_MAGIC_SHADOW_BLAST = 2000;
uint16 constant ACTIONCHOICE_RANGED_BASIC_BOW = 3000;

// Allows for 2, 4 or 8 hour respawn time
uint256 constant SPAWN_MUL = 1000;
uint256 constant RATE_MUL = 1000;
uint256 constant GUAR_MUL = 10; // Guaranteeded reward multiplier (1 decimal, allows for 2 hour action times)

uint256 constant MAX_QUEUEABLE_ACTIONS = 3; // Available slots to queue actions

File 19 of 31 : all.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "./actions.sol";
import "./items.sol";
import "./misc.sol";
import "./players.sol";
import "./rewards.sol";
import "./quests.sol";
import "./promotions.sol";
import "./clans.sol";
import "./pets.sol";

File 20 of 31 : clans.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IBank} from "../interfaces/IBank.sol";

enum ClanRank {
  NONE, // Not in a clan
  COMMONER, // Member of the clan
  SCOUT, // Invite and kick commoners
  COLONEL, // Can launch attacks and assign combatants
  TREASURER, // Can withdraw from bank
  LEADER, // Can edit clan details
  OWNER // Can do everything and transfer ownership
}

enum BattleResultEnum {
  DRAW,
  WIN,
  LOSE
}

struct ClanBattleInfo {
  uint40 lastClanIdAttackOtherClanIdCooldownTimestamp;
  uint8 numReattacks;
  uint40 lastOtherClanIdAttackClanIdCooldownTimestamp;
  uint8 numReattacksOtherClan;
}

// Packed for gas efficiency
struct Vault {
  bool claimed; // Only applies to the first one, if it's claimed without the second one being claimed
  uint40 timestamp;
  uint80 amount;
  uint40 timestamp1;
  uint80 amount1;
}

struct VaultClanInfo {
  IBank bank;
  uint96 totalBrushLocked;
  // New storage slot
  uint40 attackingCooldownTimestamp;
  uint40 assignCombatantsCooldownTimestamp;
  bool currentlyAttacking;
  uint24 defendingVaultsOffset;
  uint40 blockAttacksTimestamp;
  uint8 blockAttacksCooldownHours;
  bool isInMMRArray;
  uint40 superAttackCooldownTimestamp;
  uint64[] playerIds;
  Vault[] defendingVaults; // Append only, and use defendingVaultsOffset to decide where the real start is
}

uint256 constant MAX_CLAN_COMBATANTS = 20;
uint256 constant CLAN_WARS_GAS_PRICE_WINDOW_SIZE = 4;

bool constant XP_EMITTED_ELSEWHERE = true;

File 21 of 31 : items.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

uint16 constant NONE = 0;

uint16 constant COMBAT_BASE = 2048;
// Melee
uint16 constant SWORD_BASE = COMBAT_BASE;
uint16 constant BRONZE_SWORD = SWORD_BASE;

// Woodcutting (2816 - 3071)
uint16 constant WOODCUTTING_BASE = 2816;
uint16 constant BRONZE_AXE = WOODCUTTING_BASE;

// Firemaking (3328 - 3583)
uint16 constant FIRE_BASE = 3328;
uint16 constant MAGIC_FIRE_STARTER = FIRE_BASE;
uint16 constant FIRE_MAX = FIRE_BASE + 255;

// Fishing (3072 - 3327)
uint16 constant FISHING_BASE = 3072;
uint16 constant NET_STICK = FISHING_BASE;

// Mining (2560 - 2815)
uint16 constant MINING_BASE = 2560;
uint16 constant BRONZE_PICKAXE = MINING_BASE;

// Magic
uint16 constant STAFF_BASE = COMBAT_BASE + 50;
uint16 constant TOTEM_STAFF = STAFF_BASE;

// Ranged
uint16 constant BOW_BASE = COMBAT_BASE + 100;
uint16 constant BASIC_BOW = BOW_BASE;

// Cooked fish
uint16 constant COOKED_FISH_BASE = 11008;
uint16 constant COOKED_FEOLA = COOKED_FISH_BASE + 3;

// Scrolls
uint16 constant SCROLL_BASE = 12032;
uint16 constant SHADOW_SCROLL = SCROLL_BASE;

// Boosts
uint16 constant BOOST_BASE = 12800;
uint16 constant COMBAT_BOOST = BOOST_BASE;
uint16 constant XP_BOOST = BOOST_BASE + 1;
uint16 constant GATHERING_BOOST = BOOST_BASE + 2;
uint16 constant SKILL_BOOST = BOOST_BASE + 3;
uint16 constant ABSENCE_BOOST = BOOST_BASE + 4;
uint16 constant LUCKY_POTION = BOOST_BASE + 5;
uint16 constant LUCK_OF_THE_DRAW = BOOST_BASE + 6;
uint16 constant PRAY_TO_THE_BEARDIE = BOOST_BASE + 7;
uint16 constant PRAY_TO_THE_BEARDIE_2 = BOOST_BASE + 8;
uint16 constant PRAY_TO_THE_BEARDIE_3 = BOOST_BASE + 9;
uint16 constant BOOST_RESERVED_1 = BOOST_BASE + 10;
uint16 constant BOOST_RESERVED_2 = BOOST_BASE + 11;
uint16 constant BOOST_RESERVED_3 = BOOST_BASE + 12;
uint16 constant GO_OUTSIDE = BOOST_BASE + 13;
uint16 constant RAINING_RARES = BOOST_BASE + 14;
uint16 constant CLAN_BOOSTER = BOOST_BASE + 15;
uint16 constant CLAN_BOOSTER_2 = BOOST_BASE + 16;
uint16 constant CLAN_BOOSTER_3 = BOOST_BASE + 17;
uint16 constant BOOST_RESERVED_4 = BOOST_BASE + 18;
uint16 constant BOOST_RESERVED_5 = BOOST_BASE + 19;
uint16 constant BOOST_RESERVED_6 = BOOST_BASE + 20;
uint16 constant BOOST_MAX = 13055;

// Eggs
uint16 constant EGG_BASE = 12544;
uint16 constant SECRET_EGG_1_TIER1 = EGG_BASE;
uint16 constant SECRET_EGG_2_TIER1 = EGG_BASE + 1;
uint16 constant EGG_MAX = 12799;

// Miscs
uint16 constant MISC_BASE = 65535;
uint16 constant RAID_PASS = MISC_BASE - 1;

struct BulkTransferInfo {
  uint256[] tokenIds;
  uint256[] amounts;
  address to;
}

File 22 of 31 : misc.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

enum BoostType {
  NONE,
  ANY_XP,
  COMBAT_XP,
  NON_COMBAT_XP,
  GATHERING,
  ABSENCE,
  PASSIVE_SKIP_CHANCE,
  // Clan wars
  PVP_BLOCK,
  PVP_REATTACK,
  PVP_SUPER_ATTACK,
  // Combat stats
  COMBAT_FIXED
}

struct Equipment {
  uint16 itemTokenId;
  uint24 amount;
}

enum Skill {
  NONE,
  COMBAT, // This is a helper which incorporates all combat skills, attack <-> magic, defence, health etc
  MELEE,
  RANGED,
  MAGIC,
  DEFENCE,
  HEALTH,
  RESERVED_COMBAT,
  MINING,
  WOODCUTTING,
  FISHING,
  SMITHING,
  THIEVING,
  CRAFTING,
  COOKING,
  FIREMAKING,
  FARMING,
  ALCHEMY,
  FLETCHING,
  FORGING,
  RESERVED2,
  RESERVED3,
  RESERVED4,
  RESERVED5,
  RESERVED6,
  RESERVED7,
  RESERVED8,
  RESERVED9,
  RESERVED10,
  RESERVED11,
  RESERVED12,
  RESERVED13,
  RESERVED14,
  RESERVED15,
  RESERVED16,
  RESERVED17,
  RESERVED18,
  RESERVED19,
  RESERVED20,
  TRAVELING // Helper Skill for travelling
}

