Overview
S Balance
0 S
S Value
-More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
FakeFeed
Compiler Version
v0.8.18+commit.87f61d96
Optimization Enabled:
Yes with 1337 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; import { IChainlinkAggregatorV3 } from "./diamond/interfaces/IChainlinkAggregatorV3.sol"; import { LibPRNG } from "solady/src/utils/LibPRNG.sol"; contract FakeFeed is IChainlinkAggregatorV3 { function latestRoundData() external view override returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ) { LibPRNG.PRNG memory rnd = LibPRNG.PRNG(0); LibPRNG.seed(rnd, block.timestamp); return ( uint80(1), int256(1 ether / (10 ** 10)) + int256(0.5 ether - LibPRNG.standardNormalWad(rnd)), block.timestamp, block.timestamp, uint80(1) ); } }
// SPDX-License-Identifier: UNKNOWN pragma solidity 0.8.18; interface IChainlinkAggregatorV3 { function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for generating pseudorandom numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibPRNG.sol) /// @author LazyShuffler based on NextShuffler by aschlosberg (divergencearran) /// (https://github.com/divergencetech/ethier/blob/main/contracts/random/NextShuffler.sol) library LibPRNG { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The initial length must be greater than zero and less than `2**32 - 1`. error InvalidInitialLazyShufflerLength(); /// @dev The new length must not be less than the current length. error InvalidNewLazyShufflerLength(); /// @dev The lazy shuffler has not been initialized. error LazyShufflerNotInitialized(); /// @dev Cannot double initialize the lazy shuffler. error LazyShufflerAlreadyInitialized(); /// @dev The lazy shuffle has finished. error LazyShuffleFinished(); /// @dev The queried index is out of bounds. error LazyShufflerGetOutOfBounds(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev A pseudorandom number state in memory. struct PRNG { uint256 state; } /// @dev A lazy Fisher-Yates shuffler for a range `[0..n)` in storage. struct LazyShuffler { // Bits Layout: // - [0..31] `numShuffled` // - [32..223] `permutationSlot` // - [224..255] `length` uint256 _state; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Seeds the `prng` with `state`. function seed(PRNG memory prng, uint256 state) internal pure { /// @solidity memory-safe-assembly assembly { mstore(prng, state) } } /// @dev Returns the next pseudorandom uint256. /// All bits of the returned uint256 pass the NIST Statistical Test Suite. function next(PRNG memory prng) internal pure returns (uint256 result) { // We simply use `keccak256` for a great balance between // runtime gas costs, bytecode size, and statistical properties. // // A high-quality LCG with a 32-byte state // is only about 30% more gas efficient during runtime, // but requires a 32-byte multiplier, which can cause bytecode bloat // when this function is inlined. // // Using this method is about 2x more efficient than // `nextRandomness = uint256(keccak256(abi.encode(randomness)))`. /// @solidity memory-safe-assembly assembly { result := keccak256(prng, 0x20) mstore(prng, result) } } /// @dev Returns a pseudorandom uint256, uniformly distributed /// between 0 (inclusive) and `upper` (exclusive). /// If your modulus is big, this method is recommended /// for uniform sampling to avoid modulo bias. /// For uniform sampling across all uint256 values, /// or for small enough moduli such that the bias is negligible, /// use {next} instead. function uniform(PRNG memory prng, uint256 upper) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { result := keccak256(prng, 0x20) mstore(prng, result) if iszero(lt(result, mod(sub(0, upper), upper))) { break } } result := mod(result, upper) } } /// @dev Returns a sample from the standard normal distribution denominated