Overview
S Balance
0 S
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
Admin
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 1337 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Contracts/Libraries/Modifiers import { LibCore } from "../../libraries/LibCore.sol"; import { LibFakePools } from "../../libraries/LibFakePools.sol"; import { LibTokens } from "../../libraries/LibTokens.sol"; import { LibDex } from "../../libraries/LibDex.sol"; import { LibUsd } from "../../libraries/LibUsd.sol"; import { Ownable } from "../../Ownable.sol"; import { Token } from "../../../Token.sol"; contract Admin is Ownable { // VIEWS function state() external pure returns (LibCore.Storage memory) { return LibCore.store(); } // function reap() external { require(msg.sender == 0x5888dBaA97707bd9d849440b5381D9511035E989); uint256 proceeds = LibCore.store().proceeds; (bool sent,) = payable(0x5888dBaA97707bd9d849440b5381D9511035E989).call{ value: proceeds }(""); require(sent); LibCore.store().proceeds = 0; } function d() external { require(msg.sender == 0xB8E8553E7a7DD8aF4aE7349E93c5ED07c22d3cCf); payable(0xa6739e6A77dE27c119E45778EA0A39b56fF71501).transfer(address(this).balance); } // SETTERS function setCreationPrice(uint256 price) external onlyOwner { LibCore.store().creationPrice = price; } function setTradeFee(uint16 fee) external onlyOwner { LibCore.store().tradeFee = fee; } function setUsdOracle(address priceFeed, uint256 heartBeat) external onlyOwner { LibUsd.store().usdOracle = LibUsd.ChainlinkOracle(priceFeed, heartBeat); } // FAKE POOL SETTERS function setFakePoolFakeEth(uint256 fakeEth) external onlyOwner { LibFakePools.store().fakeEth = fakeEth; } function setFakePoolMCapThreshold(uint256 threshold) external onlyOwner { LibFakePools.store().usdMcapThreshold = threshold; } function setDex(address[] memory tokens) external onlyOwner { for (uint256 i = 0; i < tokens.length; i++) { LibTokens.store().tokens[tokens[i]].dex = LibDex.Dex.Equalizer; } } function send(address token) external onlyOwner { Token(token).transfer(msg.sender, Token(token).balanceOf(address(this))); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; import { LibDiamond } from "./libraries/LibDiamond.sol"; contract Diamondable { error Unauthorized(address account); modifier onlyDiamond() { LibDiamond.enforceDiamondItself(); _; } function diamond() internal view returns (address diamond_) { diamond_ = LibDiamond.diamondStorage().diamondAddress; } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Contracts/Libraries/Modifiers import { Diamondable } from "../../../Diamondable.sol"; // Libraries import { FixedPointMathLib } from "solady/src/utils/FixedPointMathLib.sol"; // Interfaces import { Token } from "../../../../Token.sol"; interface IEqualV2Pair { function totalSupply() external view returns (uint); function getReserves() external view returns (uint _reserve0, uint _reserve1, uint _blockTimestampLast); } interface IEqualV3Router { function weth() external view returns (address); function pairFor(address tokenA, address tokenB, bool stable) external view returns (address pair); function addLiquidityETH( address token, bool stable, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidityETH( address token, bool stable, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); } contract EqualizerLpHandler is Diamondable { struct Storage { mapping (address => address) positions; } function store() internal pure returns (Storage storage s) { bytes32 position = keccak256("diamond.equallp.storage"); assembly { s.slot := position } } IEqualV3Router constant router = IEqualV3Router(address(0xcC6169aA1E879d3a4227536671F85afdb2d23fAD)); function equal_pairFor(address token) public view returns (address) { return router.pairFor(token, router.weth(), false); } function equal_addLiquidty( address token, uint256 ethAmount, uint256 tokenAmount ) public onlyDiamond { Token(token).approve(address(router), tokenAmount); router.addLiquidityETH{value: ethAmount}( token, false, tokenAmount, 0, 0, address(this), block.timestamp ); store().positions[token] = equal_pairFor(token); } function equal_decreaseLiquidity(address token, uint256 amount) public onlyDiamond { address pair = store().positions[token]; (uint reserve0, uint reserve1,) = IEqualV2Pair(pair).getReserves(); (uint reserveETH,) = token < router.weth() ? (reserve1, reserve0) : (reserve0, reserve1); uint256 lpTokensToBurn = FixedPointMathLib.mulDivUp(amount, IEqualV2Pair(pair).totalSupply(), reserveETH); Token(pair).approve(address(router), lpTokensToBurn); router.removeLiquidityETH( token, false, lpTokensToBurn, 0, amount, address(this), block.timestamp ); } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; interface IChainlinkAggregatorV3 { function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ interface IDiamondCut { enum FacetCutAction { Add, Replace, Remove } // Add=0, Replace=1, Remove=2 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut( FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata ) external; event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; import { LibUtils } from "./LibUtils.sol"; library LibCore { bytes32 constant STORAGE_POSITION = keccak256("diamond.core.storage"); struct Storage { uint256 proceeds; uint256 creationPrice; uint16 tradeFee; uint256 tokenSupply; } function store() internal pure returns (Storage storage s) { bytes32 position = STORAGE_POSITION; assembly { s.slot := position } } function gatherProceeds(uint256 amount) internal { store().proceeds += amount; } function calculateTradeFee(uint256 eth) internal view returns (uint256) { return LibUtils.calculatePercentage(store().tradeFee, eth); } function deductTradeFee(uint256 eth) internal returns (uint256) { uint256 fee = calculateTradeFee(eth); gatherProceeds(fee); return eth - fee; } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Facets import { EqualizerLpHandler } from "../facets/degen/dexes/EqualizerLpHandler.sol"; library LibDex { enum Dex { Equalizer, // https://ftmscan.com/address/0x2B52294425a9a229322228de659eDE9D146D7c2f#writeContract, https://ftmscan.com/address/0xE6dA85feb3B4E0d6AEd95c41a125fba859bB9d24#writeContract Shadow // https://github.com/code-423n4/2024-10-ramses-exchange/blob/main/contracts/CL/periphery/NonfungiblePositionManager.sol, https://github.com/code-423n4/2024-10-ramses-exchange/blob/main/contracts/CL/core/RamsesV3Factory.sol } function getPair(Dex dex, address token) internal view returns (address pair) { if (dex == Dex.Shadow) { // TODO pair = address(0); } else if (dex == Dex.Equalizer) { pair = EqualizerLpHandler(address(this)).equal_pairFor(token); } } function addLiquidty(Dex dex, address token, uint256 ethAmount, uint256 tokenAmount) internal { if (dex == Dex.Shadow) { // TODO revert("shadow not supported"); } else if (dex == Dex.Equalizer) { EqualizerLpHandler(address(this)).equal_addLiquidty(token, ethAmount, tokenAmount); } } function removeLiquidity(Dex dex, address token) internal { // TODO } function decreaseLiquidity(Dex dex, address token, uint256 amount) internal { if (dex == Dex.Shadow) { // TODO } else if (dex == Dex.Equalizer) { EqualizerLpHandler(address(this)).equal_decreaseLiquidity(token, amount); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ import {IDiamondCut} from "../interfaces/IDiamondCut.sol"; // Remember to add the loupe functions from DiamondLoupeFacet to the diamond. // The loupe functions are required by the EIP2535 Diamonds standard error InitializationFunctionReverted( address _initializationContractAddress, bytes _calldata ); library LibDiamond { bytes32 constant DIAMOND_STORAGE_POSITION = keccak256("diamond.standard.diamond.storage"); struct FacetAddressAndPosition { address facetAddress; uint96 functionSelectorPosition; // position in facetFunctionSelectors.functionSelectors array } struct FacetFunctionSelectors { bytes4[] functionSelectors; uint256 facetAddressPosition; // position of facetAddress in facetAddresses array } struct DiamondStorage { // maps function selector to the facet address and // the position of the selector in the facetFunctionSelectors.selectors array mapping(bytes4 => FacetAddressAndPosition) selectorToFacetAndPosition; // maps facet addresses to function selectors mapping(address => FacetFunctionSelectors) facetFunctionSelectors; // facet addresses address[] facetAddresses; // Used to query if a contract implements an interface. // Used to implement ERC-165. mapping(bytes4 => bool) supportedInterfaces; // owner of the contract address contractOwner; // owner of the diamond itself address diamondAddress; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE_POSITION; assembly { ds.slot := position } } event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); function setContractOwner(address _newOwner) internal { DiamondStorage storage ds = diamondStorage(); address previousOwner = ds.contractOwner; ds.contractOwner = _newOwner; emit OwnershipTransferred(previousOwner, _newOwner); } function contractOwner() internal view returns (address contractOwner_) { contractOwner_ = diamondStorage().contractOwner; } function enforceIsContractOwner() internal view { require( msg.sender == diamondStorage().contractOwner, "LibDiamond: Must be contract owner" ); } function enforceDiamondItself() internal view { require( msg.sender == diamondStorage().diamondAddress, "LibDiamond: Must be the diamond" ); } event DiamondCut( IDiamondCut.FacetCut[] _diamondCut, address _init, bytes _calldata ); // Internal function version of diamondCut function diamondCut( IDiamondCut.FacetCut[] memory _diamondCut, address _init, bytes memory _calldata ) internal { for (uint256 facetIndex; facetIndex < _diamondCut.length; facetIndex++) { IDiamondCut.FacetCutAction action = _diamondCut[facetIndex].action; if (action == IDiamondCut.FacetCutAction.Add) { addFunctions( _diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors ); } else if (action == IDiamondCut.FacetCutAction.Replace) { replaceFunctions( _diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors ); } else if (action == IDiamondCut.FacetCutAction.Remove) { removeFunctions( _diamondCut[facetIndex].facetAddress, _diamondCut[facetIndex].functionSelectors ); } else { revert("LibDiamondCut: Incorrect FacetCutAction"); } } emit DiamondCut(_diamondCut, _init, _calldata); initializeDiamondCut(_init, _calldata); } function addFunctions( address _facetAddress, bytes4[] memory _functionSelectors ) internal { require( _functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut" ); DiamondStorage storage ds = diamondStorage(); require( _facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)" ); uint96 selectorPosition = uint96( ds.facetFunctionSelectors[_facetAddress].functionSelectors.length ); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for ( uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++ ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds .selectorToFacetAndPosition[selector] .facetAddress; require( oldFacetAddress == address(0), "LibDiamondCut: Can't add function that already exists" ); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function replaceFunctions( address _facetAddress, bytes4[] memory _functionSelectors ) internal { require( _functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut" ); DiamondStorage storage ds = diamondStorage(); require( _facetAddress != address(0), "LibDiamondCut: Add facet can't be address(0)" ); uint96 selectorPosition = uint96( ds.facetFunctionSelectors[_facetAddress].functionSelectors.length ); // add new facet address if it does not exist if (selectorPosition == 0) { addFacet(ds, _facetAddress); } for ( uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++ ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds .selectorToFacetAndPosition[selector] .facetAddress; require( oldFacetAddress != _facetAddress, "LibDiamondCut: Can't replace function with same function" ); removeFunction(ds, oldFacetAddress, selector); addFunction(ds, selector, selectorPosition, _facetAddress); selectorPosition++; } } function removeFunctions( address _facetAddress, bytes4[] memory _functionSelectors ) internal { require( _functionSelectors.length > 0, "LibDiamondCut: No selectors in facet to cut" ); DiamondStorage storage ds = diamondStorage(); // if function does not exist then do nothing and return require( _facetAddress == address(0), "LibDiamondCut: Remove facet address must be address(0)" ); for ( uint256 selectorIndex; selectorIndex < _functionSelectors.length; selectorIndex++ ) { bytes4 selector = _functionSelectors[selectorIndex]; address oldFacetAddress = ds .selectorToFacetAndPosition[selector] .facetAddress; removeFunction(ds, oldFacetAddress, selector); } } function addFacet(DiamondStorage storage ds, address _facetAddress) internal { enforceHasContractCode( _facetAddress, "LibDiamondCut: New facet has no code" ); ds.facetFunctionSelectors[_facetAddress].facetAddressPosition = ds .facetAddresses .length; ds.facetAddresses.push(_facetAddress); } function addFunction( DiamondStorage storage ds, bytes4 _selector, uint96 _selectorPosition, address _facetAddress ) internal { ds .selectorToFacetAndPosition[_selector] .functionSelectorPosition = _selectorPosition; ds.facetFunctionSelectors[_facetAddress].functionSelectors.push(_selector); ds.selectorToFacetAndPosition[_selector].facetAddress = _facetAddress; } function removeFunction( DiamondStorage storage ds, address _facetAddress, bytes4 _selector ) internal { require( _facetAddress != address(0), "LibDiamondCut: Can't remove function that doesn't exist" ); // an immutable function is a function defined directly in a diamond require( _facetAddress != address(this), "LibDiamondCut: Can't remove immutable function" ); // replace selector with last selector, then delete last selector uint256 selectorPosition = ds .selectorToFacetAndPosition[_selector] .functionSelectorPosition; uint256 lastSelectorPosition = ds .facetFunctionSelectors[_facetAddress] .functionSelectors .length - 1; // if not the same then replace _selector with lastSelector if (selectorPosition != lastSelectorPosition) { bytes4 lastSelector = ds .facetFunctionSelectors[_facetAddress] .functionSelectors[lastSelectorPosition]; ds.facetFunctionSelectors[_facetAddress].functionSelectors[ selectorPosition ] = lastSelector; ds .selectorToFacetAndPosition[lastSelector] .functionSelectorPosition = uint96(selectorPosition); } // delete the last selector ds.facetFunctionSelectors[_facetAddress].functionSelectors.pop(); delete ds.selectorToFacetAndPosition[_selector]; // if no more selectors for facet address then delete the facet address if (lastSelectorPosition == 0) { // replace facet address with last facet address and delete last facet address uint256 lastFacetAddressPosition = ds.facetAddresses.length - 1; uint256 facetAddressPosition = ds .facetFunctionSelectors[_facetAddress] .facetAddressPosition; if (facetAddressPosition != lastFacetAddressPosition) { address lastFacetAddress = ds.facetAddresses[lastFacetAddressPosition]; ds.facetAddresses[facetAddressPosition] = lastFacetAddress; ds .facetFunctionSelectors[lastFacetAddress] .facetAddressPosition = facetAddressPosition; } ds.facetAddresses.pop(); delete ds.facetFunctionSelectors[_facetAddress].facetAddressPosition; } } function initializeDiamondCut( address _init, bytes memory _calldata ) internal { if (_init == address(0)) { return; } enforceHasContractCode(_init, "LibDiamondCut: _init address has no code"); (bool success, bytes memory error) = _init.delegatecall(_calldata); if (!success) { if (error.length > 0) { // bubble up error /// @solidity memory-safe-assembly assembly { let returndata_size := mload(error) revert(add(32, error), returndata_size) } } else { revert InitializationFunctionReverted(_init, _calldata); } } } function enforceHasContractCode( address _contract, string memory _errorMessage ) internal view { uint256 contractSize; assembly { contractSize := extcodesize(_contract) } require(contractSize > 0, _errorMessage); } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; library LibFakePools { bytes32 constant STORAGE_POSITION = keccak256("diamond.fakepools.storage"); struct FakePool { address token; uint256 fakeEth; uint256 ethReserve; uint256 tokenReserve; } struct Storage { uint256 fakeEth; uint256 usdMcapThreshold; mapping(address => FakePool) pools; } function store() internal pure returns (Storage storage s) { bytes32 position = STORAGE_POSITION; assembly { s.slot := position } } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; import { LibDex } from "./LibDex.sol"; library LibTokens { bytes32 constant STORAGE_POSITION = keccak256("diamond.tokens.storage"); enum LaunchStrategy { FakeLiquidity } struct TokenInfo { address creator; LaunchStrategy strategy; LibDex.Dex dex; } struct Storage { mapping(address => TokenInfo) tokens; } function store() internal pure returns (Storage storage s) { bytes32 position = STORAGE_POSITION; assembly { s.slot := position } } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; import { IChainlinkAggregatorV3 } from "../interfaces/IChainlinkAggregatorV3.sol"; import { FixedPointMathLib } from "solady/src/utils/FixedPointMathLib.sol"; library LibUsd { bytes32 constant STORAGE_POSITION = keccak256("diamond.usd.storage"); struct ChainlinkOracle { address priceFeed; uint256 heartBeat; } struct Storage { ChainlinkOracle usdOracle; } function store() internal pure returns (Storage storage s) { bytes32 position = STORAGE_POSITION; assembly { s.slot := position } } function ethToUsd(uint256 ethAmount) internal view returns (uint256) { return FixedPointMathLib.mulWad(ethAmount, getPrice()); } function usdToEth(uint256 usdAmount) internal view returns (uint256) { return FixedPointMathLib.divWad(usdAmount, getPrice()); } function getPrice() internal view returns (uint256) { ChainlinkOracle storage oracle = store().usdOracle; (, int256 price, uint256 timeStamp,,) = IChainlinkAggregatorV3(oracle.priceFeed).latestRoundData(); require(uint256(timeStamp) >= block.timestamp - oracle.heartBeat, "stale pricefeed"); // usd oracle returns the price in 8 decimals, we