struct Attire {
  uint16 head;
  uint16 neck;
  uint16 body;
  uint16 arms;
  uint16 legs;
  uint16 feet;
  uint16 ring;
  uint16 reserved1;
}

struct CombatStats {
  // From skill points
  int16 meleeAttack;
  int16 magicAttack;
  int16 rangedAttack;
  int16 health;
  // These include equipment
  int16 meleeDefence;
  int16 magicDefence;
  int16 rangedDefence;
}

enum CombatStyle {
  NONE,
  ATTACK,
  DEFENCE
}

File 23 of 31 : pets.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill} from "./misc.sol";

enum PetSkin {
  NONE,
  DEFAULT,
  OG,
  ONEKIN,
  FROST,
  CRYSTAL,
  ANNIV1,
  KRAGSTYR
}

enum PetEnhancementType {
  NONE,
  MELEE,
  MAGIC,
  RANGED,
  DEFENCE,
  HEALTH,
  MELEE_AND_DEFENCE,
  MAGIC_AND_DEFENCE,
  RANGED_AND_DEFENCE
}

struct Pet {
  Skill skillEnhancement1;
  uint8 skillFixedEnhancement1;
  uint8 skillPercentageEnhancement1;
  Skill skillEnhancement2;
  uint8 skillFixedEnhancement2;
  uint8 skillPercentageEnhancement2;
  uint40 lastAssignmentTimestamp;
  address owner; // Will be used as an optimization to avoid having to look up the owner of the pet in another storage slot
  bool isTransferable;
  // New storage slot
  uint24 baseId;
  // These are used when training a pet
  uint40 lastTrainedTimestamp;
  uint8 skillFixedEnhancementMax1; // The maximum possible value for skillFixedEnhancement1 when training
  uint8 skillFixedEnhancementMax2;
  uint8 skillPercentageEnhancementMax1;
  uint8 skillPercentageEnhancementMax2;
  uint64 xp;
}

struct BasePetMetadata {
  string description;
  uint8 tier;
  PetSkin skin;
  PetEnhancementType enhancementType;
  Skill skillEnhancement1;
  uint8 skillFixedMin1;
  uint8 skillFixedMax1;
  uint8 skillFixedIncrement1;
  uint8 skillPercentageMin1;
  uint8 skillPercentageMax1;
  uint8 skillPercentageIncrement1;
  uint8 skillMinLevel1;
  Skill skillEnhancement2;
  uint8 skillFixedMin2;
  uint8 skillFixedMax2;
  uint8 skillFixedIncrement2;
  uint8 skillPercentageMin2;
  uint8 skillPercentageMax2;
  uint8 skillPercentageIncrement2;
  uint8 skillMinLevel2;
  uint16 fixedStarThreshold;
  uint16 percentageStarThreshold;
  bool isTransferable;
}

File 24 of 31 : players.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {QueuedAction} from "./actions.sol";
import {Skill, BoostType, CombatStats, Equipment} from "./misc.sol";
import {PlayerQuest} from "./quests.sol";

// 4 bytes for each level. 0x00000000 is the first level, 0x00000054 is the second, etc.
bytes constant XP_BYTES = hex"0000000000000054000000AE0000010E00000176000001E60000025E000002DE00000368000003FD0000049B00000546000005FC000006C000000792000008730000096400000A6600000B7B00000CA400000DE100000F36000010A200001229000013CB0000158B0000176B0000196E00001B9400001DE20000205A000022FF000025D5000028DD00002C1E00002F99000033540000375200003B9A000040300000451900004A5C00004FFF0000560900005C810000637000006ADD000072D100007B570000847900008E42000098BE0000A3F90000B0020000BCE70000CAB80000D9860000E9630000FA6200010C990001201D0001350600014B6F0001637300017D2E000198C10001B64E0001D5F80001F7E600021C430002433B00026CFD000299BE0002C9B30002FD180003342B00036F320003AE730003F23D00043AE3000488BE0004DC2F0005359B000595700005FC2400066A360006E02D00075E990007E6160008774C000912EB0009B9B4000A6C74000B2C06000BF956000CD561000DC134000EBDF3000FCCD40010EF2400122648001373BF0014D9230016582C0017F2B00019AAA9001B8234001D7B95001F99390021DDBC00244BE60026E6B60029B15F002CAF51002FE43A0033540D00370303003AF5A4003F30CC0043B9B0004895E3004DCB600053609100595C53005FC6030066A585006E034D0075E86C007E5E980087703B0091287D009B935300A6BD8F00B2B4EE00BF882800CD470500DC026F00EBCC8500FCB8B7010EDBD5";
uint256 constant MAX_LEVEL = 140; // Original max level
uint256 constant MAX_LEVEL_1 = 160; // TODO: Update later
uint256 constant MAX_LEVEL_2 = 190; // TODO: Update later

enum EquipPosition {
  NONE,
  HEAD,
  NECK,
  BODY,
  ARMS,
  LEGS,
  FEET,
  RING,
  SPARE2,
  LEFT_HAND,
  RIGHT_HAND,
  BOTH_HANDS,
  QUIVER,
  MAGIC_BAG,
  FOOD,
  AUX, // wood, seeds  etc..
  BOOST_VIAL,
  EXTRA_BOOST_VIAL,
  GLOBAL_BOOST_VIAL,
  CLAN_BOOST_VIAL,
  PASSIVE_BOOST_VIAL,
  LOCKED_VAULT,
  TERRITORY
}

struct Player {
  uint40 currentActionStartTimestamp; // The in-progress start time of the first queued action
  Skill currentActionProcessedSkill1; // The skill that the queued action has already gained XP in
  uint24 currentActionProcessedXPGained1; // The amount of XP that the queued action has already gained
  Skill currentActionProcessedSkill2;
  uint24 currentActionProcessedXPGained2;
  Skill currentActionProcessedSkill3;
  uint24 currentActionProcessedXPGained3;
  uint16 currentActionProcessedFoodConsumed;
  uint16 currentActionProcessedBaseInputItemsConsumedNum; // e.g scrolls, crafting materials etc
  Skill skillBoosted1; // The first skill that is boosted
  Skill skillBoosted2; // The second skill that is boosted (if applicable)
  uint48 totalXP;
  uint16 totalLevel; // Doesn't not automatically add new skills to it
  bytes1 packedData; // Contains worldLocation in first 6 bits (0 is the main starting randomnessBeacon), and full mode unlocked in the upper most bit
  // TODO: Can be up to 7
  QueuedAction[] actionQueue;
  string name; // Raw name
}

struct Item {
  EquipPosition equipPosition;
  bytes1 packedData; // 0x1 exists, upper most bit is full mode
  uint16 questPrerequisiteId;
  // Can it be transferred?
  bool isTransferable; // TODO: Move into packedData
  // Food
  uint16 healthRestored;
  // Boost vial
  BoostType boostType;
  uint16 boostValue; // Varies, could be the % increase
  uint24 boostDuration; // How long the effect of the boost last
  // Combat stats
  int16 meleeAttack;
  int16 magicAttack;
  int16 rangedAttack;
  int16 meleeDefence;
  int16 magicDefence;
  int16 rangedDefence;
  int16 health;
  // Minimum requirements in this skill to use this item (can be NONE)
  Skill skill;
  uint32 minXP;
}

// Used for events
struct BoostInfo {
  uint40 startTime;
  uint24 duration;
  uint16 value;
  uint16 itemTokenId; // Get the effect of it
  BoostType boostType;
}

struct PlayerBoostInfo {
  uint40 startTime;
  uint24 duration;
  uint16 value;
  uint16 itemTokenId; // Get the effect of it
  BoostType boostType;
  // Another boost slot (for global/clan boosts this is the "last", for users it is the "extra")
  uint40 extraOrLastStartTime;
  uint24 extraOrLastDuration;
  uint16 extraOrLastValue;
  uint16 extraOrLastItemTokenId;
  BoostType extraOrLastBoostType;
  uint40 cooldown; // Just put here for packing
}

