Source Code
Overview
S Balance
S Value
$0.00Latest 1 from a total of 1 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Liquidation Call | 54013584 | 81 days ago | IN | 0 S | 0.00147614 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
SiloHookV1
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {GaugeHookReceiver} from "silo-core/contracts/hooks/gauge/GaugeHookReceiver.sol";
import {PartialLiquidation} from "silo-core/contracts/hooks/liquidation/PartialLiquidation.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
contract SiloHookV1 is GaugeHookReceiver, PartialLiquidation {
/// @inheritdoc IHookReceiver
function initialize(ISiloConfig _config, bytes calldata _data)
public
initializer
virtual
{
(address owner) = abi.decode(_data, (address));
BaseHookReceiver.__BaseHookReceiver_init(_config);
GaugeHookReceiver.__GaugeHookReceiver_init(owner);
}
/// @inheritdoc IHookReceiver
function beforeAction(address, uint256, bytes calldata)
public
virtual
onlySilo()
override
{
// Do not expect any actions.
revert RequestNotSupported();
}
/// @inheritdoc IHookReceiver
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput)
public
virtual
onlySiloOrShareToken()
override(GaugeHookReceiver, IHookReceiver)
{
GaugeHookReceiver.afterAction(_silo, _action, _inputAndOutput);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";
interface ISiloConfig is ICrossReentrancyGuard {
struct InitData {
/// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
/// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
/// fees. NFT can be transferred with the right to claim.
address deployer;
/// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
/// implements liquidation logic and veSilo gauge connection.
address hookReceiver;
/// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
/// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
uint256 deployerFee;
/// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
/// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
uint256 daoFee;
/// @notice Address of the first token
address token0;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle0;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle0;
/// @notice Address of the interest rate model
address interestRateModel0;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
/// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
uint256 maxLtv0;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
/// points. LT must not be lower than maxLTV.
uint256 lt0;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv0;
/// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
/// for repaying insolvent loan.
uint256 liquidationFee0;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee0;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote0;
/// @notice Address of the second token
address token1;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle1;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle1;
/// @notice Address of the interest rate model
address interestRateModel1;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
/// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
uint256 maxLtv1;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
uint256 lt1;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv1;
/// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
uint256 liquidationFee1;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee1;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote1;
}
struct ConfigData {
uint256 daoFee;
uint256 deployerFee;
address silo;
address token;
address protectedShareToken;
address collateralShareToken;
address debtShareToken;
address solvencyOracle;
address maxLtvOracle;
address interestRateModel;
uint256 maxLtv;
uint256 lt;
uint256 liquidationTargetLtv;
uint256 liquidationFee;
uint256 flashloanFee;
address hookReceiver;
bool callBeforeQuote;
}
struct DepositConfig {
address silo;
address token;
address collateralShareToken;
address protectedShareToken;
uint256 daoFee;
uint256 deployerFee;
address interestRateModel;
}
error OnlySilo();
error OnlySiloOrTokenOrHookReceiver();
error WrongSilo();
error OnlyDebtShareToken();
error DebtExistInOtherSilo();
error FeeTooHigh();
/// @dev It should be called on debt transfer (debt share token transfer).
/// In the case if the`_recipient` doesn't have configured a collateral silo,
/// it will be set to the collateral silo of the `_sender`.
/// @param _sender sender address
/// @param _recipient recipient address
function onDebtTransfer(address _sender, address _recipient) external;
/// @notice Set collateral silo.
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo the same as msg.sender.
/// @param _borrower borrower address
/// @return collateralSiloChanged TRUE if collateral silo changed
function setThisSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Set collateral silo
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo opposite to the msg.sender.
/// @param _borrower borrower address
/// @return collateralSiloChanged TRUE if collateral silo changed
function setOtherSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Accrue interest for the silo
/// @param _silo silo for which accrue interest
function accrueInterestForSilo(address _silo) external;
/// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
function accrueInterestForBothSilos() external;
/// @notice Retrieves the collateral silo for a specific borrower.
/// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
/// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
/// After being set, the collateral silo is never set to `address(0)` again but such getters as
/// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
/// collateral silo config if borrower doesn't have debt.
///
/// In the SiloConfig collateral silo is set by the following functions:
/// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
/// This function is called on debt share token transfer (debt transfer).
/// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function.
/// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
///
/// In the Silo collateral silo is set by the following functions:
/// `borrow` - always sets opposite silo as collateral.
/// If Silo0 borrows, then Silo1 will be collateral and vice versa.
/// `borrowSameAsset` - always sets the same silo as collateral.
/// `switchCollateralToThisSilo` - always sets the same silo as collateral.
/// @param _borrower The address of the borrower for which the collateral silo is being retrieved
/// @return collateralSilo The address of the collateral silo for the specified borrower
function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);
/// @notice Retrieves the silo ID
/// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
/// An owner of that token receives the deployer fees.
/// @return siloId The ID of the silo
function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase
/// @notice Retrieves the addresses of the two silos
/// @return silo0 The address of the first silo
/// @return silo1 The address of the second silo
function getSilos() external view returns (address silo0, address silo1);
/// @notice Retrieves the asset associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which the associated asset is being retrieved
/// @return asset The address of the asset associated with the specified silo
function getAssetForSilo(address _silo) external view returns (address asset);
/// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
/// @param _thisSilo The address of the silo in respect of which the debt is checked
/// @param _borrower The address of the borrower for which the debt is checked
/// @return hasDebt true if the borrower has debt in other silo
function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);
/// @notice Retrieves the debt silo associated with a specific borrower
/// @dev This function reverts if debt present in two silo (should not happen)
/// @param _borrower The address of the borrower for which the debt silo is being retrieved
function getDebtSilo(address _borrower) external view returns (address debtSilo);
/// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
/// @param borrower borrower address for which debtConfig will be returned
/// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
/// @return debtConfig The configuration data for debt silo (empty if there is no debt).
function getConfigsForSolvency(address borrower)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves configuration data for a specific silo
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return config The configuration data for the specified silo
function getConfig(address _silo) external view returns (ConfigData memory config);
/// @notice Retrieves configuration data for a specific silo for withdraw fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
/// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
/// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
DepositConfig memory depositConfig,
ConfigData memory collateralConfig,
ConfigData memory debtConfig
);
/// @notice Retrieves configuration data for a specific silo for borrow fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _debtSilo The address of the silo for which configuration data is being retrieved
/// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
/// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
function getConfigsForBorrow(address _debtSilo)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves fee-related information for a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which fee-related information is being retrieved.
/// @return daoFee The DAO fee percentage in 18 decimals points.
/// @return deployerFee The deployer fee percentage in 18 decimals points.
/// @return flashloanFee The flashloan fee percentage in 18 decimals points.
/// @return asset The address of the asset associated with the specified silo.
function getFeesWithAsset(address _silo)
external
view
returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);
/// @notice Retrieves share tokens associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which share tokens are being retrieved
/// @return protectedShareToken The address of the protected (non-borrowable) share token
/// @return collateralShareToken The address of the collateral share token
/// @return debtShareToken The address of the debt share token
function getShareTokens(address _silo)
external
view
returns (address protectedShareToken, address collateralShareToken, address debtShareToken);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @param _collateralType The type of collateral
/// @return shareToken The address of the share token (collateral or protected collateral)
/// @return asset The address of the silo token
function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
external
view
returns (address shareToken, address asset);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @return shareToken The address of the share token (debt)
/// @return asset The address of the silo token
function getDebtShareTokenAndAsset(address _silo)
external
view
returns (address shareToken, address asset);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISiloConfig} from "./ISiloConfig.sol";
interface IHookReceiver {
struct HookConfig {
uint24 hooksBefore;
uint24 hooksAfter;
}
event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);
/// @dev Revert if provided silo configuration during initialization is empty
error EmptySiloConfig();
/// @dev Revert if the hook receiver is already configured/initialized
error AlreadyConfigured();
/// @dev Revert if the caller is not a silo
error OnlySilo();
/// @dev Revert if the caller is not a silo or a share token
error OnlySiloOrShareToken();
/// @notice Initialize a hook receiver
/// @param _siloConfig Silo configuration with all the details about the silo
/// @param _data Data to initialize the hook receiver (if needed)
function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;
/// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;
/// @notice return hooksBefore and hooksAfter configuration
function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Ownable1and2Steps} from "common/access/Ownable1and2Steps.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {ISiloIncentivesController} from "silo-core/contracts/incentives/interfaces/ISiloIncentivesController.sol";
import {IGaugeHookReceiver, IHookReceiver} from "silo-core/contracts/interfaces/IGaugeHookReceiver.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
/// @notice Silo share token hook receiver for the gauge.
/// It notifies the gauge (if configured) about any balance update in the Silo share token.
abstract contract GaugeHookReceiver is BaseHookReceiver, IGaugeHookReceiver, Ownable1and2Steps {
using Hook for uint256;
using Hook for bytes;
mapping(IShareToken => ISiloIncentivesController) public configuredGauges;
constructor() Ownable1and2Steps(msg.sender) {
// lock implementation
_transferOwnership(address(0));
}
/// @inheritdoc IGaugeHookReceiver
function setGauge(ISiloIncentivesController _gauge, IShareToken _shareToken) external virtual onlyOwner {
require(address(_gauge) != address(0), EmptyGaugeAddress());
require(_gauge.SHARE_TOKEN() == address(_shareToken), WrongGaugeShareToken());
address configuredGauge = address(configuredGauges[_shareToken]);
require(configuredGauge == address(0), GaugeAlreadyConfigured());
address silo = address(_shareToken.silo());
uint256 tokenType = _getTokenType(silo, address(_shareToken));
uint256 hooksAfter = _getHooksAfter(silo);
uint256 action = tokenType | Hook.SHARE_TOKEN_TRANSFER;
hooksAfter = hooksAfter.addAction(action);
_setHookConfig(silo, uint24(_getHooksBefore(silo)), uint24(hooksAfter));
configuredGauges[_shareToken] = _gauge;
emit GaugeConfigured(address(_gauge), address(_shareToken));
}
/// @inheritdoc IGaugeHookReceiver
function removeGauge(IShareToken _shareToken) external virtual onlyOwner {
ISiloIncentivesController configuredGauge = configuredGauges[_shareToken];
require(address(configuredGauge) != address(0), GaugeIsNotConfigured());
delete configuredGauges[_shareToken];
emit GaugeRemoved(address(_shareToken));
}
/// @inheritdoc IHookReceiver
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput)
public
virtual
override
{
ISiloIncentivesController theGauge = configuredGauges[IShareToken(msg.sender)];
if (theGauge == ISiloIncentivesController(address(0))) return;
if (!_getHooksAfter(_silo).matchAction(_action)) return;
Hook.AfterTokenTransfer memory input = _inputAndOutput.afterTokenTransferDecode();
theGauge.afterTokenTransfer(
input.sender,
input.senderBalance,
input.recipient,
input.recipientBalance,
input.totalSupply,
input.amount
);
}
/// @notice Get the token type for the share token
/// @param _silo Silo address for which tokens was deployed
/// @param _shareToken Share token address
/// @dev Revert if wrong silo
/// @dev Revert if the share token is not one of the collateral, protected or debt tokens
function _getTokenType(address _silo, address _shareToken) internal view virtual returns (uint256) {
(
address protectedShareToken,
address collateralShareToken,
address debtShareToken
) = siloConfig.getShareTokens(_silo);
if (_shareToken == collateralShareToken) return Hook.COLLATERAL_TOKEN;
if (_shareToken == protectedShareToken) return Hook.PROTECTED_TOKEN;
if (_shareToken == debtShareToken) return Hook.DEBT_TOKEN;
revert InvalidShareToken();
}
/// @notice Set the owner of the hook receiver
/// @param _owner Owner address
function __GaugeHookReceiver_init(address _owner)
internal
onlyInitializing
virtual
{
require(_owner != address(0), OwnerIsZeroAddress());
_transferOwnership(_owner);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {IERC20} from "openzeppelin5/interfaces/IERC20.sol";
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IShareToken} from "silo-core/contracts/interfaces/IShareToken.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {SiloMathLib} from "silo-core/contracts/lib/SiloMathLib.sol";
import {Hook} from "silo-core/contracts/lib/Hook.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
import {RevertLib} from "silo-core/contracts/lib/RevertLib.sol";
import {CallBeforeQuoteLib} from "silo-core/contracts/lib/CallBeforeQuoteLib.sol";
import {PartialLiquidationExecLib} from "silo-core/contracts/hooks/liquidation/lib/PartialLiquidationExecLib.sol";
import {TransientReentrancy} from "silo-core/contracts/hooks/_common/TransientReentrancy.sol";
import {BaseHookReceiver} from "silo-core/contracts/hooks/_common/BaseHookReceiver.sol";
/// @title PartialLiquidation module for executing liquidations
/// @dev if we need additional hook functionality, this contract should be included as parent
abstract contract PartialLiquidation is TransientReentrancy, BaseHookReceiver, IPartialLiquidation {
using SafeERC20 for IERC20;
using Hook for uint24;
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
struct LiquidationCallParams {
uint256 collateralShares;
uint256 protectedShares;
uint256 withdrawAssetsFromCollateral;
uint256 withdrawAssetsFromProtected;
bytes4 customError;
}
/// @inheritdoc IPartialLiquidation
function liquidationCall( // solhint-disable-line function-max-lines, code-complexity
address _collateralAsset,
address _debtAsset,
address _borrower,
uint256 _maxDebtToCover,
bool _receiveSToken
)
external
virtual
nonReentrant
returns (uint256 withdrawCollateral, uint256 repayDebtAssets)
{
ISiloConfig siloConfigCached = siloConfig;
require(address(siloConfigCached) != address(0), EmptySiloConfig());
require(_maxDebtToCover != 0, NoDebtToCover());
siloConfigCached.turnOnReentrancyProtection();
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _fetchConfigs(siloConfigCached, _collateralAsset, _debtAsset, _borrower);
LiquidationCallParams memory params;
(
params.withdrawAssetsFromCollateral, params.withdrawAssetsFromProtected, repayDebtAssets, params.customError
) = PartialLiquidationExecLib.getExactLiquidationAmounts(
collateralConfig,
debtConfig,
_borrower,
_maxDebtToCover,
collateralConfig.liquidationFee
);
RevertLib.revertIfError(params.customError);
// we do not allow dust so full liquidation is required
require(repayDebtAssets <= _maxDebtToCover, FullLiquidationRequired());
IERC20(debtConfig.token).safeTransferFrom(msg.sender, address(this), repayDebtAssets);
IERC20(debtConfig.token).safeIncreaseAllowance(debtConfig.silo, repayDebtAssets);
address shareTokenReceiver = _receiveSToken ? msg.sender : address(this);
params.collateralShares = _callShareTokenForwardTransferNoChecks(
collateralConfig.silo,
_borrower,
shareTokenReceiver,
params.withdrawAssetsFromCollateral,
collateralConfig.collateralShareToken,
ISilo.AssetType.Collateral
);
params.protectedShares = _callShareTokenForwardTransferNoChecks(
collateralConfig.silo,
_borrower,
shareTokenReceiver,
params.withdrawAssetsFromProtected,
collateralConfig.protectedShareToken,
ISilo.AssetType.Protected
);
siloConfigCached.turnOffReentrancyProtection();
ISilo(debtConfig.silo).repay(repayDebtAssets, _borrower);
if (_receiveSToken) {
if (params.collateralShares != 0) {
withdrawCollateral = ISilo(collateralConfig.silo).previewRedeem(
params.collateralShares,
ISilo.CollateralType.Collateral
);
}
if (params.protectedShares != 0) {
unchecked {
// protected and collateral values were split from total collateral to withdraw,
// so we will not overflow when we sum them back, especially that on redeem, we rounding down
withdrawCollateral += ISilo(collateralConfig.silo).previewRedeem(
params.protectedShares,
ISilo.CollateralType.Protected
);
}
}
} else {
// in case of liquidation redeem, hook transfers sTokens to itself and it has no debt
// so solvency will not be checked in silo on redeem action
// if share token offset is more than 0, positive number of shares can generate 0 assets
// so there is a need to check assets before we withdraw collateral/protected
if (params.collateralShares != 0) {
withdrawCollateral = ISilo(collateralConfig.silo).redeem({
_shares: params.collateralShares,
_receiver: msg.sender,
_owner: address(this),
_collateralType: ISilo.CollateralType.Collateral
});
}
if (params.protectedShares != 0) {
unchecked {
// protected and collateral values were split from total collateral to withdraw,
// so we will not overflow when we sum them back, especially that on redeem, we rounding down
withdrawCollateral += ISilo(collateralConfig.silo).redeem({
_shares: params.protectedShares,
_receiver: msg.sender,
_owner: address(this),
_collateralType: ISilo.CollateralType.Protected
});
}
}
}
emit LiquidationCall(
msg.sender,
debtConfig.silo,
_borrower,
repayDebtAssets,
withdrawCollateral,
_receiveSToken
);
}
/// @inheritdoc IPartialLiquidation
function maxLiquidation(address _borrower)
external
view
virtual
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
{
return PartialLiquidationExecLib.maxLiquidation(siloConfig, _borrower);
}
function _fetchConfigs(
ISiloConfig _siloConfigCached,
address _collateralAsset,
address _debtAsset,
address _borrower
)
internal
virtual
returns (
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
)
{
(collateralConfig, debtConfig) = _siloConfigCached.getConfigsForSolvency(_borrower);
require(debtConfig.silo != address(0), UserIsSolvent());
require(_collateralAsset == collateralConfig.token, UnexpectedCollateralToken());
require(_debtAsset == debtConfig.token, UnexpectedDebtToken());
ISilo(debtConfig.silo).accrueInterest();
if (collateralConfig.silo != debtConfig.silo) {
ISilo(collateralConfig.silo).accrueInterest();
collateralConfig.callSolvencyOracleBeforeQuote();
debtConfig.callSolvencyOracleBeforeQuote();
}
}
function _callShareTokenForwardTransferNoChecks(
address _silo,
address _borrower,
address _receiver,
uint256 _withdrawAssets,
address _shareToken,
ISilo.AssetType _assetType
) internal virtual returns (uint256 shares) {
if (_withdrawAssets == 0) return 0;
shares = SiloMathLib.convertToShares(
_withdrawAssets,
ISilo(_silo).getTotalAssetsStorage(_assetType),
IShareToken(_shareToken).totalSupply(),
Rounding.LIQUIDATE_TO_SHARES,
ISilo.AssetType(_assetType)
);
if (shares == 0) return 0;
IShareToken(_shareToken).forwardTransferFromNoChecks(_borrower, _receiver, shares);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol";
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {IHookReceiver} from "silo-core/contracts/interfaces/IHookReceiver.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
abstract contract BaseHookReceiver is IHookReceiver, Initializable {
ISiloConfig public siloConfig;
mapping(address silo => HookConfig) private _hookConfig;
modifier onlySilo() {
require(_isSilo(msg.sender), OnlySilo());
_;
}
modifier onlySiloOrShareToken() {
require(_isSiloOrShareToken(msg.sender), OnlySiloOrShareToken());
_;
}
constructor() {
_disableInitializers();
}
/// @inheritdoc IHookReceiver
function hookReceiverConfig(address _silo)
external
view
virtual
returns (uint24 hooksBefore, uint24 hooksAfter)
{
(hooksBefore, hooksAfter) = _hookReceiverConfig(_silo);
}
/// @notice Set the silo config
/// @param _config Silo config
function __BaseHookReceiver_init(ISiloConfig _config)
internal
onlyInitializing
virtual
{
require(address(_config) != address(0), EmptySiloConfig());
require(address(siloConfig) == address(0), AlreadyConfigured());
siloConfig = _config;
}
/// @notice Set the hook config
/// @param _silo Silo address
/// @param _hooksBefore Hooks before
/// @param _hooksAfter Hooks after
function _setHookConfig(address _silo, uint24 _hooksBefore, uint24 _hooksAfter) internal virtual {
_hookConfig[_silo] = HookConfig(_hooksBefore, _hooksAfter);
emit HookConfigured(_silo, _hooksBefore, _hooksAfter);
ISilo(_silo).updateHooks();
}
/// @notice Get the hook config
/// @param _silo Silo address
/// @return hooksBefore Hooks before
/// @return hooksAfter Hooks after
function _hookReceiverConfig(address _silo) internal view virtual returns (uint24 hooksBefore, uint24 hooksAfter) {
HookConfig memory hookConfig = _hookConfig[_silo];
hooksBefore = hookConfig.hooksBefore;
hooksAfter = hookConfig.hooksAfter;
}
/// @notice Get the hooks before
/// @param _silo Silo address
/// @return hooksBefore Hooks before
function _getHooksBefore(address _silo) internal view virtual returns (uint256 hooksBefore) {
hooksBefore = _hookConfig[_silo].hooksBefore;
}
/// @notice Get the hooks after
/// @param _silo Silo address
/// @return hooksAfter Hooks after
function _getHooksAfter(address _silo) internal view virtual returns (uint256 hooksAfter) {
hooksAfter = _hookConfig[_silo].hooksAfter;
}
/// @notice Check if the address is a Silo
/// @param _addr Address to check
/// @return result True if the address is a Silo, false otherwise
function _isSilo(address _addr) internal view virtual returns (bool result) {
(address silo0, address silo1) = siloConfig.getSilos();
result = _addr == silo0 || _addr == silo1;
}
/// @notice Check if the address is a Silo or a share token
/// @param _addr Address to check
/// @return result True if the address is a Silo or a share token, false otherwise
function _isSiloOrShareToken(address _addr) internal view virtual returns (bool result) {
(address silo0, address silo1) = siloConfig.getSilos();
if (_addr == silo0 || _addr == silo1) return true;
address protectedCollateralShareToken;
address debtShareToken;
(protectedCollateralShareToken,, debtShareToken) = siloConfig.getShareTokens(silo0);
if (_addr == protectedCollateralShareToken || _addr == debtShareToken) return true;
(protectedCollateralShareToken,, debtShareToken) = siloConfig.getShareTokens(silo1);
if (_addr == protectedCollateralShareToken || _addr == debtShareToken) return true;
return false;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";
import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
/// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
/// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
/// to make a decision inside functions if interest should be accrued in memory to work on updated values.