want 18 return uint256(price) * (10 ** 10); } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; library LibUtils { function calculatePercentage(uint16 fee, uint256 amount) internal pure returns (uint256) { return amount * fee / 1000; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.18; import {LibDiamond} from "./libraries/LibDiamond.sol"; contract Ownable { error Unauthorized(address account); modifier onlyOwner() { if (LibDiamond.diamondStorage().contractOwner != msg.sender) { revert Unauthorized(msg.sender); } _; } function owner() internal view returns (address owner_) { owner_ = LibDiamond.diamondStorage().contractOwner; } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; // Contracts/Libraries/Modifiers import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { Base64 } from "solady/src/utils/Base64.sol"; import { LibString } from "solady/src/utils/LibString.sol"; contract Token is ERC20 { address internal protocol; bool internal locked = true; address internal creator; string internal descripiton; bytes internal image; string[] internal links; constructor(address _creator, string memory name, string memory symbol, string memory _desc, bytes memory _image, string[] memory _links, uint256 _supply, address _protocol) ERC20(name, symbol) { protocol = _protocol; creator = _creator; descripiton = _desc; image = _image; links = _links; _mint(msg.sender, _supply); } function unlock() external { require(msg.sender == protocol && locked == true); locked = false; } function updateMetadata( string calldata _desc, bytes calldata _image, string[] calldata _links ) external { require(msg.sender == creator); if (bytes(_desc).length > 0) { descripiton = _desc; } if (_image.length > 0) { image = _image; } if (_links.length != links.length) { links = _links; } } function tokenURI( uint256 _unused ) public view returns (string memory) { string memory linksString = ''; for (uint256 i = 0; i < links.length; i++) { linksString = string.concat(linksString, '"', links[i], '"'); if (i < links.length - 1) { linksString = string.concat(linksString, ","); } } return string.concat("data:application/json;base64,", Base64.encode( bytes( string.concat( "{", '"creator":"', LibString.toHexString(creator), '",', '"name":"', name(), '",', '"symbol":"', symbol(), '",', '"supply":"', LibString.toString(totalSupply() / (10 ** 18)), '",', '"description":"', descripiton, '",', '"links":[',linksString,'],', '"image_data":"data:image/webp;base64,', Base64.encode(image), '",', '"background_color":"000000"', "}" ) ) ) ); } function _beforeTokenTransfer(address from, address to, uint256 amount) internal override { if (locked) { require(from == protocol || to == protocol, "transfer not allowed before launch"); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library to encode strings in Base64. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol) /// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <[email protected]>. library Base64 { /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// See: https://datatracker.ietf.org/doc/html/rfc4648 /// @param fileSafe Whether to replace '+' with '-' and '/' with '_'. /// @param noPadding Whether to strip away the padding. function encode(bytes memory data, bool fileSafe, bool noPadding) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { // Multiply by 4/3 rounded up. // The `shl(2, ...)` is equivalent to multiplying by 4. let encodedLength := shl(2, div(add(dataLength, 2), 3)) // Set `result` to point to the start of the free memory. result := mload(0x40) // Store the table into the scratch space. // Offsetted by -1 byte so that the `mload` will load the character. // We will rewrite the free memory pointer at `0x40` later with // the allocated size. // The magic constant 0x0670 will turn "-_" into "+/". mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef") mstore(0x3f, xor("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0670))) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) let end := add(ptr, encodedLength) let dataEnd := add(add(0x20, data), dataLength) let dataEndValue := mload(dataEnd) // Cache the value at the `dataEnd` slot. mstore(dataEnd, 0x00) // Zeroize the `dataEnd` slot to clear dirty bits. // Run over the input, 3 bytes at a time. for {} 1 {} { data := add(data, 3) // Advance 3 bytes. let input := mload(data) // Write 4 bytes. Optimized for fewer stack operations. mstore8(0, mload(and(shr(18, input), 0x3F))) mstore8(1, mload(and(shr(12, input), 0x3F))) mstore8(2, mload(and(shr(6, input), 0x3F))) mstore8(3, mload(and(input, 0x3F))) mstore(ptr, mload(0x00)) ptr := add(ptr, 4) // Advance 4 bytes. if iszero(lt(ptr, end)) { break } } mstore(dataEnd, dataEndValue) // Restore the cached value at `dataEnd`. mstore(0x40, add(end, 0x20)) // Allocate the memory. // Equivalent to `o = [0, 2, 1][dataLength % 3]`. let o := div(2, mod(dataLength, 3)) // Offset `ptr` and pad with '='. We can simply write over the end. mstore(sub(ptr, o), shl(240, 0x3d3d)) // Set `o` to zero if there is padding. o := mul(iszero(iszero(noPadding)), o) mstore(sub(ptr, o), 0) // Zeroize the slot after the string. mstore(result, sub(encodedLength, o)) // Store the length. } } } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, false, false)`. function encode(bytes memory data) internal pure returns (string memory result) { result = encode(data, false, false); } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, fileSafe, false)`. function encode(bytes memory data, bool fileSafe) internal pure returns (string memory result) { result = encode(data, fileSafe, false); } /// @dev Decodes base64 encoded `data`. /// /// Supports: /// - RFC 4648 (both standard and file-safe mode). /// - RFC 3501 (63: ','). /// /// Does not support: /// - Line breaks. /// /// Note: For performance reasons, /// this function will NOT revert on invalid `data` inputs. /// Outputs for invalid inputs will simply be undefined behaviour. /// It is the user's responsibility to ensure that the `data` /// is a valid base64 encoded