// This is effectively a ratio to produce 1 of outputTokenId.
// Available choices that can be undertaken for an action
struct ActionChoiceInput {
  uint8 skill; // Skill that this action choice is related to
  uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
  uint24 xpPerHour;
  uint16[] inputTokenIds;
  uint24[] inputAmounts;
  uint16 outputTokenId;
  uint8 outputAmount;
  uint8 successPercent; // 0-100
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
  uint8[] skills; // Skills required to do this action choice
  uint32[] skillMinXPs; // Min XP in the corresponding skills to be able to do this action choice
  int16[] skillDiffs; // How much the skill is increased/decreased by this action choice
}

struct ActionChoice {
  uint8 skill; // Skill that this action choice is related to
  uint24 rate; // Rate of output produced per hour (base 1000) 3 decimals
  uint24 xpPerHour;
  uint16 inputTokenId1;
  uint24 inputAmount1;
  uint16 inputTokenId2;
  uint24 inputAmount2;
  uint16 inputTokenId3;
  uint24 inputAmount3;
  uint16 outputTokenId;
  uint8 outputAmount;
  uint8 successPercent; // 0-100
  uint8 skill1; // Skills required to do this action choice, commonly the same as skill
  uint32 skillMinXP1; // Min XP in the skill to be able to do this action choice
  int16 skillDiff1; // How much the skill is increased/decreased by this action choice
  uint8 skill2;
  uint32 skillMinXP2;
  int16 skillDiff2;
  uint8 skill3;
  uint32 skillMinXP3;
  int16 skillDiff3;
  uint16 handItemTokenIdRangeMin; // Inclusive
  uint16 handItemTokenIdRangeMax; // Inclusive
  uint16 questPrerequisiteId;
  // FullMode is last bit, first 6 bits is worldLocation,
  // 2nd last bit is if there are other skills in next storage slot to check,
  // 3rd last bit if the input amounts should be used
  bytes1 packedData;
}

// Must be in the same order as Skill enum
struct PackedXP {
  uint40 melee;
  uint40 ranged;
  uint40 magic;
  uint40 defence;
  uint40 health;
  uint40 reservedCombat;
  bytes2 packedDataIsMaxed; // 2 bits per skill to indicate whether the maxed skill is reached. I think this was added in case we added a new max level which a user had already passed so old & new levels are the same and it would not trigger a level up event.
  // Next slot
  uint40 mining;
  uint40 woodcutting;
  uint40 fishing;
  uint40 smithing;
  uint40 thieving;
  uint40 crafting;
  bytes2 packedDataIsMaxed1; // 2 bits per skill to indicate whether the maxed skill is reached
  // Next slot
  uint40 cooking;
  uint40 firemaking;
  uint40 farming;
  uint40 alchemy;
  uint40 fletching;
  uint40 forging;
  bytes2 packedDataIsMaxed2; // 2 bits per skill to indicate whether the maxed skill is reached
}

struct AvatarInfo {
  string name;
  string description;
  string imageURI;
  Skill[2] startSkills; // Can be NONE
}

struct PastRandomRewardInfo {
  uint16 itemTokenId;
  uint24 amount;
  uint64 queueId;
}

struct PendingQueuedActionEquipmentState {
  uint256[] consumedItemTokenIds;
  uint256[] consumedAmounts;
  uint256[] producedItemTokenIds;
  uint256[] producedAmounts;
}

struct PendingQueuedActionMetadata {
  uint32 xpGained; // total xp gained
  uint32 rolls;
  bool died;
  uint16 actionId;
  uint64 queueId;
  uint24 elapsedTime;
  uint24 xpElapsedTime;
  uint8 checkpoint;
}

struct PendingQueuedActionData {
  // The amount of XP that the queued action has already gained
  Skill skill1;
  uint24 xpGained1;
  Skill skill2; // Most likely health
  uint24 xpGained2;
  Skill skill3; // Could come
  uint24 xpGained3;
  // How much food is consumed in the current action so far
  uint16 foodConsumed;
  // How many base consumables are consumed in the current action so far
  uint16 baseInputItemsConsumedNum;
}

struct PendingQueuedActionProcessed {
  // XP gained during this session
  Skill[] skills;
  uint32[] xpGainedSkills;
  // Data for the current action which has been previously processed, this is used to store on the Player
  PendingQueuedActionData currentAction;
}

struct QuestState {
  uint256[] consumedItemTokenIds;
  uint256[] consumedAmounts;
  uint256[] rewardItemTokenIds;
  uint256[] rewardAmounts;
  PlayerQuest[] activeQuestInfo;
  uint256[] questsCompleted;
  Skill[] skills; // Skills gained XP in
  uint32[] xpGainedSkills; // XP gained in these skills
}

struct LotteryWinnerInfo {
  uint16 lotteryId;
  uint24 raffleId;
  uint16 itemTokenId;
  uint16 amount;
  bool instantConsume;
  uint64 playerId;
}

struct PendingQueuedActionState {
  // These 2 are in sync. Separated to reduce gas/deployment costs as these are passed down many layers.
  PendingQueuedActionEquipmentState[] equipmentStates;
  PendingQueuedActionMetadata[] actionMetadatas;
  QueuedAction[] remainingQueuedActions;
  PastRandomRewardInfo[] producedPastRandomRewards;
  uint256[] xpRewardItemTokenIds;
  uint256[] xpRewardAmounts;
  uint256[] dailyRewardItemTokenIds;
  uint256[] dailyRewardAmounts;
  PendingQueuedActionProcessed processedData;
  bytes32 dailyRewardMask;
  QuestState quests;
  uint256 numPastRandomRewardInstancesToRemove;
  uint8 worldLocation;
  LotteryWinnerInfo lotteryWinner;
}

struct FullAttireBonusInput {
  Skill skill;
  uint8 bonusXPPercent;
  uint8 bonusRewardsPercent; // 3 = 3%
  uint16[5] itemTokenIds; // 0 = head, 1 = body, 2 arms, 3 body, 4 = feet
}

// Contains everything you need to create an item
struct ItemInput {
  CombatStats combatStats;
  uint16 tokenId;
  EquipPosition equipPosition;
  bool isTransferable;
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
  // Minimum requirements in this skill
  Skill skill;
  uint32 minXP;
  // Food
  uint16 healthRestored;
  // Boost
  BoostType boostType;
  uint16 boostValue; // Varies, could be the % increase
  uint24 boostDuration; // How long the effect of the boost vial last
  // uri
  string metadataURI;
  string name;
}

/* Order head, neck, body, arms, legs, feet, ring, reserved1,
   leftHandEquipment, rightHandEquipment,
   Not used yet: input1, input2,input3, regenerate, reserved2, reserved3 */
struct CheckpointEquipments {
  uint16[16] itemTokenIds;
  uint16[16] balances;
}

struct ActivePlayerInfo {
  uint64 playerId;
  uint40 checkpoint;
  uint24 timespan;
  uint24 timespan1;
  uint24 timespan2;
}

uint8 constant START_LEVEL = 17; // Needs updating when there is a new skill. Only useful for new heroes.

uint256 constant MAX_UNIQUE_TICKETS = 64;
// Used in a bunch of places
uint256 constant IS_FULL_MODE_BIT = 7;

// Passive/Instant/InstantVRF/Actions/ActionChoices/Item action
uint256 constant IS_AVAILABLE_BIT = 6;

// Passive actions
uint256 constant HAS_RANDOM_REWARDS_BIT = 5;