enum AccrueInterestInMemory {
No,
Yes
}
/// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
/// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
/// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
/// because it's used as denominator for ETH and it's "price" can be assume as 1.
enum OracleType {
Solvency,
MaxLtv
}
/// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
/// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum AssetType {
Protected, // default
Collateral,
Debt
}
/// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
/// for borrowable collateral deposit called "collateral". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum CollateralType {
Protected, // default
Collateral
}
/// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
enum CallType {
Call, // default
Delegatecall
}
/// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
/// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
/// @param _receiver Address receiving the withdrawn assets
/// @param _owner Address of the owner of the shares being burned
/// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
/// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
struct WithdrawArgs {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
ISilo.CollateralType collateralType;
}
/// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
/// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
/// assets are provided.
/// @param receiver Address that will receive the borrowed assets
/// @param borrower The user who is borrowing the assets
struct BorrowArgs {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
}
/// @param shares Amount of shares the user wishes to transit.
/// @param owner owner of the shares after transition.
/// @param transitionFrom type of collateral that will be transitioned.
struct TransitionCollateralArgs {
uint256 shares;
address owner;
ISilo.CollateralType transitionFrom;
}
struct UtilizationData {
/// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
uint256 collateralAssets;
/// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
uint256 debtAssets;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
}
/// @dev Interest and revenue may be rounded down to zero if the underlying token's decimal is low.
/// Because of that, we need to store fractions for further calculation to minimize losses.
struct Fractions {
/// @dev interest value that we could not convert to full token in 36 decimals, max value for it is 1e18.
/// this value was not yet apply as interest for borrowers
uint64 interest;
/// @dev revenue value that we could not convert to full token in 36 decimals, max value for it is 1e18.
uint64 revenue;
}
struct SiloStorage {
/// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
/// but not yet withdrawn
uint192 daoAndDeployerRevenue;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
/// @dev Interest and revenue fractions for more precise calculations
Fractions fractions;
/// @dev silo is just for one asset,
/// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
/// Assets based on type:
/// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
/// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
/// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
/// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
/// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
/// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
mapping(AssetType assetType => uint256 assets) totalAssets;
}
/// @notice Emitted on protected deposit
/// @param sender wallet address that deposited asset
/// @param owner wallet address that received shares in Silo
/// @param assets amount of asset that was deposited
/// @param shares amount of shares that was minted
event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice Emitted on protected withdraw
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owned asset
/// @param assets amount of asset that was withdrew
/// @param shares amount of shares that was burn
event WithdrawProtected(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on borrow
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owes assets
/// @param assets amount of asset that was borrowed
/// @param shares amount of shares that was minted
event Borrow(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on repayment
/// @param sender wallet address that repaid asset
/// @param owner wallet address that owed asset
/// @param assets amount of asset that was repaid
/// @param shares amount of shares that was burn
event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice emitted only when collateral has been switched to other one
event CollateralTypeChanged(address indexed borrower);
event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);
event AccruedInterest(uint256 hooksBefore);
event FlashLoan(uint256 amount);
event WithdrawnFees(uint256 daoFees, uint256 deployerFees, bool redirectedDeployerFees);
event DeployerFeesRedirected(uint256 deployerFees);
error UnsupportedFlashloanToken();
error FlashloanAmountTooBig();
error NothingToWithdraw();
error ProtectedProtection();
error NotEnoughLiquidity();
error NotSolvent();
error BorrowNotPossible();
error EarnedZero();
error FlashloanFailed();
error AboveMaxLtv();
error SiloInitialized();
error OnlyHookReceiver();
error NoLiquidity();
error InputCanBeAssetsOrShares();
error CollateralSiloAlreadySet();
error RepayTooHigh();
error ZeroAmount();
error InputZeroShares();
error ReturnZeroAssets();
error ReturnZeroShares();
/// @return siloFactory The associated factory of the silo
function factory() external view returns (ISiloFactory siloFactory);
/// @notice Method for HookReceiver only to call on behalf of Silo
/// @param _target address of the contract to call
/// @param _value amount of ETH to send
/// @param _callType type of the call (Call or Delegatecall)
/// @param _input calldata for the call
function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
external
payable
returns (bool success, bytes memory result);
/// @notice Initialize Silo
/// @param _siloConfig address of ISiloConfig with full config for this Silo
function initialize(ISiloConfig _siloConfig) external;
/// @notice Update hooks configuration for Silo
/// @dev This function must be called after the hooks configuration is changed in the hook receiver
function updateHooks() external;
/// @notice Fetches the silo configuration contract
/// @return siloConfig Address of the configuration contract associated with the silo
function config() external view returns (ISiloConfig siloConfig);
/// @notice Fetches the utilization data of the silo used by IRM
function utilizationData() external view returns (UtilizationData memory utilizationData);
/// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
/// @return liquidity The amount of liquidity
function getLiquidity() external view returns (uint256 liquidity);
/// @notice Determines if a borrower is solvent
/// @param _borrower Address of the borrower to check for solvency
/// @return True if the borrower is solvent, otherwise false
function isSolvent(address _borrower) external view returns (bool);
/// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);
/// @notice Direct storage access to silo storage
/// @dev See struct `SiloStorage` for more details
function getSiloStorage()
external
view
returns (
uint192 daoAndDeployerRevenue,
uint64 interestRateTimestamp,
uint256 protectedAssets,
uint256 collateralAssets,
uint256 debtAssets
);
/// @notice Direct access to silo storage fractions variables
function getFractionsStorage() external view returns (Fractions memory fractions);
/// @notice Retrieves the total amount of collateral (borrowable) assets with interest
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
function getCollateralAssets() external view returns (uint256 totalCollateralAssets);
/// @notice Retrieves the total amount of debt assets with interest
/// @return totalDebtAssets The total amount of assets of type 'Debt'
function getDebtAssets() external view returns (uint256 totalDebtAssets);
/// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
function getCollateralAndProtectedTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);
/// @notice Retrieves the total amounts of collateral and debt assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalDebtAssets The total amount of debt assets of type 'Debt'
function getCollateralAndDebtTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);
/// @notice Implements IERC4626.convertToShares for each asset type
function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);
/// @notice Implements IERC4626.convertToAssets for each asset type
function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);
/// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);
/// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);
/// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);
/// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrow(address _borrower) external view returns (uint256 maxAssets);
/// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
/// @param _assets Amount of assets to preview the equivalent shares for
/// @return shares Amount of shares equivalent to the provided asset amount
function previewBorrow(uint256 _assets) external view returns (uint256 shares);
/// @notice Allows an address to borrow a specified amount of assets
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrow(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Calculates the maximum amount of shares that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxShares Maximum number of shares that the borrower can borrow
function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);
/// @notice Previews the amount of assets equivalent to the given share amount for borrowing
/// @param _shares Amount of shares to preview the equivalent assets for
/// @return assets Amount of assets equivalent to the provided share amount
function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);
/// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the
/// same asset
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Allows a user to borrow assets based on the provided share amount
/// @param _shares Amount of shares to borrow against
/// @param _receiver Address to receive the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return assets Amount of assets borrowed
function borrowShares(uint256 _shares, address _receiver, address _borrower)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount an address can repay based on their debt shares
/// @param _borrower Address of the borrower
/// @return assets Maximum amount of assets the borrower can repay
function maxRepay(address _borrower) external view returns (uint256 assets);
/// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
/// @param _assets Amount of assets to be repaid
/// @return shares Estimated number of shares equivalent to the provided asset amount
function previewRepay(uint256 _assets) external view returns (uint256 shares);
/// @notice Repays a given asset amount and returns the equivalent number of shares
/// @param _assets Amount of assets to be repaid
/// @param _borrower Address of the borrower whose debt is being repaid
/// @return shares The equivalent number of shares for the provided asset amount
function repay(uint256 _assets, address _borrower) external returns (uint256 shares);
/// @notice Calculates the maximum number of shares that can be repaid for a given borrower
/// @param _borrower Address of the borrower
/// @return shares The maximum number of shares that can be repaid for the borrower
function maxRepayShares(address _borrower) external view returns (uint256 shares);
/// @notice Provides a preview of the equivalent assets for a given number of shares to repay
/// @param _shares Number of shares to preview repayment for
/// @return assets Equivalent assets for the provided shares
function previewRepayShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Allows a user to repay a loan using shares instead of assets
/// @param _shares The number of shares the borrower wants to repay with
/// @param _borrower The address of the borrower for whom to repay the loan
/// @return assets The equivalent assets amount for the provided shares
function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);
/// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
/// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
/// leaving the protocol
/// @param _shares Amount of shares to be transitioned
/// @param _owner Owner of the assets being transitioned
/// @param _transitionFrom Specifies if the transition is from collateral or protected assets
/// @return assets Amount of assets transitioned
function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
external
returns (uint256 assets);
/// @notice Switches the collateral silo to this silo
/// @dev Revert if the collateral silo is already set
function switchCollateralToThisSilo() external;
/// @notice Accrues interest for the asset and returns the accrued interest amount
/// @return accruedInterest The total interest accrued during this operation
function accrueInterest() external returns (uint256 accruedInterest);
/// @notice only for SiloConfig
function accrueInterestForConfig(
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) external;
/// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
function withdrawFees() external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ICrossReentrancyGuard {
error CrossReentrantCall();
error CrossReentrancyNotActive();
/// @notice only silo method for cross Silo reentrancy
function turnOnReentrancyProtection() external;
/// @notice only silo method for cross Silo reentrancy
function turnOffReentrancyProtection() external;
/// @notice view method for checking cross Silo reentrancy flag
/// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
/// `nonReentrant` function in the call stack.
function reentrancyGuardEntered() external view returns (bool entered);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Ownable2Step, Ownable} from "openzeppelin5/access/Ownable2Step.sol";
/// @dev This contract is a wrapper around Ownable2Step that allows for 1-step ownership transfer
abstract contract Ownable1and2Steps is Ownable2Step {
constructor(address _initialOwner) Ownable(_initialOwner) {}
/// @notice Transfer ownership to a new address. Pending ownership transfer will be canceled.
/// @param newOwner The new owner of the contract
function transferOwnership1Step(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
Ownable2Step._transferOwnership(newOwner);
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISilo} from "./ISilo.sol";
interface IShareToken is IERC20Metadata {
struct HookSetup {
/// @param this is the same as in siloConfig
address hookReceiver;
/// @param hooks bitmap
uint24 hooksBefore;
/// @param hooks bitmap
uint24 hooksAfter;
/// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN
uint24 tokenType;
}
struct ShareTokenStorage {
/// @notice Silo address for which tokens was deployed
ISilo silo;
/// @dev cached silo config address
ISiloConfig siloConfig;
/// @notice Copy of hooks setup from SiloConfig for optimisation purposes
HookSetup hookSetup;
bool transferWithChecks;
}
/// @notice Emitted every time receiver is notified about token transfer
/// @param notificationReceiver receiver address
/// @param success false if TX reverted on `notificationReceiver` side, otherwise true
event NotificationSent(address indexed notificationReceiver, bool success);
error OnlySilo();
error OnlySiloConfig();
error OwnerIsZero();
error RecipientIsZero();
error AmountExceedsAllowance();
error RecipientNotSolventAfterTransfer();
error SenderNotSolventAfterTransfer();
error ZeroTransfer();
/// @notice method for SiloConfig to synchronize hooks
/// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action
/// @param _hooksAfter hooks bitmap to trigger hooks AFTER action
function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external;
/// @notice Mint method for Silo to create debt
/// @param _owner wallet for which to mint token
/// @param _spender wallet that asks for mint
/// @param _amount amount of token to be minted
function mint(address _owner, address _spender, uint256 _amount) external;
/// @notice Burn method for Silo to close debt
/// @param _owner wallet for which to burn token
/// @param _spender wallet that asks for burn
/// @param _amount amount of token to be burned
function burn(address _owner, address _spender, uint256 _amount) external;
/// @notice TransferFrom method for liquidation
/// @param _from wallet from which we transferring tokens
/// @param _to wallet that will get tokens
/// @param _amount amount of token to transfer
function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external;
/// @dev Returns the amount of tokens owned by `account`.
/// @param _account address for which to return data
/// @return balance of the _account
/// @return totalSupply total supply of the token
function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply);
/// @notice Returns silo address for which token was deployed
/// @return silo address
function silo() external view returns (ISilo silo);
function siloConfig() external view returns (ISiloConfig silo);
/// @notice Returns hook setup
function hookSetup() external view returns (HookSetup memory);
/// @notice Returns hook receiver address
function hookReceiver() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IPartialLiquidation {
struct HookSetup {
/// @param this is the same as in siloConfig
address hookReceiver;
/// @param hooks bitmap
uint24 hooksBefore;
/// @param hooks bitmap
uint24 hooksAfter;
}
/// @dev Emitted when a borrower is liquidated.