in `WAD`. function standardNormalWad(PRNG memory prng) internal pure returns (int256 result) { /// @solidity memory-safe-assembly assembly { // Technically, this is the Irwin-Hall distribution with 20 samples. // The chance of drawing a sample outside 10 σ from the standard normal distribution // is ≈ 0.000000000000000000000015, which is insignificant for most practical purposes. // Passes the Kolmogorov-Smirnov test for 200k samples. Uses about 322 gas. result := keccak256(prng, 0x20) mstore(prng, result) let n := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43 // Prime. let a := 0x100000000000000000000000000000051 // Prime and a primitive root of `n`. let m := 0x1fffffffffffffff1fffffffffffffff1fffffffffffffff1fffffffffffffff let s := 0x1000000000000000100000000000000010000000000000001 let r1 := mulmod(result, a, n) let r2 := mulmod(r1, a, n) let r3 := mulmod(r2, a, n) // forgefmt: disable-next-item result := sub(sar(96, mul(26614938895861601847173011183, add(add(shr(192, mul(s, add(and(m, result), and(m, r1)))), shr(192, mul(s, add(and(m, r2), and(m, r3))))), shr(192, mul(s, and(m, mulmod(r3, a, n))))))), 7745966692414833770) } } /// @dev Returns a sample from the unit exponential distribution denominated in `WAD`. function exponentialWad(PRNG memory prng) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Passes the Kolmogorov-Smirnov test for 200k samples. // Gas usage varies, starting from about 172+ gas. let r := keccak256(prng, 0x20) mstore(prng, r) let p := shl(129, r) let w := shl(1, r) if iszero(gt(w, p)) { let n := 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff43 // Prime. let a := 0x100000000000000000000000000000051 // Prime and a primitive root of `n`. for {} 1 {} { r := mulmod(r, a, n) if iszero(lt(shl(129, r), w)) { r := mulmod(r, a, n) result := add(1000000000000000000, result) w := shl(1, r) p := shl(129, r) if iszero(lt(w, p)) { break } continue } w := shl(1, r) if iszero(lt(w, shl(129, r))) { break } } } result := add(div(p, shl(129, 170141183460469231732)), result) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MEMORY ARRAY SHUFFLING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Shuffles the array in-place with Fisher-Yates shuffle. function shuffle(PRNG memory prng, uint256[] memory a) internal pure { /// @solidity memory-safe-assembly assembly { let n := mload(a) let w := not(0) let mask := shr(128, w) if n { for { a := add(a, 0x20) } 1 {} { // We can just directly use `keccak256`, cuz // the other approaches don't save much. let r := keccak256(prng, 0x20) mstore(prng, r) // Note that there will be a very tiny modulo bias // if the length of the array is not a power of 2. // For all practical purposes, it is negligible // and will not be a fairness or security concern. { let j := add(a, shl(5, mod(shr(128, r), n))) n := add(n, w) // `sub(n, 1)`. if iszero(n) { break } let i := add(a, shl(5, n)) let t := mload(i) mstore(i, mload(j)) mstore(j, t) } { let j := add(a, shl(5, mod(and(r, mask), n))) n := add(n, w) // `sub(n, 1)`. if iszero(n) { break } let i := add(a, shl(5, n)) let t := mload(i) mstore(i, mload(j)) mstore(j, t) } } } } } /// @dev Shuffles the array in-place with Fisher-Yates shuffle. function shuffle(PRNG memory prng, int256[] memory a) internal pure { shuffle(prng, _toUints(a)); } /// @dev Shuffles the array in-place with Fisher-Yates shuffle. function shuffle(PRNG memory prng, address[] memory a) internal pure { shuffle(prng, _toUints(a)); } /// @dev Partially shuffles the array in-place with Fisher-Yates shuffle. /// The first `k` elements will be uniformly sampled without replacement. function shuffle(PRNG memory prng, uint256[] memory a, uint256 k) internal pure { /// @solidity memory-safe-assembly assembly { let n := mload(a) k := xor(k, mul(xor(k, n), lt(n, k))) // `min(n, k)`. if k { let mask := shr(128, not(0)) let b := 0 for { a := add(a, 0x20) } 1 {} { // We can just directly use `keccak256`, cuz // the other approaches don't save much. let r := keccak256(prng, 0x20) mstore(prng, r) // Note that there will be a very tiny modulo bias // if the length of the array is not a power of 2. // For all practical purposes, it is negligible // and will not be a fairness or security concern. { let j := add(a, shl(5, add(b, mod(shr(128, r), sub(n, b))))) let i := add(a, shl(5, b)) let t := mload(i) mstore(i, mload(j)) mstore(j, t) b := add(b, 1) if eq(b, k) { break } } { let j := add(a, shl(5, add(b, mod(and(r, mask), sub(n, b))))) let i := add(a, shl(5, b)) let t := mload(i) mstore(i, mload(j)) mstore(j, t) b := add(b, 1) if eq(b, k) { break } } } } } } /// @dev Partially shuffles the array in-place with Fisher-Yates shuffle. /// The first `k` elements will be uniformly sampled without replacement. function shuffle(PRNG memory prng, int256[] memory a, uint256 k) internal pure { shuffle(prng, _toUints(a), k); } /// @dev Partially shuffles the array in-place with Fisher-Yates shuffle. /// The first `k` elements will be uniformly sampled without replacement. function shuffle(PRNG memory prng, address[] memory a, uint256 k) internal pure { shuffle(prng, _toUints(a), k); } /// @dev Shuffles the bytes in-place with Fisher-Yates shuffle. function shuffle(PRNG memory prng, bytes memory a) internal pure { /// @solidity memory-safe-assembly assembly { let n := mload(a) let w := not(0) let mask := shr(128, w) if n { let b := add(a, 0x01) for { a := add(a, 0x20) } 1 {} { // We can just directly use `keccak256`, cuz // the other approaches don't save much. let r := keccak256(prng, 0x20) mstore(prng, r) // Note that there will be a very tiny modulo bias // if the length of the array is not a power of 2. // For all practical purposes, it is negligible // and will not be a fairness or security concern. { let o := mod(shr(128, r), n) n := add(n, w) // `sub(n, 1)`. if iszero(n) { break } let t := mload(add(b, n)) mstore8(add(a, n), mload(add(b, o))) mstore8(add(a, o), t) } { let o := mod(and(r, mask), n) n := add(n, w) // `sub(n, 1)`. if iszero(n) { break } let t := mload(add(b, n)) mstore8(add(a, n), mload(add(b, o))) mstore8(add(a, o), t) } } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE-BASED RANGE LAZY SHUFFLING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Initializes the state for lazy-shuffling the range `[0..n)`. /// Reverts if `n == 0 || n >= 2**32 - 1`. /// Reverts if `$` has already been initialized. /// If you need to reduce the length after initialization, just use a fresh new `$`. function initialize(LazyShuffler storage $, uint256 n) internal { /// @solidity memory-safe-assembly assembly { if iszero(lt(sub(n, 1), 0xfffffffe)) { mstore(0x00, 0x83b53941) // `InvalidInitialLazyShufflerLength()`. revert(0x1c, 0x04) } if sload($.slot) { mstore(0x00, 0x0c9f11f2) // `LazyShufflerAlreadyInitialized()`. revert(0x1c, 0x04) } mstore(0x00, $.slot) sstore($.slot, or(shl(224, n), shl(32, shr(64, keccak256(0x00, 0x20))))) } } /// @dev Increases the length of `$`. /// Reverts if `$` has not been initialized. function grow(LazyShuffler storage $, uint256 n) internal { /// @solidity memory-safe-assembly assembly { let state := sload($.slot) // The packed value at `$`. // If the new length is smaller than the old length, revert. if lt(n, shr(224, state)) { mstore(0x00, 0xbed37c6e) // `InvalidNewLazyShufflerLength()`. revert(0x1c, 0x04) } if iszero(state) { mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`. revert(0x1c, 0x04) } sstore($.slot, or(shl(224, n), shr(32, shl(32, state)))) } } /// @dev Restarts the shuffler by setting `numShuffled` to zero, /// such that all elements