// The rest use world location for first 4 bits

// Queued action
uint256 constant HAS_PET_BIT = 2;
uint256 constant IS_VALID_BIT = 1;

File 25 of 31 : promotions.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

enum Promotion {
  NONE,
  STARTER,
  HALLOWEEN_2023,
  XMAS_2023,
  HALLOWEEN_2024,
  HOLIDAY4, // Just have placeholders for now
  HOLIDAY5,
  HOLIDAY6,
  HOLIDAY7,
  HOLIDAY8,
  HOLIDAY9,
  HOLIDAY10
}

enum PromotionMintStatus {
  NONE,
  SUCCESS,
  PROMOTION_ALREADY_CLAIMED,
  ORACLE_NOT_CALLED,
  MINTING_OUTSIDE_AVAILABLE_DATE,
  PLAYER_DOES_NOT_QUALIFY,
  PLAYER_NOT_HIT_ENOUGH_CLAIMS_FOR_STREAK_BONUS,
  DEPENDENT_QUEST_NOT_COMPLETED
}

struct PromotionInfoInput {
  Promotion promotion;
  uint40 startTime;
  uint40 endTime; // Exclusive
  uint8 numDailyRandomItemsToPick; // Number of items to pick
  uint40 minTotalXP; // Minimum xp required to claim
  uint256 tokenCost; // Cost in brush to start the promotion, max 16mil
  // Special promotion specific (like 1kin)
  uint8 redeemCodeLength; // Length of the redeem code
  bool adminOnly; // Only admins can mint the promotion, like for 1kin (Not used yet)
  bool promotionTiedToUser; // If the promotion is tied to a user
  bool promotionTiedToPlayer; // If the promotion is tied to the player
  bool promotionMustOwnPlayer; // Must own the player to get the promotion
  // Evolution specific
  bool evolvedHeroOnly; // Only allow evolved heroes to claim
  // Multiday specific
  bool isMultiday; // The promotion is multi-day
  uint256 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.6 (base 100)
  uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
  uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
  uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
  uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
  uint16[] randomStreakBonusItemTokenIds1;
  uint32[] randomStreakBonusAmounts1;
  uint16[] randomStreakBonusItemTokenIds2;
  uint32[] randomStreakBonusAmounts2;
  uint16[] guaranteedStreakBonusItemTokenIds;
  uint16[] guaranteedStreakBonusAmounts;
  // Single and multiday
  uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
  uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
  // Quests
  uint16 questPrerequisiteId;
}

struct PromotionInfo {
  Promotion promotion;
  uint40 startTime;
  uint8 numDays;
  uint8 numDailyRandomItemsToPick; // Number of items to pick
  uint40 minTotalXP; // Minimum xp required to claim
  uint24 tokenCost; // Cost in brush to mint the promotion (in ether), max 16mil
  // Quests
  uint16 questPrerequisiteId;
  // Special promotion specific (like 1kin), could pack these these later
  uint8 redeemCodeLength; // Length of the redeem code
  bool adminOnly; // Only admins can mint the promotion, like for 1kin
  bool promotionTiedToUser; // If the promotion is tied to a user
  bool promotionTiedToPlayer; // If the promotion is tied to the player
  bool promotionMustOwnPlayer; // Must own the player to get the promotion
  // Evolution specific
  bool evolvedHeroOnly; // Only allow evolved heroes to claim
  // Multiday specific
  bool isMultiday; // The promotion is multi-day
  uint8 brushCostMissedDay; // Cost in brush to mint the promotion if they miss a day (in ether), max 25.5, base 100
  uint8 numDaysHitNeededForStreakBonus; // How many days to hit for the streak bonus
  uint8 numDaysClaimablePeriodStreakBonus; // If there is a streak bonus, how many days to claim it after the promotion ends. If no final day bonus, set to 0
  uint8 numRandomStreakBonusItemsToPick1; // Number of items to pick for the streak bonus
  uint8 numRandomStreakBonusItemsToPick2; // Number of random items to pick for the streak bonus
  // Misc
  uint16[] randomStreakBonusItemTokenIds1;
  uint32[] randomStreakBonusAmounts1;
  uint16[] randomStreakBonusItemTokenIds2; // Not used yet
  uint32[] randomStreakBonusAmounts2; // Not used yet
  uint16[] guaranteedStreakBonusItemTokenIds; // Not used yet
  uint16[] guaranteedStreakBonusAmounts; // Not used yet
  // Single and multiday
  uint16[] guaranteedItemTokenIds; // Guaranteed items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] guaranteedAmounts; // Corresponding amounts to the itemTokenIds
  uint16[] randomItemTokenIds; // Possible items for the promotions each day, if empty then they are handled in a specific way for the promotion like daily rewards
  uint32[] randomAmounts; // Corresponding amounts to the randomItemTokenIds
}

uint256 constant BRUSH_COST_MISSED_DAY_MUL = 10;

File 26 of 31 : quests.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Skill} from "./misc.sol";

struct QuestInput {
  uint16 dependentQuestId; // The quest that must be completed before this one can be started
  uint16 actionId1; // action to do
  uint16 actionNum1; // how many (up to 65535)
  uint16 actionId2; // another action to do
  uint16 actionNum2; // how many (up to 65535)
  uint16 actionChoiceId; // actionChoice to perform
  uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
  Skill skillReward; // The skill to reward XP to
  uint24 skillXPGained; // The amount of XP to give (up to 65535)
  uint16 rewardItemTokenId1; // Reward an item
  uint16 rewardAmount1; // amount of the reward (up to 65535)
  uint16 rewardItemTokenId2; // Reward another item
  uint16 rewardAmount2; // amount of the reward (up to 65535)
  uint16 burnItemTokenId; // Burn an item
  uint16 burnAmount; // amount of the burn (up to 65535)
  uint16 questId; // Unique id for this quest
  bool isFullModeOnly; // If true this quest requires the user be evolved
  uint8 worldLocation; // 0 is the main starting world
}

struct Quest {
  uint16 dependentQuestId; // The quest that must be completed before this one can be started
  uint16 actionId1; // action to do
  uint16 actionNum1; // how many (up to 65535)
  uint16 actionId2; // another action to do
  uint16 actionNum2; // how many (up to 65535)
  uint16 actionChoiceId; // actionChoice to perform
  uint16 actionChoiceNum; // how many to do (base number), (up to 65535)
  Skill skillReward; // The skill to reward XP to
  uint24 skillXPGained; // The amount of XP to give (up to 65535)
  uint16 rewardItemTokenId1; // Reward an item
  uint16 rewardAmount1; // amount of the reward (up to 65535)
  uint16 rewardItemTokenId2; // Reward another item
  uint16 rewardAmount2; // amount of the reward (up to 65535)
  uint16 burnItemTokenId; // Burn an item
  uint16 burnAmount; // amount of the burn (up to 65535)
  uint16 reserved; // Reserved for future use (previously was questId and cleared)
  bytes1 packedData; // FullMode is last bit, first 6 bits is worldLocation
}

struct PlayerQuest {
  uint32 questId;
  uint16 actionCompletedNum1;
  uint16 actionCompletedNum2;
  uint16 actionChoiceCompletedNum;
  uint16 burnCompletedAmount;
}

uint256 constant QUEST_PURSE_STRINGS = 5; // MAKE SURE THIS MATCHES definitions

File 27 of 31 : rewards.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {BoostType, Equipment} from "./misc.sol";

struct GuaranteedReward {
  uint16 itemTokenId;
  uint16 rate; // num per hour (base 10, 1 decimal) for actions and num per duration for passive actions
}

struct RandomReward {
  uint16 itemTokenId;
  uint16 chance; // out of 65535
  uint8 amount; // out of 255
}