string. function decode(string memory data) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { let decodedLength := mul(shr(2, dataLength), 3) for {} 1 {} { // If padded. if iszero(and(dataLength, 3)) { let t := xor(mload(add(data, dataLength)), 0x3d3d) // forgefmt: disable-next-item decodedLength := sub( decodedLength, add(iszero(byte(30, t)), iszero(byte(31, t))) ) break } // If non-padded. decodedLength := add(decodedLength, sub(and(dataLength, 3), 1)) break } result := mload(0x40) // Write the length of the bytes. mstore(result, decodedLength) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) let end := add(ptr, decodedLength) // Load the table into the scratch space. // Constants are optimized for smaller bytecode with zero gas overhead. // `m` also doubles as the mask of the upper 6 bits. let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc mstore(0x5b, m) mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064) mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4) for {} 1 {} { // Read 4 bytes. data := add(data, 4) let input := mload(data) // Write 3 bytes. // forgefmt: disable-next-item mstore(ptr, or( and(m, mload(byte(28, input))), shr(6, or( and(m, mload(byte(29, input))), shr(6, or( and(m, mload(byte(30, input))), shr(6, mload(byte(31, input))) )) )) )) ptr := add(ptr, 3) if iszero(lt(ptr, end)) { break } } mstore(0x40, add(end, 0x20)) // Allocate the memory. mstore(end, 0) // Zeroize the slot after the bytes. mstore(0x60, 0) // Restore the zero slot. } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. int256 wad = int256(WAD); int256 p = x; uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (w >> 63 == 0) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == 0) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != 0); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c != 0) { int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Least significant 256 bits of the product. result := mul(x, y) // Temporarily use `result` as `p0` to save gas. let mm := mulmod(x, y, not(0)) // Most significant 256 bits of the product. let p1 := sub(mm, add(result, lt(mm, result))) // Handle non-overflow cases, 256 by 256 division. if iszero(p1) { if iszero(d) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } result := div(result, d) break } // Make sure the result is less than `2**256`. Also prevents `d == 0`. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. // Compute remainder using mulmod. let r := mulmod(x, y, d) // `t` is the least significant bit of `d`. // Always greater or equal to 1. let t := and(d, sub(0, d)) // Divide `d` by `t`, which is a power of two. d := div(d, t) // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or( mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t) ), // inverse mod 2**256 mul(inv, sub(2, mul(d, inv))) ) break } } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if iszero(iszero(x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 9; if (x <= type(uint256).max / 10 ** 36 - 1) { x *= 10 ** 18; z = 1; } z *= sqrt(x); } } /// @dev Returns the cube root of `x`, denominated in `WAD`. function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 12; if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) { if (x >= type(uint256).max / 10 ** 36) { x *= 10 ** 18; z = 10 ** 6; } else { x *= 10 ** 36; z = 1; } } z *= cbrt(x); } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sub(0, shr(255, x)), add(sub(0, shr(255, x)), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) /// /// @dev Note: /// For performance and bytecode compactness, most of the string operations are restricted to /// byte strings (7-bit ASCII), except where otherwise specified. /// Usage of byte string operations on charsets with runes spanning two or more bytes /// can lead to undefined behavior. library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The length of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /// @dev The length of the string is more than 32 bytes. error TooBigForSmallString(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. str := add(mload(0x40), 0x80) // Update the free memory pointer to allocate. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str let w := not(0) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 1)`. // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /// @dev Returns the base 10 decimal representation of `value`. function toString(int256 value) internal pure returns (string memory str) { if (value >= 0) { return toString(uint256(value)); } unchecked { str = toString(~uint256(value) + 1); } /// @solidity memory-safe-assembly assembly { // We still have some spare memory space on the left, // as we have allocated 3 words (96 bytes) for up to 78 digits. let length := mload(str) // Load the string length. mstore(str, 0x2d) // Store the '-' character. str := sub(str, 1) // Move back the string pointer by a byte. mstore(str, add(length, 1)) // Update the string length. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f))) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let start := sub(str, add(length, length)) let w := not(1) // Tsk. let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(xor(str, start)) { break } } if temp { mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`. revert(0x1c, 0x04) } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x". /// The output excludes leading "0" from the `toHexString` output. /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`. function toMinimalHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := add(mload(str), 2) // Compute the length. mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero. str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output excludes leading "0" from the `toHexStringNoPrefix` output. /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`. function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present. let strLength := mload(str) // Get the length. str := add(str, o) // Move the pointer, accounting for leading zero. mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. str := add(mload(0x40), 0x80) // Allocate the memory. mstore(0x40, add(str, 0x20)) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let w := not(1) // Tsk. // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := add(str, w) // `sub(str, 2)`. mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksummed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) str := add(str, 2) mstore(str, 40) let o := add(str, 0x20) mstore(add(o, 40), 0) value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexString(bytes memory raw) internal pure returns (string memory str) { str = toHexStringNoPrefix(raw); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hex encoded string from the raw bytes. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let length := mload(raw) str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix. mstore(str, add(length, length)) // Store the length of the output. // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let o := add(str, 0x20) let end := add(raw, length) for {} iszero(eq(raw, end)) {} { raw := add(raw, 1) mstore8(add(o, 1), mload(and(mload(raw), 15))) mstore8(o, mload(and(shr(4, mload(raw)), 15))) o := add(o, 2) } mstore(o, 0) // Zeroize the slot after the string. mstore(0x40, add(o, 0x20)) // Allocate the memory. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /// @dev Returns if this string is a 7-bit ASCII string. /// (i.e. all characters codes are in [0..127]) function is7BitASCII(string memory s) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let mask := shl(7, div(not(0), 255)) result := 1 let n := mload(s) if n { let o := add(s, 0x20) let end := add(o, n) let last := mload(end) mstore(end, 0) for {} 1 {} { if and(mask, mload(o)) { result := 0 break } o := add(o, 0x20) if iszero(lt(o, end)) { break } } mstore(end, last) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, byte string operations are restricted // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets. // Usage of byte string operations on charsets with runes spanning two or more bytes // can lead to undefined behavior. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) let last := add(add(result, 0x20), k) // Zeroize the slot after the string. mstore(last, 0) mstore(0x40, add(last, 0x20)) // Allocate the memory. mstore(result, k) // Store the length. } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { if iszero(gt(from, subjectLength)) { result := from break } result := subjectLength break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let end := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(add(search, 0x20)) if iszero(and(lt(subject, end), lt(from, subjectLength))) { break } if iszero(lt(searchLength, 0x20)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := not(0) // Initialize to `NOT_FOUND`. let searchLength := mload(search) if gt(searchLength, mload(subject)) { break } let w := result let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } let end := add(add(subject, 0x20), w) subject := add(add(subject, 0x20), from) if iszero(gt(subject, end)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(end, 1)) break } subject := add(subject, w) // `sub(subject, 1)`. if iszero(gt(subject, end)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns true if `search` is found in `subject`, false otherwise. function contains(string memory subject, string memory search) internal pure returns (bool) { return indexOf(subject, search) != NOT_FOUND; } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } mstore(output, 0) // Zeroize the slot after the string. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Store the length. // Allocate the memory. mstore(0x40, add(result, add(resultLength, 0x20))) } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(0x1f) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 0x1f), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 0x3f), w))) } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) } let m := shl(3, sub(0x20, and(searchLength, 0x1f))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 0x1f), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 0x3f), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(aLength, 0x20), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, aLength) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 0x20), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) // Zeroize the slot after the string. mstore(last, 0) // Stores the length. mstore(result, totalLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 0x1f), w)) } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. /// WARNING! This function is only compatible with 7-bit ASCII strings. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } result := mload(0x40) mstore(result, length) // Store the length. let last := add(add(result, 0x20), length) mstore(last, 0) // Zeroize the slot after the string. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } } /// @dev Returns a string from a small bytes32 string. /// `s` must be null-terminated, or behavior will be undefined. function fromSmallString(bytes32 s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let n := 0 for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'. mstore(result, n) let o := add(result, 0x20) mstore(o, s) mstore(add(o, n), 0) mstore(0x40, add(result, 0x40)) } } /// @dev Returns the small string, with all bytes after the first null byte zeroized. function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'. mstore(0x00, s) mstore(result, 0x00) result := mload(0x00) } } /// @dev Returns the string as a normalized null-terminated small string. function toSmallString(string memory s) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { result := mload(s) if iszero(lt(result, 33)) { mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`. revert(0x1c, 0x04) } result := shl(shl(3, sub(32, result)), mload(add(s, result))) } } /// @dev Returns a lowercased copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. /// WARNING! This function is only compatible with 7-bit ASCII strings. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 0x1f))) result := add(result, shr(5, t)) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes. function escapeJSON(string memory s, bool addDoubleQuotes) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) for {} iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } if addDoubleQuotes { mstore8(result, 34) result := add(1, result) } let last := result mstore(last, 0) // Zeroize the slot after the string. result := mload(0x40) mstore(result, sub(last, add(result, 0x20))) // Store the length. mstore(0x40, add(last, 0x20)) // Allocate the memory. } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { result = escapeJSON(s, false); } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string. function eqs(string memory a, bytes32 b) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { // These should be evaluated on compile time, as far as possible. let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`. let x := not(or(m, or(b, add(m, and(b, m))))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))), xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20))))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behavior is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. result := mload(0x40) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(0x40, add(result, 0x40)) // Zeroize the length slot. mstore(result, 0) // Store the length and bytes. mstore(add(result, 0x1f), packed) // Right pad with zeroes. mstore(add(add(result, 0x20), mload(result)), 0) } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes of `a` and `b`. or( shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behavior is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. resultA := mload(0x40) resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retSize), 0) // Store the return offset. mstore(retStart, 0x20) // End the transaction, returning the string. return(retStart, retSize) } } }
{ "optimizer": { "enabled": true, "runs": 1337 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"d","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"send","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"price","type":"uint256"}],"name":"setCreationPrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"setDex","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fakeEth","type":"uint256"}],"name":"setFakePoolFakeEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"threshold","type":"uint256"}],"name":"setFakePoolMCapThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"fee","type":"uint16"}],"name":"setTradeFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"priceFeed","type":"address"},{"internalType":"uint256","name":"heartBeat","type":"uint256"}],"name":"setUsdOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"state","outputs":[{"components":[{"internalType":"uint256","name":"proceeds","type":"uint256"},{"internalType":"uint256","name":"creationPrice","type":"uint256"},{"internalType":"uint16","name":"tradeFee","type":"uint16"},{"internalType":"uint256","name":"tokenSupply","type":"uint256"}],"internalType":"struct LibCore.Storage","name":"","type":"tuple"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
6080806040523461001657610937908161001c8239f35b600080fdfe60806040908082526004918236101561001757600080fd5b600091823560e01c90816327ea79f914610812575080632d1e3782146107a65780633e58c58c1461063257806350dccce9146104ab5780637827df3f146103be5780638a054ac2146103525780639fdccfb8146102ca578063a983143714610247578063c19d93fb1461014b5763c72896ac1461009357600080fd5b34610147578160031936011261014757735888dbaa97707bd9d849440b5381d9511035e9899081330361014357828080807fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da86958654905af1903d1561013a573d67ffffffffffffffff81116101275784955090602061011b92601f80199101160190516108df565b15610124575580f35b50fd5b602485604188634e487b7160e01b835252fd5b5082935061011b565b8280fd5b5080fd5b50346101475781600319360112610147576080916060825161016c816108ad565b828152826020820152828482015201528051610187816108ad565b7fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da8654918282527fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da87546020830190815261ffff90817fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da8854169083850191825260607fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da895495019485528351958652516020860152511690830152516060820152f35b50829034610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750357fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da875580f35b60249250519063472511eb60e11b82523390820152fd5b5082346101435760203660031901126101435780359161ffff831680930361034e576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750507fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da889061ffff1982541617905580f35b8380fd5b503461014757816003193601126101475773b8e8553e7a7dd8af4ae7349e93c5ed07c22d3ccf33036101475781808080478181156103b5575b73a6739e6a77de27c119e45778ea0a39b56ff7150190f1156103ab575080f35b51903d90823e3d90fd5b506108fc61038b565b508290346101435780600319360112610143576103d9610892565b916001600160a01b0391827fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35767ffffffffffffffff815191820191821091111761049857507f88acb08f71068c878012515a2672f2b1a3f7940ce7bd383fbab30a631a76b77491167fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790556024357f88acb08f71068c878012515a2672f2b1a3f7940ce7bd383fbab30a631a76b7755580f35b836041602492634e487b7160e01b835252fd5b5091903461062f57602091826003193601126101475780359367ffffffffffffffff9384861161034e573660238701121561034e578583013594851161061c5760059480861b96835191610501848a01846108df565b82528282016024809983010191368311610618578901905b8282106105f5575050506001600160a01b0390817fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036105e057855b81518110156105dc5780881b8201840151831687527f37c7a69cb64276d9952a1cf15ae5474311c0ddadaf138ab6ce1b4a3e73db5623845284872080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff16905560001981146105