/// @param liquidator The address of the liquidator
/// @param silo The address of the silo on which position was liquidated
/// @param borrower The address of the borrower
/// @param repayDebtAssets Repay amount
/// @param withdrawCollateral Total (collateral + protected) withdraw amount, in case `receiveSToken` is TRUE
/// then this is estimated withdraw, and representation of this amount in sToken was transferred
/// @param receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
/// to receive the underlying collateral asset directly
event LiquidationCall(
address indexed liquidator,
address indexed silo,
address indexed borrower,
uint256 repayDebtAssets,
uint256 withdrawCollateral,
bool receiveSToken
);
error UnexpectedCollateralToken();
error UnexpectedDebtToken();
error NoDebtToCover();
error FullLiquidationRequired();
error UserIsSolvent();
error UnknownRatio();
error NoRepayAssets();
/// @notice Function to liquidate insolvent position
/// - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives
/// an equivalent amount in `collateralAsset` plus a liquidation fee to cover market risk
/// @dev this method reverts when:
/// - `_maxDebtToCover` is zero
/// - `_collateralAsset` is not `_user` collateral token (note, that user can have both tokens in Silo, but only one
/// is for backing debt
/// - `_debtAsset` is not a token that `_user` borrow
/// - `_user` is solvent and there is no debt to cover
/// - `_maxDebtToCover` is set to cover only part of the debt but full liquidation is required
/// - when not enough liquidity to transfer from `_user` collateral to liquidator
/// (use `_receiveSToken == true` in that case)
/// @param _collateralAsset The address of the underlying asset used as collateral, to receive as result
/// @param _debtAsset The address of the underlying borrowed asset to be repaid with the liquidation
/// @param _user The address of the borrower getting liquidated
/// @param _maxDebtToCover The maximum debt amount of borrowed `asset` the liquidator wants to cover,
/// in case this amount is too big, it will be reduced to maximum allowed liquidation amount
/// @param _receiveSToken True if the liquidators wants to receive the collateral sTokens, `false` if he wants
/// to receive the underlying collateral asset directly
/// @return withdrawCollateral collateral that was send to `msg.sender`, in case of `_receiveSToken` is TRUE,
/// `withdrawCollateral` will be estimated, on redeem one can expect this value to be rounded down
/// @return repayDebtAssets actual debt value that was repaid by `msg.sender`
function liquidationCall(
address _collateralAsset,
address _debtAsset,
address _user,
uint256 _maxDebtToCover,
bool _receiveSToken
)
external
returns (uint256 withdrawCollateral, uint256 repayDebtAssets);
/// @dev debt is keep growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
/// @return collateralToLiquidate underestimated amount of collateral liquidator will get
/// @return debtToRepay debt amount needed to be repay to get `collateralToLiquidate`
/// @return sTokenRequired TRUE, when liquidation with underlying asset is not possible because of not enough
/// liquidity
function maxLiquidation(address _borrower)
external
view
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired);
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {ISilo} from "../interfaces/ISilo.sol";
// solhint-disable private-vars-leading-underscore
library Hook {
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
struct BeforeDepositInput {
uint256 assets;
uint256 shares;
address receiver;
}
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
/// @param receivedAssets The exact amount of assets being deposited
/// @param mintedShares The exact amount of shares being minted
struct AfterDepositInput {
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
struct BeforeWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
/// @param withdrawnAssets The exact amount of assets being withdrawn
/// @param withdrawnShares The exact amount of shares being withdrawn
struct AfterWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
}
/// @notice The data structure for the share token transfer hook
/// @param sender The sender of the transfer (address(0) on mint)
/// @param recipient The recipient of the transfer (address(0) on burn)
/// @param amount The amount of tokens transferred/minted/burned
/// @param senderBalance The balance of the sender after the transfer (empty on mint)
/// @param recipientBalance The balance of the recipient after the transfer (empty on burn)
/// @param totalSupply The total supply of the share token
struct AfterTokenTransfer {
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
}
/// @notice The data structure for the before borrow hook
/// @param assets The amount of assets to borrow
/// @param shares The amount of shares to borrow
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param _spender Address which initiates the borrowing action on behalf of the borrower
struct BeforeBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
}
/// @notice The data structure for the after borrow hook
/// @param assets The amount of assets borrowed
/// @param shares The amount of shares borrowed
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param spender Address which initiates the borrowing action on behalf of the borrower
/// @param borrowedAssets The exact amount of assets being borrowed
/// @param borrowedShares The exact amount of shares being borrowed
struct AfterBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
}
/// @notice The data structure for the before repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
struct BeforeRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
}
/// @notice The data structure for the after repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
/// @param repaidAssets The exact amount of assets being repaid
/// @param repaidShares The exact amount of shares being repaid
struct AfterRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
}
/// @notice The data structure for the before flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Requested amount of tokens
struct BeforeFlashLoanInput {
address receiver;
address token;
uint256 amount;
}
/// @notice The data structure for the after flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Received amount of tokens
/// @param fee The flash loan fee
struct AfterFlashLoanInput {
address receiver;
address token;
uint256 amount;
uint256 fee;
}
/// @notice The data structure for the before transition collateral hook
/// @param shares The amount of shares to transition
struct BeforeTransitionCollateralInput {
uint256 shares;
address owner;
}
/// @notice The data structure for the after transition collateral hook
/// @param shares The amount of shares to transition
struct AfterTransitionCollateralInput {
uint256 shares;
address owner;
uint256 assets;
}
/// @notice The data structure for the switch collateral hook
/// @param user The user switching collateral
struct SwitchCollateralInput {
address user;
}
/// @notice Supported hooks
/// @dev The hooks are stored as a bitmap and can be combined with bitwise OR
uint256 internal constant NONE = 0;
uint256 internal constant DEPOSIT = 2 ** 1;
uint256 internal constant BORROW = 2 ** 2;
uint256 internal constant BORROW_SAME_ASSET = 2 ** 3;
uint256 internal constant REPAY = 2 ** 4;
uint256 internal constant WITHDRAW = 2 ** 5;
uint256 internal constant FLASH_LOAN = 2 ** 6;
uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7;
uint256 internal constant SWITCH_COLLATERAL = 2 ** 8;
uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10;
uint256 internal constant COLLATERAL_TOKEN = 2 ** 11;
uint256 internal constant PROTECTED_TOKEN = 2 ** 12;
uint256 internal constant DEBT_TOKEN = 2 ** 13;
// note: currently we can support hook value up to 2 ** 23,
// because for optimisation purposes, we storing hooks as uint24
// For decoding packed data
uint256 private constant PACKED_ADDRESS_LENGTH = 20;
uint256 private constant PACKED_FULL_LENGTH = 32;
uint256 private constant PACKED_ENUM_LENGTH = 1;
uint256 private constant PACKED_BOOL_LENGTH = 1;
error FailedToParseBoolean();
error InvalidTokenType();
/// @notice Checks if the action has a specific hook
/// @param _action The action
/// @param _expectedHook The expected hook
/// @dev The function returns true if the action has the expected hook.
/// As hooks actions can be combined with bitwise OR, the following examples are valid:
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true`
function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) {
return (_action & _expectedHook) == _expectedHook;
}
/// @notice Adds a hook to an action
/// @param _action The action
/// @param _newAction The new hook to be added
function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) {
return _action | _newAction;
}
/// @dev please be careful with removing actions, because other hooks might using them
/// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER`
/// and you want to remove action on protected token transfer by doing
/// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN`
/// and it will not trigger collateral token transfer. In this example you should do:
/// `remove(_action, PROTECTED_TOKEN)`
function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) {
return _action & (~_actionToRemove);
}
/// @notice Returns the action for depositing a specific collateral type
/// @param _type The collateral type
function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for withdrawing a specific collateral type
/// @param _type The collateral type
function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for collateral transition
/// @param _type The collateral type
function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the share token transfer action
/// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN)
function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) {
require(
_tokenType == COLLATERAL_TOKEN || _tokenType == PROTECTED_TOKEN || _tokenType == DEBT_TOKEN,
InvalidTokenType()
);
return SHARE_TOKEN_TRANSFER | _tokenType;
}
/// @dev Decodes packed data from the share token after the transfer hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTokenTransferDecode(bytes memory packed)
internal
pure
returns (AfterTokenTransfer memory input)
{
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
sender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
recipient := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
senderBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
recipientBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
totalSupply := mload(add(packed, pointer))
}
input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeDepositDecode(bytes memory packed)
internal
pure
returns (BeforeDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
}
input = BeforeDepositInput(assets, shares, receiver);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterDepositDecode(bytes memory packed)
internal
pure
returns (AfterDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
receivedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
mintedShares := mload(add(packed, pointer))
}
input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeWithdrawDecode(bytes memory packed)
internal
pure
returns (BeforeWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeWithdrawInput(assets, shares, receiver, owner, spender);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterWithdrawDecode(bytes memory packed)
internal
pure
returns (AfterWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnShares := mload(add(packed, pointer))
}
input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares);
}
/// @dev Decodes packed data from the before borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeBorrowDecode(bytes memory packed)
internal
pure
returns (BeforeBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeBorrowInput(assets, shares, receiver, borrower, spender);
}
/// @dev Decodes packed data from the after borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterBorrowDecode(bytes memory packed)
internal
pure
returns (AfterBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedShares := mload(add(packed, pointer))
}
input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares);
}
/// @dev Decodes packed data from the before repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeRepayDecode(bytes memory packed)
internal
pure
returns (BeforeRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
}
input = BeforeRepayInput(assets, shares, borrower, repayer);
}
/// @dev Decodes packed data from the after repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterRepayDecode(bytes memory packed)
internal
pure
returns (AfterRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidShares := mload(add(packed, pointer))
}
input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeFlashLoanDecode(bytes memory packed)
internal
pure
returns (BeforeFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
}
input = BeforeFlashLoanInput(receiver, token, amount);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterFlashLoanDecode(bytes memory packed)
internal
pure
returns (AfterFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
uint256 fee;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
fee := mload(add(packed, pointer))
}
input = AfterFlashLoanInput(receiver, token, amount, fee);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (BeforeTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
}
input = BeforeTransitionCollateralInput(shares, owner);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (AfterTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
uint256 assets;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
assets := mload(add(packed, pointer))
}
input = AfterTransitionCollateralInput(shares, owner, assets);
}
/// @dev Decodes packed data from the switch collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function switchCollateralDecode(bytes memory packed)
internal
pure
returns (SwitchCollateralInput memory input)
{
address user;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
user := mload(add(packed, pointer))
}
input = SwitchCollateralInput(user);
}
/// @dev Converts a uint8 to a boolean
function _toBoolean(uint8 _value) internal pure returns (bool result) {
if (_value == 0) {
result = false;
} else if (_value == 1) {
result = true;
} else {
revert FailedToParseBoolean();
}
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
import {IDistributionManager} from "./IDistributionManager.sol";
import {DistributionTypes} from "../lib/DistributionTypes.sol";
interface ISiloIncentivesController is IDistributionManager {
event ClaimerSet(address indexed user, address indexed claimer);
event IncentivesProgramCreated(string name);
event IncentivesProgramUpdated(string name);
event RewardsAccrued(
address indexed user,
address indexed rewardToken,
string indexed programName,
uint256 amount
);
event RewardsClaimed(
address indexed user,
address indexed to,
address indexed rewardToken,
bytes32 programId,
address claimer,
uint256 amount
);
error InvalidDistributionEnd();
error InvalidConfiguration();
error IndexOverflowAtEmissionsPerSecond();
error InvalidToAddress();
error InvalidUserAddress();
error ClaimerUnauthorized();
error InvalidRewardToken();
error IncentivesProgramAlreadyExists();
error IncentivesProgramNotFound();
error DifferentRewardsTokens();
error EmissionPerSecondTooHigh();
error EmptyShareToken();
/**
* @dev Silo share token event handler
* @param _sender The address of the sender
* @param _senderBalance The balance of the sender
* @param _recipient The address of the recipient
* @param _recipientBalance The balance of the recipient
* @param _totalSupply The total supply of the asset in the lending pool
* @param _amount The amount of the transfer
*/
function afterTokenTransfer(
address _sender,
uint256 _senderBalance,
address _recipient,
uint256 _recipientBalance,
uint256 _totalSupply,
uint256 _amount
) external;
/**
* @dev Immediately distributes rewards to the incentives program
* Expect an `_amount` to be transferred to the contract before calling this fn
* @param _tokenToDistribute The token to distribute
* @param _amount The amount of rewards to distribute
*/
function immediateDistribution(address _tokenToDistribute, uint104 _amount) external;
/// @dev It will transfer all the reward token balance to the owner.
/// @param _rewardToken The reward token to rescue
function rescueRewards(address _rewardToken) external;
/**
* @dev Whitelists an address to claim the rewards on behalf of another address
* @param _user The address of the user
* @param _claimer The address of the claimer
*/
function setClaimer(address _user, address _claimer) external;
/**
* @dev Creates a new incentives program
* @param _incentivesProgramInput The incentives program creation input
*/
function createIncentivesProgram(DistributionTypes.IncentivesProgramCreationInput memory _incentivesProgramInput)
external;
/**
* @dev Updates an existing incentives program
* @param _incentivesProgram The incentives program name
* @param _distributionEnd The distribution end
* @param _emissionPerSecond The emission per second
*/
function updateIncentivesProgram(
string calldata _incentivesProgram,
uint40 _distributionEnd,
uint104 _emissionPerSecond
) external;
/**
* @dev Claims reward for an user to the desired address, on all the assets of the lending pool,
* accumulating the pending rewards
* @param _to Address that will be receiving the rewards
* @return accruedRewards
*/
function claimRewards(address _to) external returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Claims reward for an user to the desired address, on all the assets of the lending pool,
* accumulating the pending rewards
* @param _to Address that will be receiving the rewards
* @param _programNames The incentives program names
* @return accruedRewards
*/
function claimRewards(address _to, string[] calldata _programNames)
external
returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Claims reward for an user on behalf, on all the assets of the lending pool, accumulating the pending
* rewards. The caller must be whitelisted via "allowClaimOnBehalf" function by the RewardsAdmin role manager
* @param _user Address to check and claim rewards
* @param _to Address that will be receiving the rewards
* @param _programNames The incentives program names
* @return accruedRewards
*/
function claimRewardsOnBehalf(address _user, address _to, string[] calldata _programNames)
external
returns (AccruedRewards[] memory accruedRewards);
/**
* @dev Returns the whitelisted claimer for a certain address (0x0 if not set)
* @param _user The address of the user
* @return The claimer address
*/
function getClaimer(address _user) external view returns (address);
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param _user The address of the user
* @param _programName The incentives program name
* @return unclaimedRewards
*/
function getRewardsBalance(address _user, string calldata _programName)
external
view
returns (uint256 unclaimedRewards);
/**
* @dev Returns the total of rewards of an user, already accrued + not yet accrued
* @param _user The address of the user
* @param _programNames The incentives program names (should have the same rewards token)
* @return unclaimedRewards
*/
function getRewardsBalance(address _user, string[] calldata _programNames)
external
view
returns (uint256 unclaimedRewards);
/**
* @dev returns the unclaimed rewards of the user
* @param _user the address of the user
* @param _programName The incentives program name
* @return the unclaimed user rewards
*/
function getUserUnclaimedRewards(address _user, string calldata _programName) external view returns (uint256);
/// @notice Returns the Silo share token address
/// @return shareToken Address of the Silo share token
function SHARE_TOKEN() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IShareToken} from "./IShareToken.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
import {ISiloIncentivesController} from "silo-core/contracts/incentives/interfaces/ISiloIncentivesController.sol";
/// @notice Silo share token hook receiver for the gauge
interface IGaugeHookReceiver is IHookReceiver {
/// @dev Emit when the new gauge is configured
/// @param gauge Gauge for which hook receiver will send notification about the share token balance updates.
/// @param shareToken Share token.
event GaugeConfigured(address gauge, address shareToken);
/// @dev Emit when the gauge is removed
/// @param shareToken Share token for which the gauge was removed
event GaugeRemoved(address shareToken);
/// @dev Revert on an attempt to initialize with a zero `_owner` address
error OwnerIsZeroAddress();
/// @dev Revert on an attempt to initialize with an invalid `_shareToken` address
error InvalidShareToken();
/// @dev Revert on an attempt to setup a `_gauge` with a different `_shareToken`
/// than hook receiver were initialized
error WrongGaugeShareToken();
/// @dev Revert on an attempt to remove a `gauge` that still can mint SILO tokens
error CantRemoveActiveGauge();
/// @dev Revert on an attempt to set a gauge with a zero address
error EmptyGaugeAddress();
/// @dev Revert if the hook received `beforeAction` notification
error RequestNotSupported();
/// @dev Revert on an attempt to remove not configured gauge
error GaugeIsNotConfigured();
/// @dev Revert on an attempt to configure already configured gauge
error GaugeAlreadyConfigured();
/// @notice Configuration of the gauge
/// for which the hook receiver should send notifications about the share token balance updates.
/// The `_gauge` can be updated by an owner (DAO)
/// @dev Overrides existing configuration
/// @param _shareToken Share token for which the gauge is configured
/// @param _gauge Array of gauges for which hook receiver will send notification.
function setGauge(ISiloIncentivesController _gauge, IShareToken _shareToken) external;
/// @notice Remove the gauge from the hook receiver for the share token
/// @dev While removing the gauge,
/// we do not remove the action because we don't know if any other hook is using it.
