S Price: $0.727609 (-9.90%)

Contract

0x6dA03feDBF213F2690fCd76467188E70F1Abc864

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x316522d8...2aa9263Cf
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
PresaleFactory

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 31 : PresaleFactory.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "./interfaces/IPresaleFactory.sol";
import "./helpers/TransferHelper.sol";
import "./Presale.sol";

contract PresaleFactory is Ownable, AccessControl, IPresaleFactory {
  address public implementation;
  address[] public allPresales;

  uint16 public salePercentageForEcosystem;
  address public feeReceiver;
  uint256 public fee;

  bytes32 public ADMIN_ROLE = keccak256(abi.encodePacked("ADMIN_ROLE"));
  bytes32 public EXCLUDED_FROM_FEE_ROLE = keccak256(abi.encodePacked("EXCLUDED_FROM_FEE_ROLE"));

  modifier onlyOwnerOrAdmin() {
    require(hasRole(ADMIN_ROLE, _msgSender()) || _msgSender() == owner());
    _;
  }

  constructor(uint16 _salePercentageForEcosystem, address _feeReceiver, address _implementation) {
    salePercentageForEcosystem = _salePercentageForEcosystem;
    if (_feeReceiver == address(0)) {
      revert FeeReceiverIsZeroAddress();
    }
    feeReceiver = _feeReceiver;
    implementation = _implementation;
    _grantRole(ADMIN_ROLE, _msgSender());
  }

  function initialize(
    string memory metadataURI,
    address funder,
    uint256 salePrice,
    address paymentToken,
    address saleToken,
    uint256 softCap,
    uint256 hardCap,
    uint256 startTime,
    uint256 endTime,
    uint256 minTotalPayment,
    uint256 maxTotalPayment,
    uint256 withdrawDelay
  ) external payable returns (address _presale) {
    address sender = _msgSender();

    if (!isExcludedFromFees(sender)) {
      require(msg.value >= fee, "FeeRequired");
      if (feeReceiver != address(0)) {
        TransferHelpers.safeTransferEther(feeReceiver, msg.value);
      }
    }

    bytes32 salt = keccak256(
      abi.encodePacked(
        sender,
        metadataURI,
        salePrice,
        paymentToken,
        saleToken,
        softCap,
        hardCap,
        startTime,
        endTime,
        minTotalPayment,
        maxTotalPayment,
        withdrawDelay,
        block.timestamp
      )
    );

    _presale = Clones.cloneDeterministic(implementation, salt);

    allPresales.push(_presale);

    // Emit Presale Creation
    emit PresaleCreated(
      _presale,
      metadataURI,
      funder,
      salePrice,
      paymentToken,
      saleToken,
      softCap,
      hardCap,
      startTime,
      endTime,
      minTotalPayment,
      maxTotalPayment,
      withdrawDelay
    );
  }

  function setFee(uint256 _fee) external onlyOwner {
    if (feeReceiver == address(0)) {
      revert FeeReceiverIsZeroAddress();
    }

    fee = _fee;
  }

  function withdrawToken(address token, address to, uint256 amount) external onlyOwner {
    TransferHelpers.safeTransferERC20(token, to, amount);
  }

  function withdrawEther(address to) external onlyOwner {
    TransferHelpers.safeTransferEther(to, address(this).balance);
  }

  function setFeeReceiver(address _feeReceiver) external onlyOwner {
    feeReceiver = _feeReceiver;
  }

  function grantAdminRole(address account) external onlyOwner {
    require(!hasRole(ADMIN_ROLE, account), "already admin");
    _grantRole(ADMIN_ROLE, account);
  }

  function revokeAdminRole(address account) external onlyOwner {
    require(hasRole(ADMIN_ROLE, account), "account is not an admin");
    _revokeRole(ADMIN_ROLE, account);
  }

  function setSalePercentage(uint16 _salePercentage) external onlyOwner {
    salePercentageForEcosystem = _salePercentage;
  }

  function excludeFromFee(address account) external onlyOwner {
    require(!hasRole(EXCLUDED_FROM_FEE_ROLE, account));
    _grantRole(EXCLUDED_FROM_FEE_ROLE, account);
  }

  function includeInFee(address account) external onlyOwner {
    require(hasRole(EXCLUDED_FROM_FEE_ROLE, account));
    _revokeRole(EXCLUDED_FROM_FEE_ROLE, account);
  }

  function isExcludedFromFees(address _account) public view returns (bool) {
    return hasRole(EXCLUDED_FROM_FEE_ROLE, _account);
  }

  receive() external payable {}
}

File 2 of 31 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

File 3 of 31 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 4 of 31 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 5 of 31 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(0, 0x09, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        /// @solidity memory-safe-assembly
        assembly {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(0, 0x09, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := keccak256(add(ptr, 0x43), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 6 of 31 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 7 of 31 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 8 of 31 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 9 of 31 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 10 of 31 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 11 of 31 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 12 of 31 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 13 of 31 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 14 of 31 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 15 of 31 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            require(proofPos == proofLen, "MerkleProof: invalid multiproof");
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 16 of 31 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 17 of 31 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 18 of 31 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 19 of 31 : SafeMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