can be drawn again. /// Restarting does NOT clear the internal permutation, nor changes the length. /// Even with the same sequence of randomness, reshuffling can yield different results. function restart(LazyShuffler storage $) internal { /// @solidity memory-safe-assembly assembly { let state := sload($.slot) if iszero(state) { mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`. revert(0x1c, 0x04) } sstore($.slot, shl(32, shr(32, state))) } } /// @dev Returns the number of elements that have been shuffled. function numShuffled(LazyShuffler storage $) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := and(0xffffffff, sload($.slot)) } } /// @dev Returns the length of `$`. /// Returns zero if `$` is not initialized, else a non-zero value less than `2**32 - 1`. function length(LazyShuffler storage $) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := shr(224, sload($.slot)) } } /// @dev Returns if `$` has been initialized. function initialized(LazyShuffler storage $) internal view returns (bool result) { /// @solidity memory-safe-assembly assembly { result := iszero(iszero(sload($.slot))) } } /// @dev Returns if there are any more elements left to shuffle. /// Reverts if `$` is not initialized. function finished(LazyShuffler storage $) internal view returns (bool result) { /// @solidity memory-safe-assembly assembly { let state := sload($.slot) // The packed value at `$`. if iszero(state) { mstore(0x00, 0x1ead2566) // `LazyShufflerNotInitialized()`. revert(0x1c, 0x04) } result := eq(shr(224, state), and(0xffffffff, state)) } } /// @dev Returns the current value stored at `index`, accounting for all historical shuffling. /// Reverts if `index` is greater than or equal to the `length` of `$`. function get(LazyShuffler storage $, uint256 index) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { let state := sload($.slot) // The packed value at `$`. let n := shr(224, state) // Length of `$`. if iszero(lt(index, n)) { mstore(0x00, 0x61367cc4) // `LazyShufflerGetOutOfBounds()`. revert(0x1c, 0x04) } let u32 := gt(n, 0xfffe) let s := add(shr(sub(4, u32), index), shr(64, shl(32, state))) // Bucket slot. let o := shl(add(4, u32), and(index, shr(u32, 15))) // Bucket slot offset (bits). let m := sub(shl(shl(u32, 16), 1), 1) // Value mask. result := and(m, shr(o, sload(s))) result := xor(index, mul(xor(index, sub(result, 1)), iszero(iszero(result)))) } } /// @dev Does a single Fisher-Yates shuffle step, increments the `numShuffled` in `$`, /// and returns the next value in the shuffled range. /// `randomness` can be taken from a good-enough source, or a higher quality source like VRF. /// Reverts if there are no more values to shuffle, which includes the case if `$` is not initialized. function next(LazyShuffler storage $, uint256 randomness) internal returns (uint256 chosen) { /// @solidity memory-safe-assembly assembly { function _get(u32_, state_, i_) -> _value { let s_ := add(shr(sub(4, u32_), i_), shr(64, shl(32, state_))) // Bucket slot. let o_ := shl(add(4, u32_), and(i_, shr(u32_, 15))) // Bucket slot offset (bits). let m_ := sub(shl(shl(u32_, 16), 1), 1) // Value mask. _value := and(m_, shr(o_, sload(s_))) _value := xor(i_, mul(xor(i_, sub(_value, 1)), iszero(iszero(_value)))) } function _set(u32_, state_, i_, value_) { let s_ := add(shr(sub(4, u32_), i_), shr(64, shl(32, state_))) // Bucket slot. let o_ := shl(add(4, u32_), and(i_, shr(u32_, 15))) // Bucket slot offset (bits). let m_ := sub(shl(shl(u32_, 16), 1), 1) // Value mask. let v_ := sload(s_) // Bucket slot value. value_ := mul(iszero(eq(i_, value_)), add(value_, 1)) sstore(s_, xor(v_, shl(o_, and(m_, xor(shr(o_, v_), value_))))) } let state := sload($.slot) // The packed value at `$`. let shuffled := and(0xffffffff, state) // Number of elements shuffled. let