/// @param _shareToken Share token for which the gauge needs to be removed
function removeGauge(IShareToken _shareToken) external;
/// @notice Get the gauge for the share token
/// @param _shareToken Share token
function configuredGauges(IShareToken _shareToken) external view returns (ISiloIncentivesController);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {Rounding} from "../lib/Rounding.sol";
import {ISilo} from "../interfaces/ISilo.sol";
library SiloMathLib {
using Math for uint256;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _DECIMALS_OFFSET = 3;
/// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset
uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET;
/// @notice Returns available liquidity to be borrowed
/// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The
/// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable
/// liquidity.
function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) {
unchecked {
// we checked the underflow
liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets;
}
}
/// @notice Calculate collateral assets with accrued interest and associated fees
/// @param _collateralAssets The total amount of collateral assets
/// @param _debtAssets The total amount of debt assets
/// @param _rcomp Compound interest rate for debt
/// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO
/// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer
/// @return collateralAssetsWithInterest The total collateral assets including the accrued interest
/// @return debtAssetsWithInterest The debt assets with accrued interest
/// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer
/// @return accruedInterest The total accrued interest
function getCollateralAmountsWithInterest(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _rcomp,
uint256 _daoFee,
uint256 _deployerFee
)
internal
pure
returns (
uint256 collateralAssetsWithInterest,
uint256 debtAssetsWithInterest,
uint256 daoAndDeployerRevenue,
uint256 accruedInterest
)
{
(debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp);
uint256 fees;
// _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow
unchecked { fees = _daoFee + _deployerFee; }
daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS);
// we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest
uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue;
uint256 cap;
// save to uncheck because variable can not be more than max
unchecked { cap = type(uint256).max - _collateralAssets; }
if (cap < collateralInterest) {
// avoid overflow on interest
collateralInterest = cap;
}
// safe to uncheck because of cap
unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; }
}
/// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow
/// @param _totalDebtAssets The total amount of debt assets before accrued interest
/// @param _rcomp Compound interest rate for the debt in 18 decimal precision
/// @return debtAssetsWithInterest The debt assets including the accrued interest
/// @return accruedInterest The total amount of interest accrued on the debt assets
function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp)
internal
pure
returns (uint256 debtAssetsWithInterest, uint256 accruedInterest)
{
if (_totalDebtAssets == 0 || _rcomp == 0) {
return (_totalDebtAssets, 0);
}
accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS);
unchecked {
// We intentionally allow overflow here, to prevent transaction revert due to interest calculation.
debtAssetsWithInterest = _totalDebtAssets + accruedInterest;
// If overflow occurs, we skip accruing interest.
if (debtAssetsWithInterest < _totalDebtAssets) {
debtAssetsWithInterest = _totalDebtAssets;
accruedInterest = 0;
}
}
}
/// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage
/// @dev It assumes `_dp` = 100%.
/// @param _dp decimal points used by model
/// @param _collateralAssets current total deposits for assets
/// @param _debtAssets current total borrows for assets
/// @return utilization value, capped to 100%
/// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations
/// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt.
function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets)
internal
pure
returns (uint256 utilization)
{
if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0;
/*
how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST):
1. max > _debtAssets * _dp / _collateralAssets
2. max / _dp > _debtAssets / _collateralAssets
*/
if (type(uint256).max / _dp > _debtAssets / _collateralAssets) {
utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST);
// cap at 100%
if (utilization > _dp) utilization = _dp;
} else {
// we have overflow
utilization = _dp;
}
}
function convertToAssetsOrToShares(
uint256 _assets,
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _roundingToAssets,
Math.Rounding _roundingToShares,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets, uint256 shares) {
if (_assets == 0) {
require(_shares != 0, ISilo.InputZeroShares());
shares = _shares;
assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType);
require(assets != 0, ISilo.ReturnZeroAssets());
} else if (_shares == 0) {
shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType);
assets = _assets;
require(shares != 0, ISilo.ReturnZeroShares());
} else {
revert ISilo.InputCanBeAssetsOrShares();
}
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares
function convertToShares(
uint256 _assets,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 shares) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo`
if (totalShares == 0) return _assets;
shares = _assets.mulDiv(totalShares, totalAssets, _rounding);
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets
function convertToAssets(
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because of `+1` in line above
if (totalShares == 0) return _shares;
assets = _shares.mulDiv(totalAssets, totalShares, _rounding);
}
/// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset
/// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected)
/// @param _borrowerDebtValue total value of borrower debt
/// @return maxBorrowValue max borrow value yet available for borrower
function calculateMaxBorrowValue(
uint256 _collateralMaxLtv,
uint256 _sumOfBorrowerCollateralValue,
uint256 _borrowerDebtValue
) internal pure returns (uint256 maxBorrowValue) {
if (_sumOfBorrowerCollateralValue == 0) {
return 0;
}
uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv(
_collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE
);
unchecked {
// we will not underflow because we checking `maxDebtValue > _borrowerDebtValue`
maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0;
}
}
/// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold
/// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower
/// @param _debtValue The total debt value of the borrower
/// @param _lt The liquidation threshold in 18 decimal points
/// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal
/// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal
/// @return maxAssets The maximum assets the borrower can safely withdraw
function calculateMaxAssetsToWithdraw(
uint256 _sumOfCollateralsValue,
uint256 _debtValue,
uint256 _lt,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets
) internal pure returns (uint256 maxAssets) {
if (_sumOfCollateralsValue == 0) return 0;
if (_debtValue == 0) return _sumOfCollateralsValue;
if (_lt == 0) return 0;
// using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent
uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV);
// if we over LT, we can not withdraw
if (_sumOfCollateralsValue <= minimumCollateralValue) {
return 0;
}
uint256 spareCollateralValue;
// safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)`
unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; }
maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets)
.mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS);
}
/// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw
/// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation
/// threshold
/// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower
/// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower
/// @param _collateralType Specifies whether the asset is of type Collateral or Protected
/// @param _totalAssets The entire quantity of assets available in the system for withdrawal
/// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type
/// @param _liquidity Current liquidity in the system for the asset type
/// @return assets Maximum assets the borrower can withdraw
/// @return shares Corresponding number of shares for the derived `assets` amount
function maxWithdrawToAssetsAndShares(
uint256 _maxAssets,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets,
ISilo.CollateralType _collateralType,
uint256 _totalAssets,
uint256 _assetTypeShareTokenTotalSupply,
uint256 _liquidity
) internal pure returns (uint256 assets, uint256 shares) {
if (_maxAssets == 0) return (0, 0);
if (_assetTypeShareTokenTotalSupply == 0) return (0, 0);
if (_collateralType == ISilo.CollateralType.Collateral) {
assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets;
if (assets > _liquidity) {
assets = _liquidity;
}
} else {
assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets;
}
shares = SiloMathLib.convertToShares(
assets,
_totalAssets,
_assetTypeShareTokenTotalSupply,
Rounding.MAX_WITHDRAW_TO_SHARES,
ISilo.AssetType(uint256(_collateralType))
);
}
/// @dev executed `_a * _b / _c`, reverts on _c == 0
/// @return mulDivResult on overflow returns 0
function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c)
internal
pure
returns (uint256 mulDivResult)
{
if (_a == 0) return (0);
unchecked {
// we have to uncheck to detect overflow
mulDivResult = _a * _b;
if (mulDivResult / _a != _b) return 0;
mulDivResult /= _c;
}
}
/// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for
/// itself. It should return actual result and round it up.
function _commonConvertTo(
uint256 _totalAssets,
uint256 _totalShares,
ISilo.AssetType _assetType
) private pure returns (uint256 totalShares, uint256 totalAssets) {
if (_totalShares == 0) {
// silo is empty and we have dust to redistribute: this can only happen when everyone exits silo
// this case can happen only for collateral, because for collateral we rounding in favorite of protocol
// by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state
_totalAssets = 0;
}
(totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt
? (_totalShares, _totalAssets)
: (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1);
}
/// @dev Calculates the fraction of a given total and percentage
/// @param _total The total value to calculate the fraction from
/// @param _percent The percentage to calculate the fraction from
/// @param _currentFraction The current fraction to add to the result
/// @return integral The integral part of the fraction
/// @return fraction The fractional part of the fraction
function calculateFraction(
uint256 _total,
uint256 _percent,
uint64 _currentFraction
) internal pure returns (uint256 integral, uint64 fraction) {
if (_total == 0) {
return (0, _currentFraction);
}
unchecked {
// safe to unchecked because: _currentFraction if never more than max uint256, div is safe
if (type(uint256).max / _total < _percent) {
// when overflow, reset `_currentFraction ` to zero as part of circuit breaker
return (0, 0);
}
// `_total * _percent` safe to unchecked because we checked for overflow in above `if`
// `% _PRECISION_DECIMALS` safe, because max value after modulo will be 1e18 - 1 (_PRECISION_DECIMALS - 1)
// and this is less than 2 ** 64
// calculate remainder for current interest
uint256 remainder = (_total * _percent) % _PRECISION_DECIMALS;
// integral is amount above 1e18 after adding _currentFraction and remainder
integral = (_currentFraction + remainder) / _PRECISION_DECIMALS;
// fraction is what we get below 1e18
fraction = uint64((_currentFraction + remainder) % _PRECISION_DECIMALS);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
// solhint-disable private-vars-leading-underscore
library Rounding {
Math.Rounding internal constant UP = Math.Rounding.Ceil;
Math.Rounding internal constant DOWN = Math.Rounding.Floor;
Math.Rounding internal constant DEBT_TO_ASSETS = Math.Rounding.Ceil;
// COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down)
Math.Rounding internal constant COLLATERAL_TO_ASSETS = Math.Rounding.Floor;
// why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down?
// DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens
// so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why
// different rounding policy
Math.Rounding internal constant DEPOSIT_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant DEPOSIT_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant BORROW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant BORROW_TO_SHARES = Math.Rounding.Ceil;
Math.Rounding internal constant MAX_BORROW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant MAX_BORROW_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant MAX_BORROW_VALUE = Math.Rounding.Floor;
Math.Rounding internal constant REPAY_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant REPAY_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant MAX_REPAY_TO_ASSETS = Math.Rounding.Ceil;
Math.Rounding internal constant WITHDRAW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant WITHDRAW_TO_SHARES = Math.Rounding.Ceil;
Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = Math.Rounding.Floor;
Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant LIQUIDATE_TO_SHARES = Math.Rounding.Floor;
Math.Rounding internal constant LTV = Math.Rounding.Ceil;
Math.Rounding internal constant ACCRUED_INTEREST = Math.Rounding.Floor;
Math.Rounding internal constant DAO_REVENUE = Math.Rounding.Ceil;
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
library RevertLib {
function revertBytes(bytes memory _errMsg, string memory _customErr) internal pure {
if (_errMsg.length > 0) {
assembly { // solhint-disable-line no-inline-assembly
revert(add(32, _errMsg), mload(_errMsg))
}
}
revert(_customErr);
}
function revertBytes(bytes memory _errMsg, bytes4 _customErrSelector) internal pure {
if (_errMsg.length > 0) {
assembly { // solhint-disable-line no-inline-assembly
revert(add(32, _errMsg), mload(_errMsg))
}
}
revertWithCustomError(_customErrSelector);
}
function revertIfError(bytes4 _errorSelector) internal pure {
if (_errorSelector == 0) return;
revertWithCustomError(_errorSelector);
}
function revertWithCustomError(bytes4 _errorSelector) internal pure {
bytes memory customError = abi.encodeWithSelector(_errorSelector);
assembly {
revert(add(32, customError), mload(customError))
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
library CallBeforeQuoteLib {
/// @dev Call `beforeQuote` on the `solvencyOracle` oracle
/// @param _config Silo config data
function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) {
ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token);
}
}
/// @dev Call `beforeQuote` on the `maxLtvOracle` oracle
/// @param _config Silo config data
function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) {
ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
import {ISiloConfig} from "silo-core/contracts/interfaces/ISiloConfig.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {SiloSolvencyLib} from "silo-core/contracts/lib/SiloSolvencyLib.sol";
import {PartialLiquidationLib} from "./PartialLiquidationLib.sol";
library PartialLiquidationExecLib {
/// @dev it will be user responsibility to check profit, this method expect interest to be already accrued
function getExactLiquidationAmounts(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _user,
uint256 _maxDebtToCover,
uint256 _liquidationFee
)
external
view
returns (
uint256 withdrawAssetsFromCollateral,
uint256 withdrawAssetsFromProtected,
uint256 repayDebtAssets,
bytes4 customError
)
{
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({
_collateralConfig: _collateralConfig,
_debtConfig: _debtConfig,
_borrower: _user,
_oracleType: ISilo.OracleType.Solvency,
_accrueInMemory: ISilo.AccrueInterestInMemory.No,
_debtShareBalanceCached:0 /* no cached balance */
});
uint256 borrowerCollateralToLiquidate;
(
borrowerCollateralToLiquidate, repayDebtAssets, customError
) = liquidationPreview(
ltvData,
PartialLiquidationLib.LiquidationPreviewParams({
collateralLt: _collateralConfig.lt,
collateralConfigAsset: _collateralConfig.token,
debtConfigAsset: _debtConfig.token,
maxDebtToCover: _maxDebtToCover,
liquidationTargetLtv: _collateralConfig.liquidationTargetLtv,
liquidationFee: _liquidationFee
})
);
(
withdrawAssetsFromCollateral, withdrawAssetsFromProtected
) = PartialLiquidationLib.splitReceiveCollateralToLiquidate(
borrowerCollateralToLiquidate, ltvData.borrowerProtectedAssets
);
}
/// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
// solhint-disable-next-line function-max-lines
function maxLiquidation(ISiloConfig _siloConfig, address _borrower)
external
view
returns (uint256 collateralToLiquidate, uint256 debtToRepay, bool sTokenRequired)
{
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _siloConfig.getConfigsForSolvency(_borrower);
if (debtConfig.silo == address(0)) {
return (0, 0, false);
}
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations(
collateralConfig,
debtConfig,
_borrower,
ISilo.OracleType.Solvency,
ISilo.AccrueInterestInMemory.Yes,
0 /* no cached balance */
);
if (ltvData.borrowerDebtAssets == 0) return (0, 0, false);
(
uint256 sumOfCollateralValue, uint256 debtValue
) = SiloSolvencyLib.getPositionValues(ltvData, collateralConfig.token, debtConfig.token);
uint256 sumOfCollateralAssets = ltvData.borrowerProtectedAssets + ltvData.borrowerCollateralAssets;
if (sumOfCollateralValue == 0) return (sumOfCollateralAssets, ltvData.borrowerDebtAssets, false);
uint256 ltvInDp = SiloSolvencyLib.ltvMath(debtValue, sumOfCollateralValue);
if (ltvInDp <= collateralConfig.lt) return (0, 0, false); // user solvent
(collateralToLiquidate, debtToRepay) = PartialLiquidationLib.maxLiquidation(
sumOfCollateralAssets,
sumOfCollateralValue,
ltvData.borrowerDebtAssets,
debtValue,
collateralConfig.liquidationTargetLtv,
collateralConfig.liquidationFee
);
// maxLiquidation() can underestimate collateral by `PartialLiquidationLib._UNDERESTIMATION`,
// when we do that, actual collateral that we will transfer will match exactly liquidity,
// but we will liquidate higher value by 1 or 2, then sTokenRequired will return false,
// but we can not withdraw (because we will be short by 2) solution is to include this 2wei here
unchecked {
// safe to uncheck, because we underestimated this value in a first place by _UNDERESTIMATION
uint256 overestimatedCollateral = collateralToLiquidate + PartialLiquidationLib._UNDERESTIMATION;
sTokenRequired = overestimatedCollateral > ISilo(collateralConfig.silo).getLiquidity();
}
}
/// @return receiveCollateralAssets collateral + protected to liquidate, on self liquidation when borrower repay
/// all debt, he will receive all collateral back
/// @return repayDebtAssets
function liquidationPreview( // solhint-disable-line function-max-lines, code-complexity
SiloSolvencyLib.LtvData memory _ltvData,
PartialLiquidationLib.LiquidationPreviewParams memory _params
)
internal
view
returns (uint256 receiveCollateralAssets, uint256 repayDebtAssets, bytes4 customError)
{
uint256 sumOfCollateralAssets = _ltvData.borrowerCollateralAssets + _ltvData.borrowerProtectedAssets;
if (_ltvData.borrowerDebtAssets == 0 || _params.maxDebtToCover == 0) {
return (0, 0, IPartialLiquidation.NoDebtToCover.selector);
}
if (sumOfCollateralAssets == 0) {
return (
0,
_params.maxDebtToCover > _ltvData.borrowerDebtAssets
? _ltvData.borrowerDebtAssets
: _params.maxDebtToCover,
bytes4(0) // no error
);
}
(
uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvBefore
) = SiloSolvencyLib.calculateLtv(_ltvData, _params.collateralConfigAsset, _params.debtConfigAsset);
if (_params.collateralLt >= ltvBefore) return (0, 0, IPartialLiquidation.UserIsSolvent.selector);
uint256 ltvAfter;
(receiveCollateralAssets, repayDebtAssets, ltvAfter) = PartialLiquidationLib.liquidationPreview(
ltvBefore,
sumOfCollateralAssets,
sumOfBorrowerCollateralValue,
_ltvData.borrowerDebtAssets,
totalBorrowerDebtValue,
_params
);
if (receiveCollateralAssets == 0 || repayDebtAssets == 0) {
return (0, 0, IPartialLiquidation.NoRepayAssets.selector);
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
abstract contract TransientReentrancy {
error ReentrancyGuardReentrantCall();
bool private transient _lock;
modifier nonReentrant() {
require(!_lock, ReentrancyGuardReentrantCall());
_lock = true;
_;
_lock = false;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "ON", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function reentrancyGuardEntered() internal view returns (bool) {
return _lock;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
/// @notice Protected deposits are not available for a flash loan.
/// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Initiate a flash loan.
/// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
external
returns (bool);
/// @dev The amount of currency available to be lent.
/// @param _token The loan currency.
/// @return The amount of `token` that can be borrowed.
function maxFlashLoan(address _token) external view returns (uint256);
/// @dev The fee to be charged for a given loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @return The amount of `token` to be charged for the loan, on top of the returned principal.
function flashFee(address _token, uint256 _amount) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
interface ISiloFactory is IERC721 {
struct Range {
uint128 min;
uint128 max;
}
/// @notice Emitted on the creation of a Silo.
/// @param implementation Address of the Silo implementation.
/// @param token0 Address of the first Silo token.
/// @param token1 Address of the second Silo token.
/// @param silo0 Address of the first Silo.
/// @param silo1 Address of the second Silo.
/// @param siloConfig Address of the SiloConfig.
event NewSilo(
address indexed implementation,
address indexed token0,
address indexed token1,
address silo0,
address silo1,
address siloConfig
);
event BaseURI(string newBaseURI);
/// @notice Emitted on the update of DAO fee.
/// @param minDaoFee Value of the new minimal DAO fee.
/// @param maxDaoFee Value of the new maximal DAO fee.
event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);
/// @notice Emitted on the update of max deployer fee.
/// @param maxDeployerFee Value of the new max deployer fee.
event MaxDeployerFeeChanged(uint256 maxDeployerFee);
/// @notice Emitted on the update of max flashloan fee.
/// @param maxFlashloanFee Value of the new max flashloan fee.
event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);
/// @notice Emitted on the update of max liquidation fee.
/// @param maxLiquidationFee Value of the new max liquidation fee.
event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);
/// @notice Emitted on the change of DAO fee receiver.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChanged(address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular silo
/// @param silo Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForSilo(address silo, address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular asset
/// @param asset Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForAsset(address asset, address daoFeeReceiver);
error MissingHookReceiver();
error ZeroAddress();
error DaoFeeReceiverZeroAddress();
error SameDaoFeeReceiver();
error EmptyToken0();
error EmptyToken1();
error MaxFeeExceeded();
error InvalidFeeRange();
error SameAsset();
error SameRange();
error InvalidIrm();
error InvalidMaxLtv();
error InvalidLt();
error InvalidDeployer();
error DaoMinRangeExceeded();
error DaoMaxRangeExceeded();
error MaxDeployerFeeExceeded();
error MaxFlashloanFeeExceeded();
error MaxLiquidationFeeExceeded();
error InvalidCallBeforeQuote();
error OracleMisconfiguration();
error InvalidQuoteToken();
error HookIsZeroAddress();
error LiquidationTargetLtvTooHigh();
error NotYourSilo();
error ConfigMismatchSilo();
error ConfigMismatchShareProtectedToken();
error ConfigMismatchShareDebtToken();
error ConfigMismatchShareCollateralToken();
/// @notice Create a new Silo.
/// @param _siloConfig Silo configuration.
/// @param _siloImpl Address of the `Silo` implementation.
/// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
/// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
/// @param _deployer Address of the deployer.
/// @param _creator Address of the creator.
function createSilo(
ISiloConfig _siloConfig,
address _siloImpl,
address _shareProtectedCollateralTokenImpl,
address _shareDebtTokenImpl,
address _deployer,
address _creator
)
external;
/// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning,
/// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
/// @param _siloIdToBurn silo ID to burn.
function burn(uint256 _siloIdToBurn) external;
/// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
/// Previously deployed SiloConfigs are immutable.
/// @param _minFee Value of the new DAO minimal fee.
/// @param _maxFee Value of the new DAO maximal fee.
function setDaoFee(uint128 _minFee, uint128 _maxFee) external;
/// @notice Set the default DAO fee receiver.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiver(address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for asset, this setup will be used when fee receiver for silo is empty.
/// @param _asset Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForAsset(address _asset, address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for silo. This setup has highest priority.
/// @param _silo Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForSilo(address _silo, address _newDaoFeeReceiver) external;
/// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxDeployerFee Value of the new max deployer fee.
function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;
/// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxFlashloanFee Value of the new max flashloan fee.
function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;
/// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
/// liquidation fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxLiquidationFee Value of the new max liquidation fee.
function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
/// @notice Update the base URI.
/// @param _newBaseURI Value of the new base URI.
function setBaseURI(string calldata _newBaseURI) external;
/// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function daoFeeRange() external view returns (Range memory);
/// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxDeployerFee() external view returns (uint256);
/// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxFlashloanFee() external view returns (uint256);
/// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxLiquidationFee() external view returns (uint256);
/// @notice The recipient of DAO fees.
function daoFeeReceiver() external view returns (address);
/// @notice Get SiloConfig address by Silo id.
function idToSiloConfig(uint256 _id) external view returns (address);
/// @notice Get the counter of silos created by the wallet.
function creatorSiloCounter(address _creator) external view returns (uint256);
/// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
/// and implementation. Most critical part of verification would be to check who deployed it.
/// @dev True if the address was deployed using SiloFactory.
function isSilo(address _silo) external view returns (bool);
/// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
/// function call. ID of a first Silo is 1.
function getNextSiloId() external view returns (uint256);
/// @notice Get the DAO and deployer fee receivers for a particular Silo address.
/// @param _silo Silo address.
/// @return dao DAO fee receiver.
/// @return deployer Deployer fee receiver.
function getFeeReceivers(address _silo) external view returns (address dao, address deployer);
/// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
/// @param _initData Silo init data.
function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
import {DistributionTypes} from "../lib/DistributionTypes.sol";
interface IDistributionManager {
struct IncentivesProgram {
uint256 index;
address rewardToken; // can't be updated after creation
uint104 emissionPerSecond; // configured by owner
uint40 lastUpdateTimestamp;
uint40 distributionEnd; // configured by owner
mapping(address user => uint256 userIndex) users;
}
struct IncentiveProgramDetails {
uint256 index;
address rewardToken;
uint104 emissionPerSecond;
uint40 lastUpdateTimestamp;
uint40 distributionEnd;
}
struct AccruedRewards {
uint256 amount;
bytes32 programId;
address rewardToken;
}
event AssetConfigUpdated(address indexed asset, uint256 emission);
event AssetIndexUpdated(address indexed asset, uint256 index);
event DistributionEndUpdated(string incentivesProgram, uint256 newDistributionEnd);
event IncentivesProgramIndexUpdated(string incentivesProgram, uint256 newIndex);
event UserIndexUpdated(address indexed user, string incentivesProgram, uint256 newIndex);
error OnlyNotifier();
error TooLongProgramName();
error InvalidIncentivesProgramName();
error OnlyNotifierOrOwner();
error ZeroAddress();
/**
* @dev Sets the end date for the distribution
* @param _incentivesProgram The incentives program name
* @param _distributionEnd The end date timestamp
*/
function setDistributionEnd(string calldata _incentivesProgram, uint40 _distributionEnd) external;
/**
* @dev Gets the end date for the distribution
* @param _incentivesProgram The incentives program name
* @return The end of the distribution
*/
function getDistributionEnd(string calldata _incentivesProgram) external view returns (uint256);
/**
* @dev Returns the data of an user on a distribution
* @param _user Address of the user
* @param _incentivesProgram The incentives program name
* @return The new index
*/
function getUserData(address _user, string calldata _incentivesProgram) external view returns (uint256);
/**
* @dev Returns the configuration of the distribution for a certain incentives program
* @param _incentivesProgram The incentives program name
* @return details The configuration of the incentives program
*/
function incentivesProgram(string calldata _incentivesProgram)
external
view
returns (IncentiveProgramDetails memory details);
/**
* @dev Returns the program id for the given program name.
* This method TRUNCATES the program name to 32 bytes.
* If provided strings only differ after the 32nd byte they would result in the same ProgramId.
* Ensure to use inputs that will result in 32 bytes or less.
* @param _programName The incentives program name
* @return programId
*/
function getProgramId(string calldata _programName) external pure returns (bytes32 programId);
/**
* @dev returns the names of all the incentives programs
* @return programsNames the names of all the incentives programs
*/
function getAllProgramsNames() external view returns (string[] memory programsNames);
/**
* @dev returns the name of an incentives program
* @param _programName the name (bytes32) of the incentives program
* @return programName the name (string) of the incentives program
*/
function getProgramName(bytes32 _programName) external view returns (string memory programName);
}// SPDX-License-Identifier: agpl-3.0
pragma solidity 0.8.28;
library DistributionTypes {
struct IncentivesProgramCreationInput {
string name;
address rewardToken;
uint104 emissionPerSecond;
uint40 distributionEnd;
}
struct AssetConfigInput {
uint104 emissionPerSecond;
uint256 totalStaked;
address underlyingAsset;
}
struct UserStakeInput {
address underlyingAsset;
uint256 stakedByUser;
uint256 totalStaked;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ISiloOracle {
/// @notice Hook function to call before `quote` function reads price
/// @dev This hook function can be used to change state right before the price is read. For example it can be used
/// for curve read only reentrancy protection. In majority of implementations this will be an empty function.
/// WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well.
/// @param _baseToken Address of priced token
function beforeQuote(address _baseToken) external;
/// @return quoteAmount Returns quote price for _baseAmount of _baseToken
/// @param _baseAmount Amount of priced token
/// @param _baseToken Address of priced token
function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount);
/// @return address of token in which quote (price) is denominated
function quoteToken() external view returns (address);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";
library SiloSolvencyLib {
using Math for uint256;
struct LtvData {
ISiloOracle collateralOracle;
ISiloOracle debtOracle;
uint256 borrowerProtectedAssets;
uint256 borrowerCollateralAssets;
uint256 borrowerDebtAssets;
}
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _INFINITY = type(uint256).max;
/// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check solvency for
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower is solvent, false otherwise
function isSolvent(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
if (_debtConfig.silo == address(0)) return true; // no debt, so solvent
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.Solvency,
_accrueInMemory,
IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower)
);
return ltv <= _collateralConfig.lt;
}
/// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check against max LTV
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower's LTV is below the maximum, false otherwise
function isBelowMaxLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower);
if (debtShareBalance == 0) return true;
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.MaxLtv,
_accrueInMemory,
debtShareBalance
);
return ltv <= _collateralConfig.maxLtv;
}
/// @notice Retrieves assets data required for LTV calculations
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower whose LTV data is to be calculated
/// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of
/// `_borrower` is unknown, simply pass `0`.
/// @return ltvData Data structure containing necessary data to compute LTV
function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalanceCached
) internal view returns (LtvData memory ltvData) {
if (_collateralConfig.token != _debtConfig.token) {
// When calculating maxLtv, use maxLtv oracle.
(ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv
? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle))
: (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle));
}
uint256 totalShares;
uint256 shares;
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.protectedShareToken, _borrower, 0 /* no cache */
);
(
uint256 totalCollateralAssets, uint256 totalProtectedAssets
) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage();
ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets(
shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.collateralShareToken, _borrower, 0 /* no cache */
);
totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalCollateralAssetsWithInterest(
_collateralConfig.silo,
_collateralConfig.interestRateModel,
_collateralConfig.daoFee,
_collateralConfig.deployerFee
)
: totalCollateralAssets;
ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets(
shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_debtConfig.debtShareToken, _borrower, _debtShareBalanceCached
);
uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel)
: ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt);
// BORROW value -> to assets -> UP
ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets(
shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt
);
}
/// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower
/// @param _collateralConfig Configuration data related to the collateral asset
/// @param _debtConfig Configuration data related to the debt asset
/// @param _borrower Address of the borrower whose LTV is to be computed
/// @param _oracleType Oracle type to use for fetching the asset prices
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return ltvInDp The computed LTV ratio in 18 decimals precision
function getLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalance
) internal view returns (uint256 ltvInDp) {
if (_debtShareBalance == 0) return 0;
LtvData memory ltvData = getAssetsDataForLtvCalculations(
_collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance
);
if (ltvData.borrowerDebtAssets == 0) return 0;
(,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token);
}
/// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data
/// @dev calculation never reverts, if there is revert, then it is because of oracle
/// @param _ltvData Data structure containing relevant information to calculate LTV
/// @param _collateralToken Address of the collateral token
/// @param _debtAsset Address of the debt token
/// @return sumOfBorrowerCollateralValue Total value of borrower's collateral
/// @return totalBorrowerDebtValue Total debt value for the borrower
/// @return ltvInDp Calculated LTV in 18 decimal precision
function calculateLtv(
SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset)
internal
view
returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp)
{
(
sumOfBorrowerCollateralValue, totalBorrowerDebtValue
) = getPositionValues(_ltvData, _collateralToken, _debtAsset);
if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) {
return (0, 0, 0);
} else if (sumOfBorrowerCollateralValue == 0) {
ltvInDp = _INFINITY;
} else {
ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue);
}
}
/// @notice Computes the value of collateral and debt based on given LTV data and asset addresses
/// @param _ltvData Data structure containing the assets data required for LTV calculations
/// @param _collateralAsset Address of the collateral asset
/// @param _debtAsset Address of the debt asset
/// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral
/// assets
/// @return debtValue Total value of debt assets
function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset)
internal
view
returns (uint256 sumOfCollateralValue, uint256 debtValue)
{
uint256 sumOfCollateralAssets;
sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets;
if (sumOfCollateralAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0)
? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset)
: sumOfCollateralAssets;
}
if (_ltvData.borrowerDebtAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
debtValue = address(_ltvData.debtOracle) != address(0)
? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset)
: _ltvData.borrowerDebtAssets;
}
}
function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue)
internal
pure
returns (uint256 ltvInDp)
{
ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {IPartialLiquidation} from "silo-core/contracts/interfaces/IPartialLiquidation.sol";
import {Rounding} from "silo-core/contracts/lib/Rounding.sol";
library PartialLiquidationLib {
using Math for uint256;
struct LiquidationPreviewParams {
uint256 collateralLt;
address collateralConfigAsset;
address debtConfigAsset;
uint256 maxDebtToCover;
uint256 liquidationFee;
uint256 liquidationTargetLtv;
}
/// @dev this is basically LTV == 100%
uint256 internal constant _BAD_DEBT = 1e18;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @dev underestimation for collateral that user gets on liquidation
/// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
/// this two conversions are rounding down and can create 2 wai difference
uint256 internal constant _UNDERESTIMATION = 2;
/// @dev If the ratio of the repay value to the total debt value during liquidation exceeds the
/// _FULL_LIQUIDATION_THRESHOLD threshold, a full liquidation is triggered.
/// For example, if the total debt value is 51 and the dust level is set at 98%,
/// then we are unable to liquidate 50, we must proceed to liquidate the entire 51.
uint256 internal constant _FULL_LIQUIDATION_THRESHOLD = 0.9e18; // 90%
/// @dev debt keeps growing over time, so when dApp use this view to calculate max, tx should never revert
/// because actual max can be only higher
/// @notice This method does not check, if user is solvent and it can return non zero result when user solvent
function maxLiquidation(
uint256 _sumOfCollateralAssets,
uint256 _sumOfCollateralValue,
uint256 _borrowerDebtAssets,
uint256 _borrowerDebtValue,
uint256 _liquidationTargetLTV,
uint256 _liquidationFee
)
internal
pure
returns (uint256 collateralToLiquidate, uint256 debtToRepay)
{
(
uint256 collateralValueToLiquidate, uint256 repayValue
) = maxLiquidationPreview(
_sumOfCollateralValue,
_borrowerDebtValue,
_liquidationTargetLTV,
_liquidationFee
);
collateralToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate,
_sumOfCollateralAssets,
_sumOfCollateralValue
);
if (collateralToLiquidate > _UNDERESTIMATION) {
// -_UNDERESTIMATION here is to underestimate collateral that user gets on liquidation
// liquidation is executed based on sTokens, additional flow is: assets -> shares -> assets
// this two conversions are rounding down and can create 2 wei difference
// we will not underflow on -_UNDERESTIMATION because collateralToLiquidate is >= _UNDERESTIMATION
unchecked { collateralToLiquidate -= _UNDERESTIMATION; }
} else {
collateralToLiquidate = 0;
}
debtToRepay = valueToAssetsByRatio(repayValue, _borrowerDebtAssets, _borrowerDebtValue);
}
/// @dev in case of bad debt, we do not apply any restrictions.