struct PendingRandomReward {
  uint16 actionId;
  uint40 startTime;
  uint24 xpElapsedTime;
  uint16 boostItemTokenId;
  uint24 elapsedTime;
  uint40 boostStartTime; // When the boost was started
  uint24 sentinelElapsedTime;
  // Full equipment at the time this was generated
  uint8 fullAttireBonusRewardsPercent;
  uint64 queueId; // TODO: Could reduce this if more stuff is needed
}

struct ActionRewards {
  uint16 guaranteedRewardTokenId1;
  uint16 guaranteedRewardRate1; // Num per hour base 10 (1 decimal) for actions (Max 6553.5 per hour), num per duration for passive actions
  uint16 guaranteedRewardTokenId2;
  uint16 guaranteedRewardRate2;
  uint16 guaranteedRewardTokenId3;
  uint16 guaranteedRewardRate3;
  // Random chance rewards
  uint16 randomRewardTokenId1;
  uint16 randomRewardChance1; // out of 65535
  uint8 randomRewardAmount1; // out of 255
  uint16 randomRewardTokenId2;
  uint16 randomRewardChance2;
  uint8 randomRewardAmount2;
  uint16 randomRewardTokenId3;
  uint16 randomRewardChance3;
  uint8 randomRewardAmount3;
  uint16 randomRewardTokenId4;
  uint16 randomRewardChance4;
  uint8 randomRewardAmount4;
  // No more room in this storage slot!
}

struct XPThresholdReward {
  uint32 xpThreshold;
  Equipment[] rewards;
}

enum InstantVRFActionType {
  NONE,
  GENERIC,
  FORGING,
  EGG
}

struct InstantVRFActionInput {
  uint16 actionId;
  uint16[] inputTokenIds;
  uint24[] inputAmounts;
  bytes data;
  InstantVRFActionType actionType;
  bool isFullModeOnly;
  bool isAvailable;
  uint16 questPrerequisiteId;
}

struct InstantVRFRandomReward {
  uint16 itemTokenId;
  uint16 chance; // out of 65535
  uint16 amount; // out of 65535
}

uint256 constant MAX_GUARANTEED_REWARDS_PER_ACTION = 3;
uint256 constant MAX_RANDOM_REWARDS_PER_ACTION = 4;
uint256 constant MAX_REWARDS_PER_ACTION = MAX_GUARANTEED_REWARDS_PER_ACTION + MAX_RANDOM_REWARDS_PER_ACTION;
uint256 constant MAX_CONSUMED_PER_ACTION = 3;
uint256 constant MAX_QUEST_REWARDS = 2;

uint256 constant TIER_1_DAILY_REWARD_START_XP = 0;
uint256 constant TIER_2_DAILY_REWARD_START_XP = 7_650;
uint256 constant TIER_3_DAILY_REWARD_START_XP = 33_913;
uint256 constant TIER_4_DAILY_REWARD_START_XP = 195_864;
uint256 constant TIER_5_DAILY_REWARD_START_XP = 784_726;
uint256 constant TIER_6_DAILY_REWARD_START_XP = 2_219_451;

// 4 bytes for each threshold, starts at 500 xp in decimal
bytes constant XP_THRESHOLD_REWARDS = hex"00000000000001F4000003E8000009C40000138800002710000075300000C350000186A00001D4C0000493E0000557300007A120000927C0000B71B0000DBBA0000F424000124F800016E360001B7740001E8480002625A0002932E0002DC6C0003567E0003D0900004C4B40005B8D80006ACFC0007A1200008954400098968000A7D8C000B71B0000C65D4000D59F8000E4E1C0";

File 28 of 31 : IBank.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IBank {
  function initialize() external;

  function initializeAddresses(
    uint256 clanId,
    address bankRegistry,
    address bankRelay,
    address playerNFT,
    address itemNFT,
    address clans,
    address players,
    address lockedBankVaults,
    address raids
  ) external;

  function depositToken(address sender, address from, uint256 playerId, address token, uint256 amount) external;

  function setAllowBreachedCapacity(bool allow) external;
}

File 29 of 31 : IClans.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ClanRank} from "../globals/clans.sol";

interface IClans {
  function canWithdraw(uint256 clanId, uint256 playerId) external view returns (bool);

  function isClanMember(uint256 clanId, uint256 playerId) external view returns (bool);

  function maxBankCapacity(uint256 clanId) external view returns (uint16);

  function maxMemberCapacity(uint256 clanId) external view returns (uint16);

  function getRank(uint256 clanId, uint256 playerId) external view returns (ClanRank);

  function setMMR(uint256 clanId, uint16 mmr) external;

  function getMMR(uint256 clanId) external view returns (uint16);

  function addXP(uint256 clanId, uint40 xp, bool xpEmittedElsewhere) external;
}

File 30 of 31 : ICombatants.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface ICombatants {
  function isCombatant(uint256 clanId, uint256 playerId) external view returns (bool);

  function assignCombatants(
    uint256 clanId,
    uint64[] calldata playerIds,
    uint256 combatantCooldownTimestamp,
    uint256 leaderPlayerId
  ) external;
}

File 31 of 31 : IPlayers.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import "../globals/misc.sol";
import "../globals/players.sol";

interface IPlayers {
  function clearEverythingBeforeTokenTransfer(address from, uint256 tokenId) external;

  function beforeTokenTransferTo(address to, uint256 tokenId) external;

  function getURI(
    uint256 playerId,
    string calldata name,
    string calldata avatarName,
    string calldata avatarDescription,
    string calldata imageURI
  ) external view returns (string memory);

  function mintedPlayer(
    address from,
    uint256 playerId,
    Skill[2] calldata startSkills,
    bool makeActive,
    uint256[] calldata startingItemTokenIds,
    uint256[] calldata startingAmounts
  ) external;

  function upgradePlayer(uint256 playerId) external;

  function isPlayerEvolved(uint256 playerId) external view returns (bool);

  function isOwnerOfPlayerAndActive(address from, uint256 playerId) external view returns (bool);

  function getAlphaCombatParams() external view returns (uint8 alphaCombat, uint8 betaCombat, uint8 alphaCombatHealing);

  function getActivePlayer(address owner) external view returns (uint256 playerId);

  function getPlayerXP(uint256 playerId, Skill skill) external view returns (uint256 xp);

  function getLevel(uint256 playerId, Skill skill) external view returns (uint256 level);

  function getTotalXP(uint256 playerId) external view returns (uint256 totalXP);

  function getTotalLevel(uint256 playerId) external view returns (uint256 totalLevel);

  function getActiveBoost(uint256 playerId) external view returns (PlayerBoostInfo memory);

  function modifyXP(address from, uint256 playerId, Skill skill, uint56 xp, bool skipEffects) external;

  function beforeItemNFTTransfer(address from, address to, uint256[] calldata ids, uint256[] calldata amounts) external;
}