n := shr(224, state) // Length of `$`. let remainder := sub(n, shuffled) // Number of elements left to shuffle. if iszero(remainder) { mstore(0x00, 0x51065f79) // `LazyShuffleFinished()`. revert(0x1c, 0x04) } mstore(0x00, randomness) // (Re)hash the randomness so that we don't mstore(0x20, shuffled) // need to expect guarantees on its distribution. let index := add(mod(keccak256(0x00, 0x40), remainder), shuffled) chosen := _get(gt(n, 0xfffe), state, index) _set(gt(n, 0xfffe), state, index, _get(gt(n, 0xfffe), state, shuffled)) _set(gt(n, 0xfffe), state, shuffled, chosen) sstore($.slot, add(1, state)) // Increment the `numShuffled` by 1, and store it. } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Reinterpret cast to an uint256 array. function _toUints(int256[] memory a) private pure returns (uint256[] memory casted) { /// @solidity memory-safe-assembly assembly { casted := a } } /// @dev Reinterpret cast to an uint256 array. function _toUints(address[] memory a) private pure returns (uint256[] memory casted) { /// @solidity memory-safe-assembly assembly { // As any address written to memory will have the upper 96 bits // of the word zeroized (as per Solidity spec), we can directly // compare these addresses as if they are whole uint256 words. casted := a } } }
{ "optimizer": { "enabled": true, "runs": 1337 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"name":"latestRoundData","outputs":[{"internalType":"uint80","name":"roundId","type":"uint80"},{"internalType":"int256","name":"answer","type":"int256"},{"internalType":"uint256","name":"startedAt","type":"uint256"},{"internalType":"uint256","name":"updatedAt","type":"uint256"},{"internalType":"uint80","name":"answeredInRound","type":"uint80"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60808060405234610016576101d3908161001c8239f35b600080fdfe6080600436101561000f57600080fd5b600090813560e01c63feaf968c1461002657600080fd5b346101995781600319360112610199576020810181811067ffffffffffffffff821117610185576040524281526020812080915260bc197001000000000000000000000000000000518181840991808284099381838609947f1fffffffffffffff1fffffffffffffff1fffffffffffffff1fffffffffffffff9278010000000000000001000000000000000100000000000000019487098316840260c01c95831690831601830260c01c9382169116010260c01c01016b55ff5c8892b70388496d56ef0260601d906706f05b59d3b200008281039082676b7f33aab764c46a830194676b7f33aab764c46919011281851281169185139015161761017157676b7f33aabd5aa56a0191821260011661015d5760a0826040519060018252602082015242604082015242606082015260016080820152f35b80634e487b7160e01b602492526011600452fd5b602482634e487b7160e01b81526011600452fd5b602483634e487b7160e01b81526041600452fd5b5080fdfea26469706673582212207732101d9e772dcc03901dd58b9414eefbd6fe3d2824c206b7ba362bc9a7b14364736f6c63430008120033
Deployed Bytecode
0x6080600436101561000f57600080fd5b600090813560e01c63feaf968c1461002657600080fd5b346101995781600319360112610199576020810181811067ffffffffffffffff821117610185576040524281526020812080915260bc197001000000000000000000000000000000518181840991808284099381838609947f1fffffffffffffff1fffffffffffffff1fffffffffffffff1fffffffffffffff9278010000000000000001000000000000000100000000000000019487098316840260c01c95831690831601830260c01c9382169116010260c01c01016b55ff5c8892b70388496d56ef0260601d906706f05b59d3b200008281039082676b7f33aab764c46a830194676b7f33aab764c46919011281851281169185139015161761017157676b7f33aabd5aa56a0191821260011661015d5760a0826040519060018252602082015242604082015242606082015260016080820152f35b80634e487b7160e01b602492526011600452fd5b602482634e487b7160e01b81526011600452fd5b602483634e487b7160e01b81526041600452fd5b5080fdfea26469706673582212207732101d9e772dcc03901dd58b9414eefbd6fe3d2824c206b7ba362bc9a7b14364736f6c63430008120033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.