/// @notice might revert when one of this values will be zero:
/// `_sumOfCollateralValue`, `_borrowerDebtAssets`, `_borrowerDebtValue`
function liquidationPreview( // solhint-disable-line function-max-lines
uint256 _ltvBefore,
uint256 _sumOfCollateralAssets,
uint256 _sumOfCollateralValue,
uint256 _borrowerDebtAssets,
uint256 _borrowerDebtValue,
LiquidationPreviewParams memory _params
)
internal
pure
returns (uint256 collateralToLiquidate, uint256 debtToRepay, uint256 ltvAfter)
{
uint256 collateralValueToLiquidate;
uint256 debtValueToRepay;
if (_ltvBefore >= _BAD_DEBT) {
// in case of bad debt, we allow for any amount
debtToRepay = _params.maxDebtToCover > _borrowerDebtAssets ? _borrowerDebtAssets : _params.maxDebtToCover;
debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
} else {
uint256 maxRepayValue = estimateMaxRepayValue(
_borrowerDebtValue,
_sumOfCollateralValue,
_params.liquidationTargetLtv,
_params.liquidationFee
);
if (maxRepayValue == _borrowerDebtValue) {
// forced full liquidation
debtToRepay = _borrowerDebtAssets;
debtValueToRepay = _borrowerDebtValue;
} else {
// partial liquidation
uint256 maxDebtToRepay = valueToAssetsByRatio(maxRepayValue, _borrowerDebtAssets, _borrowerDebtValue);
debtToRepay = _params.maxDebtToCover > maxDebtToRepay ? maxDebtToRepay : _params.maxDebtToCover;
debtValueToRepay = valueToAssetsByRatio(debtToRepay, _borrowerDebtValue, _borrowerDebtAssets);
}
}
collateralValueToLiquidate = calculateCollateralToLiquidate(
debtValueToRepay, _sumOfCollateralValue, _params.liquidationFee
);
collateralToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate,
_sumOfCollateralAssets,
_sumOfCollateralValue
);
ltvAfter = _calculateLtvAfter(
_sumOfCollateralValue, _borrowerDebtValue, collateralValueToLiquidate, debtValueToRepay
);
}
/// @notice reverts on `_totalValue` == 0
/// @dev calculate assets based on ratio: assets = (value, totalAssets, totalValue)
/// to calculate assets => value, use it like: value = (assets, totalValue, totalAssets)
function valueToAssetsByRatio(uint256 _value, uint256 _totalAssets, uint256 _totalValue)
internal
pure
returns (uint256 assets)
{
require(_totalValue != 0, IPartialLiquidation.UnknownRatio());
assets = _value * _totalAssets / _totalValue;
}
/// @notice this function never reverts
/// @dev in case there is not enough collateral to liquidate, whole collateral is returned, no revert
/// @param _totalBorrowerCollateralValue can not be 0, otherwise revert
function calculateCollateralsToLiquidate(
uint256 _debtValueToCover,
uint256 _totalBorrowerCollateralValue,
uint256 _totalBorrowerCollateralAssets,
uint256 _liquidationFee
) internal pure returns (uint256 collateralAssetsToLiquidate, uint256 collateralValueToLiquidate) {
collateralValueToLiquidate = calculateCollateralToLiquidate(
_debtValueToCover, _totalBorrowerCollateralValue, _liquidationFee
);
// this is also true if _totalBorrowerCollateralValue == 0, so div below will not revert
if (collateralValueToLiquidate == _totalBorrowerCollateralValue) {
return (_totalBorrowerCollateralAssets, _totalBorrowerCollateralValue);
}
// this will never revert, because of `if collateralValueToLiquidate == _totalBorrowerCollateralValue`
collateralAssetsToLiquidate = valueToAssetsByRatio(
collateralValueToLiquidate, _totalBorrowerCollateralAssets, _totalBorrowerCollateralValue
);
}
/// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LT
/// where Dv: debt value, Cv: collateral value, LT: expected LT, f: liquidation fee, x: is value we looking for
/// @notice in case math fail to calculate repay value, eg when collateral is not enough to cover repay and fee
/// function will return full debt value and full collateral value, it will not revert. It is up to liquidator
/// to make decision if it will be profitable
/// @param _totalBorrowerCollateralValue regular and protected
/// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
function maxLiquidationPreview(
uint256 _totalBorrowerCollateralValue,
uint256 _totalBorrowerDebtValue,
uint256 _ltvAfterLiquidation,
uint256 _liquidationFee
) internal pure returns (uint256 collateralValueToLiquidate, uint256 repayValue) {
repayValue = estimateMaxRepayValue(
_totalBorrowerDebtValue, _totalBorrowerCollateralValue, _ltvAfterLiquidation, _liquidationFee
);
collateralValueToLiquidate = calculateCollateralToLiquidate(
repayValue, _totalBorrowerCollateralValue, _liquidationFee
);
}
/// @param _maxDebtToCover assets or value, but must be in sync with `_totalCollateral`
/// @param _sumOfCollateral assets or value, but must be in sync with `_maxDebtToCover`
/// @return toLiquidate depends on inputs, it might be collateral value or collateral assets
function calculateCollateralToLiquidate(uint256 _maxDebtToCover, uint256 _sumOfCollateral, uint256 _liquidationFee)
internal
pure
returns (uint256 toLiquidate)
{
uint256 fee = _maxDebtToCover * _liquidationFee / _PRECISION_DECIMALS;
toLiquidate = _maxDebtToCover + fee;
if (toLiquidate > _sumOfCollateral) {
toLiquidate = _sumOfCollateral;
}
}
/// @dev the math is based on: (Dv - x)/(Cv - (x + xf)) = LTV
/// where
/// Dv: debt value,
/// Cv: collateral value,
/// LTV: expected LTV after liquidation,
/// f: liquidation fee,
/// x: is value we looking for
/// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f)
/// result also take into consideration the dust
/// @notice protocol does not uses this method, because in protocol our input is debt to cover in assets
/// however this is useful to figure out what is max debt to cover.
/// @param _totalBorrowerCollateralValue regular and protected
/// @param _ltvAfterLiquidation % of `repayValue` that liquidator will use as profit from liquidating
/// @return repayValue max repay value that is allowed for partial liquidation. if this value equals
/// `_totalBorrowerDebtValue`, that means dust threshold was triggered and result force to do full liquidation
function estimateMaxRepayValue( // solhint-disable-line code-complexity
uint256 _totalBorrowerDebtValue,
uint256 _totalBorrowerCollateralValue,
uint256 _ltvAfterLiquidation,
uint256 _liquidationFee
) internal pure returns (uint256 repayValue) {
if (_totalBorrowerDebtValue == 0) return 0;
if (_liquidationFee >= _PRECISION_DECIMALS) return 0;
// this will cover case, when _totalBorrowerCollateralValue == 0
if (_totalBorrowerDebtValue >= _totalBorrowerCollateralValue) return _totalBorrowerDebtValue;
if (_ltvAfterLiquidation == 0) return _totalBorrowerDebtValue; // full liquidation
// x = (Dv - LTV * Cv) / (DP - LTV - LTV * f) ==> (Dv - LTV * Cv) / (DP - (LTV + LTV * f))
uint256 ltCv = _ltvAfterLiquidation * _totalBorrowerCollateralValue;
// to lose as low precision as possible, instead of `ltCv/1e18`, we increase precision of DebtValue
_totalBorrowerDebtValue *= _PRECISION_DECIMALS;
// negative value means our current LTV is lower than _ltvAfterLiquidation
if (ltCv >= _totalBorrowerDebtValue) return 0;
uint256 dividerR; // LTV + LTV * f
unchecked {
// safe because of above `LTCv >= _totalBorrowerDebtValue`
repayValue = _totalBorrowerDebtValue - ltCv;
// we checked at begin `_liquidationFee >= _PRECISION_DECIMALS`
// mul on DP will not overflow on uint256, div is safe
dividerR = _ltvAfterLiquidation + _ltvAfterLiquidation * _liquidationFee / _PRECISION_DECIMALS;
}
// now we can go back to proper precision
unchecked { _totalBorrowerDebtValue /= _PRECISION_DECIMALS; }
// if dividerR is more than 100%, means it is impossible to go down to _ltvAfterLiquidation, return all
if (dividerR >= _PRECISION_DECIMALS) {
return _totalBorrowerDebtValue;
}
unchecked { repayValue /= (_PRECISION_DECIMALS - dividerR); }
// early return so we do not have to check for dust
if (repayValue > _totalBorrowerDebtValue) return _totalBorrowerDebtValue;
// here is weird case, sometimes it is impossible to go down to target LTV, however math can calculate it
// eg with negative numerator and denominator and result will be positive, that's why we simply return all
// we also cover dust case here
return repayValue * _PRECISION_DECIMALS / _totalBorrowerDebtValue > _FULL_LIQUIDATION_THRESHOLD
? _totalBorrowerDebtValue
: repayValue;
}
/// @dev protected collateral is prioritized
/// @param _borrowerProtectedAssets available users protected collateral
function splitReceiveCollateralToLiquidate(uint256 _collateralToLiquidate, uint256 _borrowerProtectedAssets)
internal
pure
returns (uint256 withdrawAssetsFromCollateral, uint256 withdrawAssetsFromProtected)
{
if (_collateralToLiquidate == 0) return (0, 0);
unchecked {
(
withdrawAssetsFromCollateral, withdrawAssetsFromProtected
) = _collateralToLiquidate > _borrowerProtectedAssets
// safe to uncheck because of above condition
? (_collateralToLiquidate - _borrowerProtectedAssets, _borrowerProtectedAssets)
: (0, _collateralToLiquidate);
}
}
/// @notice must stay private because this is not for general LTV, only for ltv after internally
function _calculateLtvAfter(
uint256 _sumOfCollateralValue,
uint256 _totalDebtValue,
uint256 _collateralValueToLiquidate,
uint256 _debtValueToCover
)
private
pure
returns (uint256 ltvAfterLiquidation)
{
if (_sumOfCollateralValue <= _collateralValueToLiquidate || _totalDebtValue <= _debtValueToCover) {
return 0;
}
unchecked { // all subs are safe because these values are chunks of total, so we will not underflow
ltvAfterLiquidation = _ltvAfter(
_sumOfCollateralValue - _collateralValueToLiquidate,
_totalDebtValue - _debtValueToCover
);
}
}
/// @notice must stay private because this is not for general LTV, only for ltv after
function _ltvAfter(uint256 _collateral, uint256 _debt) private pure returns (uint256 ltv) {
// previous calculation of LTV
ltv = _debt * _PRECISION_DECIMALS;
ltv = Math.ceilDiv(ltv, _collateral); // Rounding.LTV is up/ceil
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IERC3156FlashBorrower {
/// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Receive a flash loan.
/// @param _initiator The initiator of the loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _fee The additional amount of tokens to repay.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
/// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
external
returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
library SiloStdLib {
using SafeERC20 for IERC20;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @notice Returns flash fee amount
/// @param _config address of config contract for Silo
/// @param _token for which fee is calculated
/// @param _amount for which fee is calculated
/// @return fee flash fee amount
function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) {
if (_amount == 0) return 0;
// all user set fees are in 18 decimals points
(,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this));
require(_token == asset, ISilo.UnsupportedFlashloanToken());
if (flashloanFee == 0) return 0;
require(type(uint256).max / _amount >= flashloanFee, ISilo.FlashloanAmountTooBig());
fee = _amount * flashloanFee / _PRECISION_DECIMALS;
// round up
if (fee == 0) return 1;
}
/// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares)
/// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on
/// updated numbers, interest should be added on the fly.
/// @param _configData for a single token for which to do calculations
/// @param _assetType used to read proper storage data
/// @return totalAssets total assets in Silo with interest for given asset type
/// @return totalShares total shares in Silo for given asset type
function getTotalAssetsAndTotalSharesWithInterest(
ISiloConfig.ConfigData memory _configData,
ISilo.AssetType _assetType
)
internal
view
returns (uint256 totalAssets, uint256 totalShares)
{
if (_assetType == ISilo.AssetType.Protected) {
totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected);
totalShares = IShareToken(_configData.protectedShareToken).totalSupply();
} else if (_assetType == ISilo.AssetType.Collateral) {
totalAssets = getTotalCollateralAssetsWithInterest(
_configData.silo,
_configData.interestRateModel,
_configData.daoFee,
_configData.deployerFee
);
totalShares = IShareToken(_configData.collateralShareToken).totalSupply();
} else { // ISilo.AssetType.Debt
totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel);
totalShares = IShareToken(_configData.debtShareToken).totalSupply();
}
}
/// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset
/// @param _silo Silo address
/// @return daoFeeReceiver Address of the DAO fee receiver
/// @return deployerFeeReceiver Address of the deployer fee receiver
/// @return daoFee DAO fee amount in 18 decimals points
/// @return deployerFee Deployer fee amount in 18 decimals points
/// @return asset Address of the associated asset
function getFeesAndFeeReceiversWithAsset(ISilo _silo)
internal
view
returns (
address daoFeeReceiver,
address deployerFeeReceiver,
uint256 daoFee,
uint256 deployerFee,
address asset
)
{
(daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo));
(daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo));
}
/// @notice Calculates the total collateral assets with accrued interest
/// @dev Do not use this method when accrueInterest were executed already, in that case total does not change
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @param _daoFee DAO fee in 18 decimals points
/// @param _deployerFee Deployer fee in 18 decimals points
/// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest
function getTotalCollateralAssetsWithInterest(
address _silo,
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) internal view returns (uint256 totalCollateralAssetsWithInterest) {
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage();
(totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest({
_collateralAssets: collateralAssets,
_debtAssets: debtAssets,
_rcomp: rcomp,
_daoFee: _daoFee,
_deployerFee: _deployerFee
});
}
/// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0`
function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached)
internal
view
returns (uint256 shares, uint256 totalSupply)
{
if (_balanceCached == 0) {
(shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner);
} else {
shares = _balanceCached;
totalSupply = IShareToken(_shareToken).totalSupply();
}
}
/// @notice Calculates the total debt assets with accrued interest
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @return totalDebtAssetsWithInterest Accumulated debt amount with interest
function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel)
internal
view
returns (uint256 totalDebtAssetsWithInterest)
{
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(
totalDebtAssetsWithInterest,
) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IInterestRateModel {
event InterestRateModelError();
/// @dev Sets config address for all Silos that will use this model
/// @param _irmConfig address of IRM config contract
function initialize(address _irmConfig) external;
/// @dev get compound interest rate and update model storage for current block.timestamp
/// @param _collateralAssets total silo collateral assets
/// @param _debtAssets total silo debt assets
/// @param _interestRateTimestamp last IRM timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
/// @dev get compound interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @dev get current annual interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcur current annual interest rate (1e18 == 100%)
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @dev returns decimal points used by model
function decimals() external view returns (uint256);
}{
"remappings": [
"forge-std/=gitmodules/forge-std/src/",
"silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
"properties/=gitmodules/crytic/properties/contracts/",
"silo-core/=silo-core/",
"silo-oracles/=silo-oracles/",
"silo-vaults/=silo-vaults/",
"@openzeppelin/=gitmodules/openzeppelin-contracts-5/",
"morpho-blue/=gitmodules/morpho-blue/src/",
"openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
"openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
"chainlink/=gitmodules/chainlink/contracts/src/",
"chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
"uniswap/=gitmodules/uniswap/",
"@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
"pyth-sdk-solidity/=gitmodules/pyth-sdk-solidity/target_chains/ethereum/sdk/solidity/",
"a16z-erc4626-tests/=gitmodules/a16z-erc4626-tests/",
"ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
"createx/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/src/",
"crytic/=gitmodules/crytic/",
"ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
"halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
"openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
"openzeppelin-contracts-upgradeable/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/",
"solady/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/lib/solady/",
"solmate/=gitmodules/crytic/properties/lib/solmate/src/",
"x-silo/=node_modules/x-silo/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {
"silo-core/contracts/hooks/liquidation/lib/PartialLiquidationExecLib.sol": {
"PartialLiquidationExecLib": "0xC355305C805BDE1E5fc5fe0D1BA253577B5b27f8"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AlreadyConfigured","type":"error"},{"inputs":[],"name":"CantRemoveActiveGauge","type":"error"},{"inputs":[],"name":"EmptyGaugeAddress","type":"error"},{"inputs":[],"name":"EmptySiloConfig","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FullLiquidationRequired","type":"error"},{"inputs":[],"name":"GaugeAlreadyConfigured","type":"error"},{"inputs":[],"name":"GaugeIsNotConfigured","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidShareToken","type":"error"},{"inputs":[],"name":"NoDebtToCover","type":"error"},{"inputs":[],"name":"NoRepayAssets","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OnlySilo","type":"error"},{"inputs":[],"name":"OnlySiloOrShareToken","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"RequestNotSupported","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UnexpectedCollateralToken","type":"error"},{"inputs":[],"name":"UnexpectedDebtToken","type":"error"},{"inputs":[],"name":"UnknownRatio","type":"error"},{"inputs":[],"name":"UserIsSolvent","type":"error"},{"inputs":[],"name":"WrongGaugeShareToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"gauge","type":"address"},{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"shareToken","type":"address"}],"name":"GaugeRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"silo","type":"address"},{"indexed":false,"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"indexed":false,"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"name":"HookConfigured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"liquidator","type":"address"},{"indexed":true,"internalType":"address","name":"silo","type":"address"},{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"repayDebtAssets","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"indexed":false,"internalType":"bool","name":"receiveSToken","type":"bool"}],"name":"LiquidationCall","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_action","type":"uint256"},{"internalType":"bytes","name":"_inputAndOutput","type":"bytes"}],"name":"afterAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"beforeAction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"","type":"address"}],"name":"configuredGauges","outputs":[{"internalType":"contract ISiloIncentivesController","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"}],"name":"hookReceiverConfig","outputs":[{"internalType":"uint24","name":"hooksBefore","type":"uint24"},{"internalType":"uint24","name":"hooksAfter","type":"uint24"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ISiloConfig","name":"_config","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_collateralAsset","type":"address"},{"internalType":"address","name":"_debtAsset","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxDebtToCover","type":"uint256"},{"internalType":"bool","name":"_receiveSToken","type":"bool"}],"name":"liquidationCall","outputs":[{"internalType":"uint256","name":"withdrawCollateral","type":"uint256"},{"internalType":"uint256","name":"repayDebtAssets","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"}],"name":"maxLiquidation","outputs":[{"internalType":"uint256","name":"collateralToLiquidate","type":"uint256"},{"internalType":"uint256","name":"debtToRepay","type":"uint256"},{"internalType":"bool","name":"sTokenRequired","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"removeGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ISiloIncentivesController","name":"_gauge","type":"address"},{"internalType":"contract IShareToken","name":"_shareToken","type":"address"}],"name":"setGauge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"siloConfig","outputs":[{"internalType":"contract ISiloConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership1Step","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