Settings
{
  "evmVersion": "cancun",
  "optimizer": {
    "enabled": true,
    "runs": 9999999,
    "details": {
      "yul": true
    }
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {
    "contracts/EstforLibrary.sol": {
      "EstforLibrary": "0xe3223eaf0e260b54a8ce777ac9f4a972310370c0"
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotAdminAndBeta","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"NotMemberOfClan","type":"error"},{"inputs":[],"name":"NotOwnerOfPlayerAndActive","type":"error"},{"inputs":[],"name":"NotSettingCombatants","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PlayerAlreadyExistingCombatant","type":"error"},{"inputs":[],"name":"PlayerCannotBeInAssignedMoreThanOnce","type":"error"},{"inputs":[],"name":"PlayerCombatantCooldownTimestamp","type":"error"},{"inputs":[],"name":"PlayerIdsNotSortedOrDuplicates","type":"error"},{"inputs":[{"internalType":"uint256","name":"playerId","type":"uint256"}],"name":"PlayerNotUpgraded","type":"error"},{"inputs":[],"name":"RankNotHighEnough","type":"error"},{"inputs":[],"name":"SetCombatantsIncorrectly","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"clanId","type":"uint256"},{"internalType":"bool","name":"setTerritoryCombatants","type":"bool"},{"internalType":"uint64[]","name":"territoryPlayerIds","type":"uint64[]"},{"internalType":"bool","name":"setLockedVaultCombatants","type":"bool"},{"internalType":"uint64[]","name":"lockedVaultPlayerIds","type":"uint64[]"},{"internalType":"bool","name":"setRaidCombatants","type":"bool"},{"internalType":"uint64[]","name":"raidPlayerIds","type":"uint64[]"},{"internalType":"uint256","name":"leaderPlayerId","type":"uint256"}],"name":"assignCombatants","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64[]","name":"playerIds","type":"uint64[]"}],"name":"clearCooldowns","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IPlayers","name":"players","type":"address"},{"internalType":"contract IClans","name":"clans","type":"address"},{"internalType":"contract ICombatants","name":"territories","type":"address"},{"internalType":"contract ICombatants","name":"lockedVaults","type":"address"},{"internalType":"contract ICombatants","name":"raids","type":"address"},{"internalType":"contract AdminAccess","name":"adminAccess","type":"address"},{"internalType":"bool","name":"isBeta","type":"bool"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"}]

60a080604052346100c257306080525f516020611dbb5f395f51905f525460ff8160401c166100b3576002600160401b03196001600160401b03821601610060575b604051611cf490816100c78239608051818181610ce20152610e010152f35b6001600160401b0319166001600160401b039081175f516020611dbb5f395f51905f525581527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a15f80610041565b63f92ee8a960e01b5f5260045ffd5b5f80fdfe60e06040526004361015610011575f80fd5b5f3560e01c80634f1ef28614610d5a57806352d1902d14610c9d578063715018a614610bc35780638da5cb5b14610b53578063ad3cb1cc14610aa1578063b5e4943f14610930578063d9378a59146104b4578063ed9731d1146100c95763f2fde38b1461007c575f80fd5b346100c55760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576100c36100b66110bc565b6100be611327565b61123a565b005b5f80fd5b346100c5576101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576024358015600435811583036100c55760443567ffffffffffffffff81116100c557610129903690600401611187565b906064359485151586036100c55760843567ffffffffffffffff81116100c557610157903690600401611187565b60a4359182151583036100c55760c43567ffffffffffffffff81116100c557610184903690600401611187565b99909360e4359973ffffffffffffffffffffffffffffffffffffffff6003541660208c6044604051809481937fe743862900000000000000000000000000000000000000000000000000000000835233600484015260248301525afa908115610452575f91610485575b501561045d5773ffffffffffffffffffffffffffffffffffffffff6002541660208c60448d60405194859384927f57e10ace000000000000000000000000000000000000000000000000000000008452600484015260248301525afa908115610452575f91610423575b5060078110156103f6576003116103ce5786906103c7575b80156103c0575b15610398578a6103458b8b836100c39f86898f8f8f8f958f6102f28f928b8d918b8b89878d8a8c8f73ffffffffffffffffffffffffffffffffffffffff600454169573ffffffffffffffffffffffffffffffffffffffff600554169273ffffffffffffffffffffffffffffffffffffffff6006541697611404565b73ffffffffffffffffffffffffffffffffffffffff600554169573ffffffffffffffffffffffffffffffffffffffff600454169273ffffffffffffffffffffffffffffffffffffffff6006541697611404565b73ffffffffffffffffffffffffffffffffffffffff600654169573ffffffffffffffffffffffffffffffffffffffff600554169273ffffffffffffffffffffffffffffffffffffffff6004541697611404565b7fac982b42000000000000000000000000000000000000000000000000000000005f5260045ffd5b5080610277565b5081610270565b7fd52ab5d1000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b610445915060203d60201161044b575b61043d81836110df565b810190611222565b8d610258565b503d610433565b6040513d5f823e3d90fd5b7f538fc3f8000000000000000000000000000000000000000000000000000000005f5260045ffd5b6104a7915060203d6020116104ad575b61049f81836110df565b8101906111b8565b8d6101ee565b503d610495565b346100c55760e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55760043573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760243573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760443573ffffffffffffffffffffffffffffffffffffffff81168091036100c5576064359173ffffffffffffffffffffffffffffffffffffffff83168093036100c5576084359073ffffffffffffffffffffffffffffffffffffffff82168092036100c55760a43573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760c43592831515928385036100c5577ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549760ff8960401c16159867ffffffffffffffff811680159081610928575b600114908161091e575b159081610915575b506108ed578960017fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000008316177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055610898575b50610668611bce565b610670611bce565b6106793361123a565b610681611bce565b7fffffffffffffffffffffffff000000000000000000000000000000000000000060035416176003557fffffffffffffffffffffffff00000000000000000000000000000000000000006002541617600255600454957fffffffffffffffffffffffff000000000000000000000000000000000000000060055416176005557fffffffffffffffffffffffff000000000000000000000000000000000000000060065416176006557fffffffffffffffffffffff00000000000000000000000000000000000000000074ff00000000000000000000000000000000000000006001549360a01b16921617176001555f14610856577fffffffffffffffffff000000000000000000000000000000000000000000000076ffffff000000000000000000000000000000000000000061012c5b60a01b16921617176004556107c357005b7fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b7fffffffffffffffffff000000000000000000000000000000000000000000000076ffffff00000000000000000000000000000000000000006203f4806107b2565b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00558961065f565b7ff92ee8a9000000000000000000000000000000000000000000000000000000005f5260045ffd5b9050158b61060c565b303b159150610604565b8b91506105fa565b346100c55760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55760043567ffffffffffffffff81116100c55761097f903690600401611187565b600154604051907f24d7806c00000000000000000000000000000000000000000000000000000000825233600483015260208260248173ffffffffffffffffffffffffffffffffffffffff85165afa918215610452575f92610a80575b5081610a72575b5015610a4a575f5b8181106109f457005b8067ffffffffffffffff610a13610a0e60019486886111d0565b61120d565b165f525f60205260405f207fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000008154169055016109eb565b7facc0304c000000000000000000000000000000000000000000000000000000