ca57600101610558565b8887601188634e487b7160e01b835252fd5b8680f35b835163472511eb60e11b815233818701528890fd5b81356001600160a01b0381168103610614578152908401908401610519565b8880fd5b8780fd5b602484604185634e487b7160e01b835252fd5b80fd5b50829034610143576020908160031936011261034e57610650610892565b6001600160a01b0390817fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036107905716928151907f70a0823100000000000000000000000000000000000000000000000000000000825230818301528382602481885afa91821561078657908492918792610750575b5060449087855197889485937fa9059cbb000000000000000000000000000000000000000000000000000000008552339085015260248401525af19081156107475750610715578280f35b81813d8311610740575b61072981836108df565b8101031261014757518015150361062f5781808280f35b503d61071f565b513d85823e3d90fd5b8381949293503d831161077f575b61076881836108df565b8101031261077b579051839160446106ca565b8580fd5b503d61075e565b83513d88823e3d90fd5b825163472511eb60e11b81523381870152602490fd5b50829034610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750357f916ab52dffd1db05d6a10f7578f4d548a96925978b2fcd1de633cf8ab832dbe45580f35b84849134610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c13205416330361087e5750357f916ab52dffd1db05d6a10f7578f4d548a96925978b2fcd1de633cf8ab832dbe35580f35b60249163472511eb60e11b82523390820152fd5b600435906001600160a01b03821682036108a857565b600080fd5b6080810190811067ffffffffffffffff8211176108c957604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff8211176108c95760405256fea26469706673582212208725448d5f5438514b965e63262fb57d4651655d3a001b139e2d8ceffa88bd1e64736f6c63430008120033
Deployed Bytecode
0x60806040908082526004918236101561001757600080fd5b600091823560e01c90816327ea79f914610812575080632d1e3782146107a65780633e58c58c1461063257806350dccce9146104ab5780637827df3f146103be5780638a054ac2146103525780639fdccfb8146102ca578063a983143714610247578063c19d93fb1461014b5763c72896ac1461009357600080fd5b34610147578160031936011261014757735888dbaa97707bd9d849440b5381d9511035e9899081330361014357828080807fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da86958654905af1903d1561013a573d67ffffffffffffffff81116101275784955090602061011b92601f80199101160190516108df565b15610124575580f35b50fd5b602485604188634e487b7160e01b835252fd5b5082935061011b565b8280fd5b5080fd5b50346101475781600319360112610147576080916060825161016c816108ad565b828152826020820152828482015201528051610187816108ad565b7fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da8654918282527fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da87546020830190815261ffff90817fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da8854169083850191825260607fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da895495019485528351958652516020860152511690830152516060820152f35b50829034610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750357fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da875580f35b60249250519063472511eb60e11b82523390820152fd5b5082346101435760203660031901126101435780359161ffff831680930361034e576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750507fb08236d4879334bece1965ab3a812fad8e40dec4929b65f11b873dfaf386da889061ffff1982541617905580f35b8380fd5b503461014757816003193601126101475773b8e8553e7a7dd8af4ae7349e93c5ed07c22d3ccf33036101475781808080478181156103b5575b73a6739e6a77de27c119e45778ea0a39b56ff7150190f1156103ab575080f35b51903d90823e3d90fd5b506108fc61038b565b508290346101435780600319360112610143576103d9610892565b916001600160a01b0391827fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35767ffffffffffffffff815191820191821091111761049857507f88acb08f71068c878012515a2672f2b1a3f7940ce7bd383fbab30a631a76b77491167fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790556024357f88acb08f71068c878012515a2672f2b1a3f7940ce7bd383fbab30a631a76b7755580f35b836041602492634e487b7160e01b835252fd5b5091903461062f57602091826003193601126101475780359367ffffffffffffffff9384861161034e573660238701121561034e578583013594851161061c5760059480861b96835191610501848a01846108df565b82528282016024809983010191368311610618578901905b8282106105f5575050506001600160a01b0390817fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036105e057855b81518110156105dc5780881b8201840151831687527f37c7a69cb64276d9952a1cf15ae5474311c0ddadaf138ab6ce1b4a3e73db5623845284872080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff16905560001981146105ca57600101610558565b8887601188634e487b7160e01b835252fd5b8680f35b835163472511eb60e11b815233818701528890fd5b81356001600160a01b0381168103610614578152908401908401610519565b8880fd5b8780fd5b602484604185634e487b7160e01b835252fd5b80fd5b50829034610143576020908160031936011261034e57610650610892565b6001600160a01b0390817fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036107905716928151907f70a0823100000000000000000000000000000000000000000000000000000000825230818301528382602481885afa91821561078657908492918792610750575b5060449087855197889485937fa9059cbb000000000000000000000000000000000000000000000000000000008552339085015260248401525af19081156107475750610715578280f35b81813d8311610740575b61072981836108df565b8101031261014757518015150361062f5781808280f35b503d61071f565b513d85823e3d90fd5b8381949293503d831161077f575b61076881836108df565b8101031261077b579051839160446106ca565b8580fd5b503d61075e565b83513d88823e3d90fd5b825163472511eb60e11b81523381870152602490fd5b50829034610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c1320541633036102b35750357f916ab52dffd1db05d6a10f7578f4d548a96925978b2fcd1de633cf8ab832dbe45580f35b84849134610143576020366003190112610143576001600160a01b037fc8fcad8db84d3cc18b4c41d551ea0ee66dd599cde068d998e57d5e09332c13205416330361087e5750357f916ab52dffd1db05d6a10f7578f4d548a96925978b2fcd1de633cf8ab832dbe35580f35b60249163472511eb60e11b82523390820152fd5b600435906001600160a01b03821682036108a857565b600080fd5b6080810190811067ffffffffffffffff8211176108c957604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff8211176108c95760405256fea26469706673582212208725448d5f5438514b965e63262fb57d4651655d3a001b139e2d8ceffa88bd1e64736f6c63430008120033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.