608060405234801561000f575f5ffd5b50338061001a610061565b6001600160a01b03811661004757604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b61005081610113565b5061005c90505f610113565b610178565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff16156100b15760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146101105780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b600380546001600160a01b031916905561011081600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b61297e806101855f395ff3fe608060405234801561000f575f5ffd5b50600436106100fa575f3560e01c8063aef2823511610093578063e1b9713911610063578063e1b971391461022b578063e30c39781461023e578063e4784fa91461024f578063f2fde38b146102b9575f5ffd5b8063aef28235146101c3578063bd02d848146101d6578063d1f5789414610206578063d714fd1914610219575f5ffd5b8063715018a6116100ce578063715018a61461016657806379ba50971461016e5780638da5cb5b14610176578063a37d94111461019b575f5ffd5b8062a718a9146100fe578063237e6d641461012b57806335cb1099146101405780633a04514514610153575b5f5ffd5b61011161010c366004612140565b6102cc565b604080519283526020830191909152015b60405180910390f35b61013e6101393660046121a4565b610896565b005b61013e61014e366004612220565b610ad3565b61013e610161366004612278565b610b12565b61013e610baf565b61013e610bc2565b6002546001600160a01b03165b6040516001600160a01b039091168152602001610122565b6101836101a9366004612278565b60046020525f90815260409020546001600160a01b031681565b61013e6101d1366004612220565b610c0b565b6101e96101e4366004612278565b610c43565b604080519384526020840192909252151590820152606001610122565b61013e610214366004612293565b610cda565b5f54610183906001600160a01b031681565b61013e610239366004612278565b610e03565b6003546001600160a01b0316610183565b61029d61025d366004612278565b6001600160a01b03165f9081526001602090815260409182902082518084019093525462ffffff8082168085526301000000909204169290910182905291565b6040805162ffffff938416815292909116602083015201610122565b61013e6102c7366004612278565b610e34565b5f8060ff815c16156102f157604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d505f546001600160a01b031680610328576040516379c39cf960e01b815260040160405180910390fd5b845f03610348576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610380575f5ffd5b505af1158015610392573d5f5f3e3d5ffd5b505050505f5f6103a4838b8b8b610ea5565b915091506103df6040518060a001604052805f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b815273c355305c805bde1e5fc5fe0d1ba253577b5b27f891636da707db9161042391879187918f918f919060040161243c565b608060405180830381865af415801561043e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104629190612481565b6001600160e01b031916608085018190526060850192909252604084019290925290955061048f906110c2565b878511156104b05760405163d65db62d60e01b815260040160405180910390fd5b60608201516104ca906001600160a01b03163330886110df565b6104f082604001518684606001516001600160a01b03166111469092919063ffffffff16565b5f876104fc57306104fe565b335b905061051b84604001518b8385604001518860a0015160016111cd565b825260408401516060830151608086015161053c92918d918591905f6111cd565b826020018181525050846001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561057d575f5ffd5b505af115801561058f573d5f5f3e3d5ffd5b505050604080850151905163acb7081560e01b8152600481018990526001600160a01b038d81166024830152909116915063acb70815906044016020604051808303815f875af11580156105e5573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061060991906124cd565b5087156107185781511561068f576040808501518351915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b9161064d919060019060040161250c565b602060405180830381865afa158015610668573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068c91906124cd565b96505b6020820151156107135783604001516001600160a01b031663a7d6e44b83602001515f6040518363ffffffff1660e01b81526004016106cf92919061250c565b602060405180830381865afa1580156106ea573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061070e91906124cd565b870196505b610825565b81511561079c57604080850151835191516306d29bb360e51b81526001600160a01b039091169163da53766091610759919033903090600190600401612520565b6020604051808303815f875af1158015610775573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061079991906124cd565b96505b6020820151156108255783604001516001600160a01b031663da537660836020015133305f6040518563ffffffff1660e01b81526004016107e09493929190612520565b6020604051808303815f875af11580156107fc573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061082091906124cd565b870196505b6040838101518151888152602081018a90528a15158184015291516001600160a01b038d81169392169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a99181900360600190a4505f93505050815c60ff19169050815d509550959350505050565b61089e611332565b6001600160a01b0382166108c55760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316631d7e35566040518163ffffffff1660e01b8152600401602060405180830381865afa15801561090b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061092f919061255b565b6001600160a01b0316146109565760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f9081526004602052604090205416801561098f5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa1580156109cc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f0919061255b565b90505f6109fd828561135f565b6001600160a01b0383165f90815260016020526040812054919250906301000000900462ffffff1690506104008217610a3582821790565b9150610a6484610a5e866001600160a01b03165f9081526001602052604090205462ffffff1690565b84611468565b6001600160a01b038681165f8181526004602090815260409182902080546001600160a01b031916948c16948517905581519384528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b610adc3361154b565b610af9576040516310528c6d60e11b815260040160405180910390fd5b604051632a188cb160e21b815260040160405180910390fd5b610b1a611332565b6001600160a01b038082165f908152600460205260409020541680610b5257604051632e77844760e21b815260040160405180910390fd5b6001600160a01b0382165f8181526004602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050565b610bb7611332565b610bc05f6115f3565b565b60035433906001600160a01b03168114610bff5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610c08816115f3565b50565b610c143361160c565b610c31576040516358ec9b7760e11b815260040160405180910390fd5b610c3d84848484611823565b50505050565b5f8054604051631c2b1ded60e01b81526001600160a01b03918216600482015290831660248201528190819073c355305c805bde1e5fc5fe0d1ba253577b5b27f890631c2b1ded90604401606060405180830381865af4158015610ca9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ccd9190612581565b9250925092509193909250565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f81158015610d1f5750825b90505f8267ffffffffffffffff166001148015610d3b5750303b155b905081158015610d49575080155b15610d675760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff191660011785558315610d9157845460ff60401b1916600160401b1785555b5f610d9e87890189612278565b9050610da989611962565b610db2816119db565b508315610df957845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b610e0b611332565b6001600160a01b038116610bff57604051631e4fbdf760e01b81525f6004820152602401610bf6565b610e3c611332565b600380546001600160a01b0383166001600160a01b03199091168117909155610e6d6002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b610ead612094565b610eb5612094565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa158015610efa573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f1e9190612706565b604081015191935091506001600160a01b0316610f4e57604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b031614610f845760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b031614610fba5760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015610ffb573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061101f91906124cd565b5080604001516001600160a01b031682604001516001600160a01b0316146110b95781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611082573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110a691906124cd565b506110b082611a0a565b6110b981611a0a565b94509492505050565b6001600160e01b031981165f036110d65750565b610c0881611a90565b6040516001600160a01b038481166024830152838116604483015260648201839052610c3d9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050611ac1565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611193573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111b791906124cd565b9050610c3d84846111c8858561274f565b611b27565b5f835f036111dc57505f611328565b6112b284886001600160a01b031663b6d821c7856040518263ffffffff1660e01b815260040161120c9190612762565b602060405180830381865afa158015611227573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124b91906124cd565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611287573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ab91906124cd565b5f86611bb6565b9050805f036112c257505f611328565b604051633661585b60e21b81526001600160a01b03878116600483015286811660248301526044820183905284169063d985616c906064015f604051808303815f87803b158015611311575f5ffd5b505af1158015611323573d5f5f3e3d5ffd5b505050505b9695505050505050565b6002546001600160a01b03163314610bc05760405163118cdaa760e01b8152336004820152602401610bf6565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa1580156113ad573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113d1919061277c565b925092509250816001600160a01b0316856001600160a01b0316036113fd576108009350505050611462565b826001600160a01b0316856001600160a01b031603611423576110009350505050611462565b806001600160a01b0316856001600160a01b031603611449576120009350505050611462565b60405163d938fa3760e01b815260040160405180910390fd5b92915050565b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611530575f5ffd5b505af1158015611542573d5f5f3e3d5ffd5b50505050505050565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015611592573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115b691906127bb565b91509150816001600160a01b0316846001600160a01b031614806115eb5750806001600160a01b0316846001600160a01b0316145b949350505050565b600380546001600160a01b0319169055610c0881611bf3565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015611653573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061167791906127bb565b91509150816001600160a01b0316846001600160a01b031614806116ac5750806001600160a01b0316846001600160a01b0316145b156116bb575060019392505050565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392169063483b24f090602401606060405180830381865afa158015611703573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611727919061277c565b919350909150506001600160a01b0386811690831614806117595750806001600160a01b0316866001600160a01b0316145b1561176a5750600195945050505050565b5f54604051630483b24f60e41b81526001600160a01b0385811660048301529091169063483b24f090602401606060405180830381865afa1580156117b1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117d5919061277c565b919350909150506001600160a01b0386811690831614806118075750806001600160a01b0316866001600160a01b0316145b156118185750600195945050505050565b505f95945050505050565b335f908152600460205260409020546001600160a01b0316806118465750610c3d565b61187b84611875876001600160a01b03165f9081526001602052604090205462ffffff63010000009091041690565b81161490565b6118855750610c3d565b5f6118c484848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250611c4492505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015f604051808303815f87803b158015611944575f5ffd5b505af1158015611956573d5f5f3e3d5ffd5b50505050505050505050565b61196a611ce8565b6001600160a01b038116611991576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b0316156119ba576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b6119e3611ce8565b6001600160a01b038116610bff576040516354a4010f60e01b815260040160405180910390fd5b8061020001518015611a28575060e08101516001600160a01b031615155b15610c085760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015611a77575f5ffd5b505af1158015611a89573d5f5f3e3d5ffd5b5050505050565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b5f611ad56001600160a01b03841683611d31565b905080515f14158015611af9575080806020019051810190611af791906127e8565b155b15611b2257604051635274afe760e01b81526001600160a01b0384166004820152602401610bf6565b505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052611b788482611d45565b610c3d576040516001600160a01b0384811660248301525f6044830152611bac91869182169063095ea7b390606401611114565b610c3d8482611ac1565b5f5f5f611bc4878786611de2565b91509150815f03611bd9578792505050611bea565b611be588838388611e3d565b925050505b95945050505050565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b611c896040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610bc057604051631afcd79f60e31b815260040160405180910390fd5b6060611d3e83835f611e7f565b9392505050565b5f5f5f846001600160a01b031684604051611d609190612803565b5f604051808303815f865af19150503d805f8114611d99576040519150601f19603f3d011682016040523d82523d5f602084013e611d9e565b606091505b5091509150818015611dc8575080511580611dc8575080806020019051810190611dc891906127e8565b8015611bea5750505050506001600160a01b03163b151590565b5f5f835f03611def575f94505b6002836002811115611e0357611e036124e4565b14611e2e57611e146003600a6128fc565b611e1e908561274f565b611e2986600161274f565b611e31565b83855b90969095509350505050565b5f611e6a611e4a83611f15565b8015611e6557505f8480611e6057611e60612907565b868809115b151590565b611e75868686611f41565b611bea919061274f565b606081471015611eab5760405163cf47918160e01b815247600482015260248101839052604401610bf6565b5f5f856001600160a01b03168486604051611ec69190612803565b5f6040518083038185875af1925050503d805f8114611f00576040519150601f19603f3d011682016040523d82523d5f602084013e611f05565b606091505b5091509150611328868383611ffe565b5f6002826003811115611f2a57611f2a6124e4565b611f34919061291b565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03611f7557838281611f6b57611f6b612907565b0492505050611d3e565b808411611f9357611f938415611f8c57601161205a565b601261205a565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b6060826120135761200e8261206b565b611d3e565b815115801561202a57506001600160a01b0384163b155b1561205357604051639996b31560e01b81526001600160a01b0385166004820152602401610bf6565b5080611d3e565b634e487b715f52806020526024601cfd5b80511561207b5780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114610c08575f5ffd5b8015158114610c08575f5ffd5b5f5f5f5f5f60a08688031215612154575f5ffd5b853561215f8161211f565b9450602086013561216f8161211f565b9350604086013561217f8161211f565b925060608601359150608086013561219681612133565b809150509295509295909350565b5f5f604083850312156121b5575f5ffd5b82356121c08161211f565b915060208301356121d08161211f565b809150509250929050565b5f5f83601f8401126121eb575f5ffd5b50813567ffffffffffffffff811115612202575f5ffd5b602083019150836020828501011115612219575f5ffd5b9250929050565b5f5f5f5f60608587031215612233575f5ffd5b843561223e8161211f565b935060208501359250604085013567ffffffffffffffff811115612260575f5ffd5b61226c878288016121db565b95989497509550505050565b5f60208284031215612288575f5ffd5b8135611d3e8161211f565b5f5f5f604084860312156122a5575f5ffd5b83356122b08161211f565b9250602084013567ffffffffffffffff8111156122cb575f5ffd5b6122d7868287016121db565b9497909650939450505050565b8051825260208101516020830152604081015161230c60408401826001600160a01b03169052565b50606081015161232760608401826001600160a01b03169052565b50608081015161234260808401826001600160a01b03169052565b5060a081015161235d60a08401826001600160a01b03169052565b5060c081015161237860c08401826001600160a01b03169052565b5060e081015161239360e08401826001600160a01b03169052565b506101008101516123b06101008401826001600160a01b03169052565b506101208101516123cd6101208401826001600160a01b03169052565b506101408101516101408301526101608101516101608301526101808101516101808301526101a08101516101a08301526101c08101516101c08301526101e08101516124266101e08401826001600160a01b03169052565b50610200810151611b2261020084018215159052565b6104a0810161244b82886122e4565b6124596102208301876122e4565b6001600160a01b03949094166104408201526104608101929092526104809091015292915050565b5f5f5f5f60808587031215612494575f5ffd5b845160208601516040870151606088015192965090945092506001600160e01b0319811681146124c2575f5ffd5b939692955090935050565b5f602082840312156124dd575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b60028110612508576125086124e4565b9052565b82815260408101611d3e60208301846124f8565b8481526001600160a01b0384811660208301528316604082015260808101611bea60608301846124f8565b80516125568161211f565b919050565b5f6020828403121561256b575f5ffd5b8151611d3e8161211f565b805161255681612133565b5f5f5f60608486031215612593575f5ffd5b83516020850151604086015191945092506125ad81612133565b809150509250925092565b604051610220810167ffffffffffffffff811182821017156125e857634e487b7160e01b5f52604160045260245ffd5b60405290565b5f61022082840312156125ff575f5ffd5b6126076125b8565b825181526020808401519082015290506126236040830161254b565b60408201526126346060830161254b565b60608201526126456080830161254b565b608082015261265660a0830161254b565b60a082015261266760c0830161254b565b60c082015261267860e0830161254b565b60e082015261268a610100830161254b565b61010082015261269d610120830161254b565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526126e76101e0830161254b565b6101e08201526126fa6102008301612576565b61020082015292915050565b5f5f6104408385031215612718575f5ffd5b61272284846125ee565b91506127328461022085016125ee565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156114625761146261273b565b6020810160038310612776576127766124e4565b91905290565b5f5f5f6060848603121561278e575f5ffd5b83516127998161211f565b60208501519093506127aa8161211f565b60408501519092506125ad8161211f565b5f5f604083850312156127cc575f5ffd5b82516127d78161211f565b60208401519092506121d08161211f565b5f602082840312156127f8575f5ffd5b8151611d3e81612133565b5f82518060208501845e5f920191825250919050565b6001815b6001841115612854578085048111156128385761283861273b565b600184161561284657908102905b60019390931c92800261281d565b935093915050565b5f8261286a57506001611462565b8161287657505f611462565b816001811461288c5760028114612896576128b2565b6001915050611462565b60ff8411156128a7576128a761273b565b50506001821b611462565b5060208310610133831016604e8410600b84101617156128d5575081810a611462565b6128e15f198484612819565b805f19048211156128f4576128f461273b565b029392505050565b5f611d3e838361285c565b634e487b7160e01b5f52601260045260245ffd5b5f60ff83168061293957634e487b7160e01b5f52601260045260245ffd5b8060ff8416069150509291505056fea264697066735822122047bb22ba86959fb9e7aae26f6ee8386939b8929c8a162924575577e036d9b94a64736f6c634300081c0033