005f5260045ffd5b60ff915060a01c16836109e3565b610a9a91925060203d6020116104ad5761049f81836110df565b90846109dc565b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576040805190610ade81836110df565b6005825260208201917f352e302e3000000000000000000000000000000000000000000000000000000083527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8351948593602085525180918160208701528686015e5f85828601015201168101030190f35b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557602073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416604051908152f35b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557610bf9611327565b5f73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300547fffffffffffffffffffffffff000000000000000000000000000000000000000081167f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163003610d325760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba000000000000000000000000000000000000000000000000000000005f5260045ffd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557610d8c6110bc565b6024359067ffffffffffffffff82116100c557366023830112156100c557816004013590610db98261114d565b91610dc760405193846110df565b808352602083019336602483830101116100c557815f9260246020930187378401015273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001680301490811561107a575b50610d3257610e39611327565b73ffffffffffffffffffffffffffffffffffffffff8116926040517f52d1902d000000000000000000000000000000000000000000000000000000008152602081600481885afa5f9181611046575b50610eb957847f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b807f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc86920361101b5750823b15610ff057807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2825115610fbe575f80916100c3945190845af43d15610fb6573d91610f9a8361114d565b92610fa860405194856110df565b83523d5f602085013e611c25565b606091611c25565b50505034610fc857005b7fb398979f000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7faa1d49a4000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b9091506020813d602011611072575b81611062602093836110df565b810103126100c557519086610e88565b3d9150611055565b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141584610e2c565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036100c557565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761112057604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161112057601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b9181601f840112156100c55782359167ffffffffffffffff83116100c5576020808501948460051b0101116100c557565b908160209103126100c5575180151581036100c55790565b91908110156111e05760051b0190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b3567ffffffffffffffff811681036100c55790565b908160209103126100c5575160078110156100c55790565b73ffffffffffffffffffffffffffffffffffffffff1680156112fb5773ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054827fffffffffffffffffffffffff00000000000000000000000000000000000000008216177f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b7f1e4fbdf7000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416330361136757565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b359067ffffffffffffffff821682036100c557565b91939293806040840160408552526060830191905f5b8181106113db5750505067ffffffffffffffff6020919416910152565b90919260208060019267ffffffffffffffff6113f688611393565b1681520194019291016113be565b9a9496989b9199959997939792909260805260a05260c0525f14611b935762ffffff60045460a01c164201988942116117855773ffffffffffffffffffffffffffffffffffffffff60025416965f5b60a051811061153b575050505050505050505073ffffffffffffffffffffffffffffffffffffffff1690813b156100c557916040519283917f61c9fd2a0000000000000000000000000000000000000000000000000000000083526084830160c05160048501526080602485015260a051905260a48301916080515f5b60a051811061150a575050835f9593819387936044840152606483015203925af18015610452576114fe5750565b5f611508916110df565b565b9192938195506020809167ffffffffffffffff611528600195611393565b16815201950191019086949392916114d0565b61154d610a0e8260a0516080516111d0565b8715611adc57826119d8575b83156119215785611820575b67ffffffffffffffff81165f525f60205260405f20904264ffffffffff835416116117f8576040517f57e10ace00000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff821660248201526020816044818f5afa908115610452575f916117da575b5060078110156103f657156117b2577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60a0510160a051811161178557830361171c575b6024602073ffffffffffffffffffffffffffffffffffffffff60035416604051928380927f8c6d99f400000000000000000000000000000000000000000000000000000000825267ffffffffffffffff871660048301525afa908115610452575f916116fe575b50156116c8575080547fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000001664ffffffffff8e16179055600101611453565b67ffffffffffffffff907fb02bd4fd000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b611716915060203d81116104ad5761049f81836110df565b5f61168a565b61172e610a0e8460a0516080516111d0565b600184018085116117855767ffffffffffffffff611755610a0e829360a0516080516111d0565b16911610611623577fa6f976e3000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b7f4bafc272000000000000000000000000000000000000000000000000000000005f5260045ffd5b6117f2915060203d811161044b5761043d81836110df565b5f6115df565b7f4cc908b1000000000000000000000000000000000000000000000000000000005f5260045ffd5b6040517fe1f5afdb00000000000000000000000000000000000000000000000000000000815260208180611859858b8d600485016113a8565b038173e3223eaf0e260b54a8ce777ac9f4a972310370c05af48015610452575f906118d0575b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91500315611565577fbf7b5f26000000000000000000000000000000000000000000000000000000005f5260045ffd5b506020813d8211611919575b816118e9602093836110df565b810103126100c5577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff905161187f565b3d91506118dc565b6040517f50309b0500000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff8216602482015260208160448173ffffffffffffffffffffffffffffffffffffffff8a165afa908115610452575f916119ba575b5015611565577f73c657b0000000000000000000000000000000000000000000000000000000005f5260045ffd5b6119d2915060203d81116104ad5761049f81836110df565b5f61198c565b806020848d611a1460405194859384937fe1f5afdb000000000000000000000000000000000000000000000000000000008552600485016113a8565b038173e3223eaf0e260b54a8ce777ac9f4a972310370c05af48015610452575f90611a8b575b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91500315611559577fbf7b5f26000000000000000000000000000000000000000000000000000000005f5260045ffd5b506020813d8211611ad4575b81611aa4602093836110df565b810103126100c5577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9051611a3a565b3d9150611a97565b6040517f50309b0500000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff8216602482015260208160448173ffffffffffffffffffffffffffffffffffffffff8e165afa908115610452575f91611b75575b5015611559577f73c657b0000000000000000000000000000000000000000000000000000000005f5260045ffd5b611b8d915060203d81116104ad5761049f81836110df565b5f611b47565b5050505050505050505060a051611ba657565b7f282c397e000000000000000000000000000000000000000000000000000000005f5260045ffd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c1615611bfd57565b7fd7e6bcf8000000000000000000000000000000000000000000000000000000005f5260045ffd5b90611c625750805115611c3a57805190602001fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b81511580611cb5575b611c73575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b15611c6b56fea26469706673582212205561e3b1bc4cfadd902393f22c3b507b82d4be9bece7b21199df65c0d7f58ebf64736f6c634300081c0033f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00