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106100fa575f3560e01c8063aef2823511610093578063e1b9713911610063578063e1b971391461022b578063e30c39781461023e578063e4784fa91461024f578063f2fde38b146102b9575f5ffd5b8063aef28235146101c3578063bd02d848146101d6578063d1f5789414610206578063d714fd1914610219575f5ffd5b8063715018a6116100ce578063715018a61461016657806379ba50971461016e5780638da5cb5b14610176578063a37d94111461019b575f5ffd5b8062a718a9146100fe578063237e6d641461012b57806335cb1099146101405780633a04514514610153575b5f5ffd5b61011161010c366004612140565b6102cc565b604080519283526020830191909152015b60405180910390f35b61013e6101393660046121a4565b610896565b005b61013e61014e366004612220565b610ad3565b61013e610161366004612278565b610b12565b61013e610baf565b61013e610bc2565b6002546001600160a01b03165b6040516001600160a01b039091168152602001610122565b6101836101a9366004612278565b60046020525f90815260409020546001600160a01b031681565b61013e6101d1366004612220565b610c0b565b6101e96101e4366004612278565b610c43565b604080519384526020840192909252151590820152606001610122565b61013e610214366004612293565b610cda565b5f54610183906001600160a01b031681565b61013e610239366004612278565b610e03565b6003546001600160a01b0316610183565b61029d61025d366004612278565b6001600160a01b03165f9081526001602090815260409182902082518084019093525462ffffff8082168085526301000000909204169290910182905291565b6040805162ffffff938416815292909116602083015201610122565b61013e6102c7366004612278565b610e34565b5f8060ff815c16156102f157604051633ee5aeb560e01b815260040160405180910390fd5b60015f805c60ff19168217905d505f546001600160a01b031680610328576040516379c39cf960e01b815260040160405180910390fd5b845f03610348576040516317ff0e0960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610380575f5ffd5b505af1158015610392573d5f5f3e3d5ffd5b505050505f5f6103a4838b8b8b610ea5565b915091506103df6040518060a001604052805f81526020015f81526020015f81526020015f81526020015f6001600160e01b03191681525090565b6101a0830151604051636da707db60e01b815273c355305c805bde1e5fc5fe0d1ba253577b5b27f891636da707db9161042391879187918f918f919060040161243c565b608060405180830381865af415801561043e573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104629190612481565b6001600160e01b031916608085018190526060850192909252604084019290925290955061048f906110c2565b878511156104b05760405163d65db62d60e01b815260040160405180910390fd5b60608201516104ca906001600160a01b03163330886110df565b6104f082604001518684606001516001600160a01b03166111469092919063ffffffff16565b5f876104fc57306104fe565b335b905061051b84604001518b8385604001518860a0015160016111cd565b825260408401516060830151608086015161053c92918d918591905f6111cd565b826020018181525050846001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561057d575f5ffd5b505af115801561058f573d5f5f3e3d5ffd5b505050604080850151905163acb7081560e01b8152600481018990526001600160a01b038d81166024830152909116915063acb70815906044016020604051808303815f875af11580156105e5573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061060991906124cd565b5087156107185781511561068f576040808501518351915163a7d6e44b60e01b81526001600160a01b039091169163a7d6e44b9161064d919060019060040161250c565b602060405180830381865afa158015610668573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061068c91906124cd565b96505b6020820151156107135783604001516001600160a01b031663a7d6e44b83602001515f6040518363ffffffff1660e01b81526004016106cf92919061250c565b602060405180830381865afa1580156106ea573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061070e91906124cd565b870196505b610825565b81511561079c57604080850151835191516306d29bb360e51b81526001600160a01b039091169163da53766091610759919033903090600190600401612520565b6020604051808303815f875af1158015610775573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061079991906124cd565b96505b6020820151156108255783604001516001600160a01b031663da537660836020015133305f6040518563ffffffff1660e01b81526004016107e09493929190612520565b6020604051808303815f875af11580156107fc573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061082091906124cd565b870196505b6040838101518151888152602081018a90528a15158184015291516001600160a01b038d81169392169133917f3a84f64446e8eada995aa9da2ddbfcd9b5d5d650503b19f024096d04c05ef2a99181900360600190a4505f93505050815c60ff19169050815d509550959350505050565b61089e611332565b6001600160a01b0382166108c55760405163d1af83ef60e01b815260040160405180910390fd5b806001600160a01b0316826001600160a01b0316631d7e35566040518163ffffffff1660e01b8152600401602060405180830381865afa15801561090b573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061092f919061255b565b6001600160a01b0316146109565760405163060a0aaf60e41b815260040160405180910390fd5b6001600160a01b038082165f9081526004602052604090205416801561098f5760405163d0c7225560e01b815260040160405180910390fd5b5f826001600160a01b031663eb3beb296040518163ffffffff1660e01b8152600401602060405180830381865afa1580156109cc573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f0919061255b565b90505f6109fd828561135f565b6001600160a01b0383165f90815260016020526040812054919250906301000000900462ffffff1690506104008217610a3582821790565b9150610a6484610a5e866001600160a01b03165f9081526001602052604090205462ffffff1690565b84611468565b6001600160a01b038681165f8181526004602090815260409182902080546001600160a01b031916948c16948517905581519384528301919091527f213d54ca7d6adb897962b4f78f6c2424aa527ee584f57a6000f961c507e0ec27910160405180910390a150505050505050565b610adc3361154b565b610af9576040516310528c6d60e11b815260040160405180910390fd5b604051632a188cb160e21b815260040160405180910390fd5b610b1a611332565b6001600160a01b038082165f908152600460205260409020541680610b5257604051632e77844760e21b815260040160405180910390fd5b6001600160a01b0382165f8181526004602090815260409182902080546001600160a01b031916905590519182527f94ac12f5301759f065db9de7f23677e50bef009f062b028d4d4612f620f0f5fb910160405180910390a15050565b610bb7611332565b610bc05f6115f3565b565b60035433906001600160a01b03168114610bff5760405163118cdaa760e01b81526001600160a01b03821660048201526024015b60405180910390fd5b610c08816115f3565b50565b610c143361160c565b610c31576040516358ec9b7760e11b815260040160405180910390fd5b610c3d84848484611823565b50505050565b5f8054604051631c2b1ded60e01b81526001600160a01b03918216600482015290831660248201528190819073c355305c805bde1e5fc5fe0d1ba253577b5b27f890631c2b1ded90604401606060405180830381865af4158015610ca9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ccd9190612581565b9250925092509193909250565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff165f81158015610d1f5750825b90505f8267ffffffffffffffff166001148015610d3b5750303b155b905081158015610d49575080155b15610d675760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff191660011785558315610d9157845460ff60401b1916600160401b1785555b5f610d9e87890189612278565b9050610da989611962565b610db2816119db565b508315610df957845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b610e0b611332565b6001600160a01b038116610bff57604051631e4fbdf760e01b81525f6004820152602401610bf6565b610e3c611332565b600380546001600160a01b0383166001600160a01b03199091168117909155610e6d6002546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b610ead612094565b610eb5612094565b6040516394c0527d60e01b81526001600160a01b0384811660048301528716906394c0527d9060240161044060405180830381865afa158015610efa573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f1e9190612706565b604081015191935091506001600160a01b0316610f4e57604051632f13551560e11b815260040160405180910390fd5b81606001516001600160a01b0316856001600160a01b031614610f845760405163055692d760e21b815260040160405180910390fd5b80606001516001600160a01b0316846001600160a01b031614610fba5760405163129e080d60e21b815260040160405180910390fd5b80604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015610ffb573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061101f91906124cd565b5080604001516001600160a01b031682604001516001600160a01b0316146110b95781604001516001600160a01b031663a6afed956040518163ffffffff1660e01b81526004016020604051808303815f875af1158015611082573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110a691906124cd565b506110b082611a0a565b6110b981611a0a565b94509492505050565b6001600160e01b031981165f036110d65750565b610c0881611a90565b6040516001600160a01b038481166024830152838116604483015260648201839052610c3d9186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050611ac1565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa158015611193573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111b791906124cd565b9050610c3d84846111c8858561274f565b611b27565b5f835f036111dc57505f611328565b6112b284886001600160a01b031663b6d821c7856040518263ffffffff1660e01b815260040161120c9190612762565b602060405180830381865afa158015611227573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061124b91906124cd565b856001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015611287573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112ab91906124cd565b5f86611bb6565b9050805f036112c257505f611328565b604051633661585b60e21b81526001600160a01b03878116600483015286811660248301526044820183905284169063d985616c906064015f604051808303815f87803b158015611311575f5ffd5b505af1158015611323573d5f5f3e3d5ffd5b505050505b9695505050505050565b6002546001600160a01b03163314610bc05760405163118cdaa760e01b8152336004820152602401610bf6565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392839283929091169063483b24f090602401606060405180830381865afa1580156113ad573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113d1919061277c565b925092509250816001600160a01b0316856001600160a01b0316036113fd576108009350505050611462565b826001600160a01b0316856001600160a01b031603611423576110009350505050611462565b806001600160a01b0316856001600160a01b031603611449576120009350505050611462565b60405163d938fa3760e01b815260040160405180910390fd5b92915050565b60408051808201825262ffffff84811680835284821660208085018281526001600160a01b038a165f81815260018452889020965187549251871663010000000265ffffffffffff1990931696169590951717909455845192835292820152918201527f1c26a8451bc890d476a0e7bb8310f00750604879bb30d4813a7718a1ee089fa69060600160405180910390a1826001600160a01b031663cad1aacf6040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611530575f5ffd5b505af1158015611542573d5f5f3e3d5ffd5b50505050505050565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015611592573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906115b691906127bb565b91509150816001600160a01b0316846001600160a01b031614806115eb5750806001600160a01b0316846001600160a01b0316145b949350505050565b600380546001600160a01b0319169055610c0881611bf3565b5f80546040805163aecc90cb60e01b81528151849384936001600160a01b039091169263aecc90cb92600480830193928290030181865afa158015611653573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061167791906127bb565b91509150816001600160a01b0316846001600160a01b031614806116ac5750806001600160a01b0316846001600160a01b0316145b156116bb575060019392505050565b5f8054604051630483b24f60e41b81526001600160a01b0385811660048301528392169063483b24f090602401606060405180830381865afa158015611703573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611727919061277c565b919350909150506001600160a01b0386811690831614806117595750806001600160a01b0316866001600160a01b0316145b1561176a5750600195945050505050565b5f54604051630483b24f60e41b81526001600160a01b0385811660048301529091169063483b24f090602401606060405180830381865afa1580156117b1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117d5919061277c565b919350909150506001600160a01b0386811690831614806118075750806001600160a01b0316866001600160a01b0316145b156118185750600195945050505050565b505f95945050505050565b335f908152600460205260409020546001600160a01b0316806118465750610c3d565b61187b84611875876001600160a01b03165f9081526001602052604090205462ffffff63010000009091041690565b81161490565b6118855750610c3d565b5f6118c484848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250611c4492505050565b805160608201516020830151608084015160a0850151604080870151905163bbdc013b60e01b81526001600160a01b039687166004820152602481019590955292851660448501526064840191909152608483015260a482015291925083169063bbdc013b9060c4015f604051808303815f87803b158015611944575f5ffd5b505af1158015611956573d5f5f3e3d5ffd5b50505050505050505050565b61196a611ce8565b6001600160a01b038116611991576040516379c39cf960e01b815260040160405180910390fd5b5f546001600160a01b0316156119ba576040516308db0db560e11b815260040160405180910390fd5b5f80546001600160a01b0319166001600160a01b0392909216919091179055565b6119e3611ce8565b6001600160a01b038116610bff576040516354a4010f60e01b815260040160405180910390fd5b8061020001518015611a28575060e08101516001600160a01b031615155b15610c085760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015f604051808303815f87803b158015611a77575f5ffd5b505af1158015611a89573d5f5f3e3d5ffd5b5050505050565b6040805160048152602481019091526020810180516001600160e01b03166001600160e01b03198416178152815190fd5b5f611ad56001600160a01b03841683611d31565b905080515f14158015611af9575080806020019051810190611af791906127e8565b155b15611b2257604051635274afe760e01b81526001600160a01b0384166004820152602401610bf6565b505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b179052611b788482611d45565b610c3d576040516001600160a01b0384811660248301525f6044830152611bac91869182169063095ea7b390606401611114565b610c3d8482611ac1565b5f5f5f611bc4878786611de2565b91509150815f03611bd9578792505050611bea565b611be588838388611e3d565b925050505b95945050505050565b600280546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b611c896040518060c001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81526020015f81525090565b506014810151602882015160488301516068840151608885015160a8909501516040805160c0810182526001600160a01b039687168152959094166020860152928401919091526060830152608082019290925260a081019190915290565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff16610bc057604051631afcd79f60e31b815260040160405180910390fd5b6060611d3e83835f611e7f565b9392505050565b5f5f5f846001600160a01b031684604051611d609190612803565b5f604051808303815f865af19150503d805f8114611d99576040519150601f19603f3d011682016040523d82523d5f602084013e611d9e565b606091505b5091509150818015611dc8575080511580611dc8575080806020019051810190611dc891906127e8565b8015611bea5750505050506001600160a01b03163b151590565b5f5f835f03611def575f94505b6002836002811115611e0357611e036124e4565b14611e2e57611e146003600a6128fc565b611e1e908561274f565b611e2986600161274f565b611e31565b83855b90969095509350505050565b5f611e6a611e4a83611f15565b8015611e6557505f8480611e6057611e60612907565b868809115b151590565b611e75868686611f41565b611bea919061274f565b606081471015611eab5760405163cf47918160e01b815247600482015260248101839052604401610bf6565b5f5f856001600160a01b03168486604051611ec69190612803565b5f6040518083038185875af1925050503d805f8114611f00576040519150601f19603f3d011682016040523d82523d5f602084013e611f05565b606091505b5091509150611328868383611ffe565b5f6002826003811115611f2a57611f2a6124e4565b611f34919061291b565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03611f7557838281611f6b57611f6b612907565b0492505050611d3e565b808411611f9357611f938415611f8c57601161205a565b601261205a565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b6060826120135761200e8261206b565b611d3e565b815115801561202a57506001600160a01b0384163b155b1561205357604051639996b31560e01b81526001600160a01b0385166004820152602401610bf6565b5080611d3e565b634e487b715f52806020526024601cfd5b80511561207b5780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b0381168114610c08575f5ffd5b8015158114610c08575f5ffd5b5f5f5f5f5f60a08688031215612154575f5ffd5b853561215f8161211f565b9450602086013561216f8161211f565b9350604086013561217f8161211f565b925060608601359150608086013561219681612133565b809150509295509295909350565b5f5f604083850312156121b5575f5ffd5b82356121c08161211f565b915060208301356121d08161211f565b809150509250929050565b5f5f83601f8401126121eb575f5ffd5b50813567ffffffffffffffff811115612202575f5ffd5b602083019150836020828501011115612219575f5ffd5b9250929050565b5f5f5f5f60608587031215612233575f5ffd5b843561223e8161211f565b935060208501359250604085013567ffffffffffffffff811115612260575f5ffd5b61226c878288016121db565b95989497509550505050565b5f60208284031215612288575f5ffd5b8135611d3e8161211f565b5f5f5f604084860312156122a5575f5ffd5b83356122b08161211f565b9250602084013567ffffffffffffffff8111156122cb575f5ffd5b6122d7868287016121db565b9497909650939450505050565b8051825260208101516020830152604081015161230c60408401826001600160a01b03169052565b50606081015161232760608401826001600160a01b03169052565b50608081015161234260808401826001600160a01b03169052565b5060a081015161235d60a08401826001600160a01b03169052565b5060c081015161237860c08401826001600160a01b03169052565b5060e081015161239360e08401826001600160a01b03169052565b506101008101516123b06101008401826001600160a01b03169052565b506101208101516123cd6101208401826001600160a01b03169052565b506101408101516101408301526101608101516101608301526101808101516101808301526101a08101516101a08301526101c08101516101c08301526101e08101516124266101e08401826001600160a01b03169052565b50610200810151611b2261020084018215159052565b6104a0810161244b82886122e4565b6124596102208301876122e4565b6001600160a01b03949094166104408201526104608101929092526104809091015292915050565b5f5f5f5f60808587031215612494575f5ffd5b845160208601516040870151606088015192965090945092506001600160e01b0319811681146124c2575f5ffd5b939692955090935050565b5f602082840312156124dd575f5ffd5b5051919050565b634e487b7160e01b5f52602160045260245ffd5b60028110612508576125086124e4565b9052565b82815260408101611d3e60208301846124f8565b8481526001600160a01b0384811660208301528316604082015260808101611bea60608301846124f8565b80516125568161211f565b919050565b5f6020828403121561256b575f5ffd5b8151611d3e8161211f565b805161255681612133565b5f5f5f60608486031215612593575f5ffd5b83516020850151604086015191945092506125ad81612133565b809150509250925092565b604051610220810167ffffffffffffffff811182821017156125e857634e487b7160e01b5f52604160045260245ffd5b60405290565b5f61022082840312156125ff575f5ffd5b6126076125b8565b825181526020808401519082015290506126236040830161254b565b60408201526126346060830161254b565b60608201526126456080830161254b565b608082015261265660a0830161254b565b60a082015261266760c0830161254b565b60c082015261267860e0830161254b565b60e082015261268a610100830161254b565b61010082015261269d610120830161254b565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526126e76101e0830161254b565b6101e08201526126fa6102008301612576565b61020082015292915050565b5f5f6104408385031215612718575f5ffd5b61272284846125ee565b91506127328461022085016125ee565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b808201808211156114625761146261273b565b6020810160038310612776576127766124e4565b91905290565b5f5f5f6060848603121561278e575f5ffd5b83516127998161211f565b60208501519093506127aa8161211f565b60408501519092506125ad8161211f565b5f5f604083850312156127cc575f5ffd5b82516127d78161211f565b60208401519092506121d08161211f565b5f602082840312156127f8575f5ffd5b8151611d3e81612133565b5f82518060208501845e5f920191825250919050565b6001815b6001841115612854578085048111156128385761283861273b565b600184161561284657908102905b60019390931c92800261281d565b935093915050565b5f8261286a57506001611462565b8161287657505f611462565b816001811461288c5760028114612896576128b2565b6001915050611462565b60ff8411156128a7576128a761273b565b50506001821b611462565b5060208310610133831016604e8410600b84101617156128d5575081810a611462565b6128e15f198484612819565b805f19048211156128f4576128f461273b565b029392505050565b5f611d3e838361285c565b634e487b7160e01b5f52601260045260245ffd5b5f60ff83168061293957634e487b7160e01b5f52601260045260245ffd5b8060ff8416069150509291505056fea264697066735822122047bb22ba86959fb9e7aae26f6ee8386939b8929c8a162924575577e036d9b94a64736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.