Deployed Bytecode

0x60e06040526004361015610011575f80fd5b5f3560e01c80634f1ef28614610d5a57806352d1902d14610c9d578063715018a614610bc35780638da5cb5b14610b53578063ad3cb1cc14610aa1578063b5e4943f14610930578063d9378a59146104b4578063ed9731d1146100c95763f2fde38b1461007c575f80fd5b346100c55760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576100c36100b66110bc565b6100be611327565b61123a565b005b5f80fd5b346100c5576101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576024358015600435811583036100c55760443567ffffffffffffffff81116100c557610129903690600401611187565b906064359485151586036100c55760843567ffffffffffffffff81116100c557610157903690600401611187565b60a4359182151583036100c55760c43567ffffffffffffffff81116100c557610184903690600401611187565b99909360e4359973ffffffffffffffffffffffffffffffffffffffff6003541660208c6044604051809481937fe743862900000000000000000000000000000000000000000000000000000000835233600484015260248301525afa908115610452575f91610485575b501561045d5773ffffffffffffffffffffffffffffffffffffffff6002541660208c60448d60405194859384927f57e10ace000000000000000000000000000000000000000000000000000000008452600484015260248301525afa908115610452575f91610423575b5060078110156103f6576003116103ce5786906103c7575b80156103c0575b15610398578a6103458b8b836100c39f86898f8f8f8f958f6102f28f928b8d918b8b89878d8a8c8f73ffffffffffffffffffffffffffffffffffffffff600454169573ffffffffffffffffffffffffffffffffffffffff600554169273ffffffffffffffffffffffffffffffffffffffff6006541697611404565b73ffffffffffffffffffffffffffffffffffffffff600554169573ffffffffffffffffffffffffffffffffffffffff600454169273ffffffffffffffffffffffffffffffffffffffff6006541697611404565b73ffffffffffffffffffffffffffffffffffffffff600654169573ffffffffffffffffffffffffffffffffffffffff600554169273ffffffffffffffffffffffffffffffffffffffff6004541697611404565b7fac982b42000000000000000000000000000000000000000000000000000000005f5260045ffd5b5080610277565b5081610270565b7fd52ab5d1000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b610445915060203d60201161044b575b61043d81836110df565b810190611222565b8d610258565b503d610433565b6040513d5f823e3d90fd5b7f538fc3f8000000000000000000000000000000000000000000000000000000005f5260045ffd5b6104a7915060203d6020116104ad575b61049f81836110df565b8101906111b8565b8d6101ee565b503d610495565b346100c55760e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55760043573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760243573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760443573ffffffffffffffffffffffffffffffffffffffff81168091036100c5576064359173ffffffffffffffffffffffffffffffffffffffff83168093036100c5576084359073ffffffffffffffffffffffffffffffffffffffff82168092036100c55760a43573ffffffffffffffffffffffffffffffffffffffff81168091036100c55760c43592831515928385036100c5577ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549760ff8960401c16159867ffffffffffffffff811680159081610928575b600114908161091e575b159081610915575b506108ed578960017fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000008316177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055610898575b50610668611bce565b610670611bce565b6106793361123a565b610681611bce565b7fffffffffffffffffffffffff000000000000000000000000000000000000000060035416176003557fffffffffffffffffffffffff00000000000000000000000000000000000000006002541617600255600454957fffffffffffffffffffffffff000000000000000000000000000000000000000060055416176005557fffffffffffffffffffffffff000000000000000000000000000000000000000060065416176006557fffffffffffffffffffffff00000000000000000000000000000000000000000074ff00000000000000000000000000000000000000006001549360a01b16921617176001555f14610856577fffffffffffffffffff000000000000000000000000000000000000000000000076ffffff000000000000000000000000000000000000000061012c5b60a01b16921617176004556107c357005b7fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00557fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2602060405160018152a1005b7fffffffffffffffffff000000000000000000000000000000000000000000000076ffffff00000000000000000000000000000000000000006203f4806107b2565b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00558961065f565b7ff92ee8a9000000000000000000000000000000000000000000000000000000005f5260045ffd5b9050158b61060c565b303b159150610604565b8b91506105fa565b346100c55760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55760043567ffffffffffffffff81116100c55761097f903690600401611187565b600154604051907f24d7806c00000000000000000000000000000000000000000000000000000000825233600483015260208260248173ffffffffffffffffffffffffffffffffffffffff85165afa918215610452575f92610a80575b5081610a72575b5015610a4a575f5b8181106109f457005b8067ffffffffffffffff610a13610a0e60019486886111d0565b61120d565b165f525f60205260405f207fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000008154169055016109eb565b7facc0304c000000000000000000000000000000000000000000000000000000005f5260045ffd5b60ff915060a01c16836109e3565b610a9a91925060203d6020116104ad5761049f81836110df565b90846109dc565b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c5576040805190610ade81836110df565b6005825260208201917f352e302e3000000000000000000000000000000000000000000000000000000083527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8351948593602085525180918160208701528686015e5f85828601015201168101030190f35b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557602073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416604051908152f35b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557610bf9611327565b5f73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300547fffffffffffffffffffffffff000000000000000000000000000000000000000081167f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346100c5575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c55773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000006fae97a08d4877cd7aefc8a1a807e4a78a2596f6163003610d325760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba000000000000000000000000000000000000000000000000000000005f5260045ffd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c557610d8c6110bc565b6024359067ffffffffffffffff82116100c557366023830112156100c557816004013590610db98261114d565b91610dc760405193846110df565b808352602083019336602483830101116100c557815f9260246020930187378401015273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000006fae97a08d4877cd7aefc8a1a807e4a78a2596f61680301490811561107a575b50610d3257610e39611327565b73ffffffffffffffffffffffffffffffffffffffff8116926040517f52d1902d000000000000000000000000000000000000000000000000000000008152602081600481885afa5f9181611046575b50610eb957847f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b807f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc86920361101b5750823b15610ff057807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2825115610fbe575f80916100c3945190845af43d15610fb6573d91610f9a8361114d565b92610fa860405194856110df565b83523d5f602085013e611c25565b606091611c25565b50505034610fc857005b7fb398979f000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7faa1d49a4000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b9091506020813d602011611072575b81611062602093836110df565b810103126100c557519086610e88565b3d9150611055565b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141584610e2c565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036100c557565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761112057604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161112057601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b9181601f840112156100c55782359167ffffffffffffffff83116100c5576020808501948460051b0101116100c557565b908160209103126100c5575180151581036100c55790565b91908110156111e05760051b0190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b3567ffffffffffffffff811681036100c55790565b908160209103126100c5575160078110156100c55790565b73ffffffffffffffffffffffffffffffffffffffff1680156112fb5773ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054827fffffffffffffffffffffffff00000000000000000000000000000000000000008216177f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b7f1e4fbdf7000000000000000000000000000000000000000000000000000000005f525f60045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416330361136757565b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b359067ffffffffffffffff821682036100c557565b91939293806040840160408552526060830191905f5b8181106113db5750505067ffffffffffffffff6020919416910152565b90919260208060019267ffffffffffffffff6113f688611393565b1681520194019291016113be565b9a9496989b9199959997939792909260805260a05260c0525f14611b935762ffffff60045460a01c164201988942116117855773ffffffffffffffffffffffffffffffffffffffff60025416965f5b60a051811061153b575050505050505050505073ffffffffffffffffffffffffffffffffffffffff1690813b156100c557916040519283917f61c9fd2a0000000000000000000000000000000000000000000000000000000083526084830160c05160048501526080602485015260a051905260a48301916080515f5b60a051811061150a575050835f9593819387936044840152606483015203925af18015610452576114fe5750565b5f611508916110df565b565b9192938195506020809167ffffffffffffffff611528600195611393565b16815201950191019086949392916114d0565b61154d610a0e8260a0516080516111d0565b8715611adc57826119d8575b83156119215785611820575b67ffffffffffffffff81165f525f60205260405f20904264ffffffffff835416116117f8576040517f57e10ace00000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff821660248201526020816044818f5afa908115610452575f916117da575b5060078110156103f657156117b2577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60a0510160a051811161178557830361171c575b6024602073ffffffffffffffffffffffffffffffffffffffff60035416604051928380927f8c6d99f400000000000000000000000000000000000000000000000000000000825267ffffffffffffffff871660048301525afa908115610452575f916116fe575b50156116c8575080547fffffffffffffffffffffffffffffffffffffffffffffffffffffff00000000001664ffffffffff8e16179055600101611453565b67ffffffffffffffff907fb02bd4fd000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b611716915060203d81116104ad5761049f81836110df565b5f61168a565b61172e610a0e8460a0516080516111d0565b600184018085116117855767ffffffffffffffff611755610a0e829360a0516080516111d0565b16911610611623577fa6f976e3000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b7f4bafc272000000000000000000000000000000000000000000000000000000005f5260045ffd5b6117f2915060203d811161044b5761043d81836110df565b5f6115df565b7f4cc908b1000000000000000000000000000000000000000000000000000000005f5260045ffd5b6040517fe1f5afdb00000000000000000000000000000000000000000000000000000000815260208180611859858b8d600485016113a8565b038173e3223eaf0e260b54a8ce777ac9f4a972310370c05af48015610452575f906118d0575b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91500315611565577fbf7b5f26000000000000000000000000000000000000000000000000000000005f5260045ffd5b506020813d8211611919575b816118e9602093836110df565b810103126100c5577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff905161187f565b3d91506118dc565b6040517f50309b0500000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff8216602482015260208160448173ffffffffffffffffffffffffffffffffffffffff8a165afa908115610452575f916119ba575b5015611565577f73c657b0000000000000000000000000000000000000000000000000000000005f5260045ffd5b6119d2915060203d81116104ad5761049f81836110df565b5f61198c565b806020848d611a1460405194859384937fe1f5afdb000000000000000000000000000000000000000000000000000000008552600485016113a8565b038173e3223eaf0e260b54a8ce777ac9f4a972310370c05af48015610452575f90611a8b575b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff91500315611559577fbf7b5f26000000000000000000000000000000000000000000000000000000005f5260045ffd5b506020813d8211611ad4575b81611aa4602093836110df565b810103126100c5577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9051611a3a565b3d9150611a97565b6040517f50309b0500000000000000000000000000000000000000000000000000000000815260c051600482015267ffffffffffffffff8216602482015260208160448173ffffffffffffffffffffffffffffffffffffffff8e165afa908115610452575f91611b75575b5015611559577f73c657b0000000000000000000000000000000000000000000000000000000005f5260045ffd5b611b8d915060203d81116104ad5761049f81836110df565b5f611b47565b5050505050505050505060a051611ba657565b7f282c397e000000000000000000000000000000000000000000000000000000005f5260045ffd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c1615611bfd57565b7fd7e6bcf8000000000000000000000000000000000000000000000000000000005f5260045ffd5b90611c625750805115611c3a57805190602001fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b81511580611cb5575b611c73575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b15611c6b56fea26469706673582212205561e3b1bc4cfadd902393f22c3b507b82d4be9bece7b21199df65c0d7f58ebf64736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.