File 20 of 31 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 21 of 31 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 22 of 31 : Fundable.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";
import "./helpers/TransferHelper.sol";
import "./Taxable.sol";

abstract contract Fundable is Ownable, AccessControl, Taxable, ReentrancyGuard {
  using SafeERC20 for ERC20;
  uint64 constant SALE_PRICE_DECIMALS = 10 ** 18;
  uint64 private constant ONE_HOUR = 3600;
  uint64 private constant ONE_YEAR = 31556926;
  uint64 private constant FIVE_YEARS = 157784630;
  uint64 private constant TEN_YEARS = 315360000;

  bytes32 public FUNDER_ROLE = keccak256(abi.encodePacked("FUNDER_ROLE"));
  bytes32 public CASHER_ROLE = keccak256(abi.encodePacked("CASHER_ROLE"));

  uint256 public immutable startTime;
  uint256 public immutable endTime;
  ERC20 private immutable paymentToken;
  ERC20 private immutable saleToken;

  mapping(address => bool) public hasWithdrawn;

  uint256 public saleAmount;
  bool public hasCashed;
  uint256 public totalPaymentReceived;
  uint32 public withdrawerCount;

  uint256 withdrawDelay;

  constructor(
    ERC20 _paymentToken,
    ERC20 _saleToken,
    uint256 _startTime,
    uint256 _endTime,
    address _funder,
    address _taxCollector,
    address _taxSetter,
    uint256 _withdrawDelay
  ) Taxable(_taxCollector, _taxSetter) {
    require(_saleToken != _paymentToken, "saleToken = paymentToken");
    require(address(_saleToken) != address(0), "0x0 saleToken");
    require(block.timestamp < _startTime, "start timestamp too early");
    require(_startTime - ONE_YEAR < block.timestamp, "start time has to be within 1 year");
    require(_startTime < _endTime - ONE_HOUR, "end timestamp before start should be least 1 hour");
    require(_endTime - TEN_YEARS < _startTime, "end time has to be within 10 years");

    require(_funder != address(0), "0x0 funder");
    _grantRole(FUNDER_ROLE, _funder);

    paymentToken = _paymentToken; // can be 0 (for giveaway)
    saleToken = _saleToken;
    startTime = _startTime;
    endTime = _endTime;
    withdrawDelay = _withdrawDelay;
  }

  modifier onlyFunder() {
    require(hasRole(FUNDER_ROLE, _msgSender()), "caller not funder");
    _;
  }

  modifier onlyCasherOrOwner() {
    require(hasRole(CASHER_ROLE, _msgSender()) || _msgSender() == owner(), "caller not casher or owner");
    _;
  }

  modifier onlyBeforeSale() {
    require(block.timestamp < startTime, "sale already started");
    _;
  }

  modifier onlyAfterSale() {
    require(block.timestamp > endTime + withdrawDelay, "can't withdraw before claim is started");
    _;
  }

  modifier onlyDuringSale() {
    require(startTime <= block.timestamp, "sale has not begun");
    require(block.timestamp < endTime, "sale over");
    _;
  }

  event SetCasher(address indexed casher);
  event RemoveCasher(address indexed casher);
  event Fund(address indexed sender, uint256 amount);
  event SetWithdrawDelay(uint24 indexed withdrawDelay);
  event Cash(address indexed sender, uint256 paymentTokenBalance, uint256 saleTokenBalance);
  event EmergencyTokenRetrieve(address indexed sender, uint256 amount);
  event Withdraw(address indexed sender, uint256 amount);

  function setCasher(address _casher) public onlyOwner {
    require(!hasRole(CASHER_ROLE, _casher), "already casher");
    _grantRole(CASHER_ROLE, _casher);
    emit SetCasher(_casher);
  }

  function removeCasher(address _casher) public onlyOwner {
    require(hasRole(CASHER_ROLE, _casher), "not casher");
    _revokeRole(CASHER_ROLE, _casher);
    emit RemoveCasher(_casher);
  }

  function setWithdrawDelay(uint24 _withdrawDelay) public virtual onlyOwner onlyBeforeSale {
    require(_withdrawDelay < FIVE_YEARS, "withdrawDelay has to be within 5 years");
    withdrawDelay = _withdrawDelay;

    emit SetWithdrawDelay(_withdrawDelay);
  }

  function getSaleTokensSold() internal virtual returns (uint256 amount);

  function fund(uint256 amount) public onlyFunder onlyBeforeSale {
    TransferHelpers.safeTransferFromERC20(address(saleToken), _msgSender(), address(this), amount);

    saleAmount += amount;

    emit Fund(_msgSender(), amount);
  }

  function cash() external onlyCasherOrOwner {
    require(endTime + withdrawDelay < block.timestamp, "cannot withdraw yet");
    require(!hasCashed, "already cashed");

    hasCashed = true;

    uint256 paymentTokenBal = paymentToken.balanceOf(address(this));
    uint256 collectorsDue = (taxPercentage * paymentTokenBal) / 100;
    TransferHelpers.safeTransferERC20(address(paymentToken), _msgSender(), paymentTokenBal - collectorsDue);

    if (collectorsDue > 0) TransferHelpers.safeTransferERC20(address(paymentToken), taxCollector, collectorsDue);

    uint256 saleTokenBal = saleToken.balanceOf(address(this));

    uint256 totalTokensSold = getSaleTokensSold();

    uint256 principal = saleAmount < saleTokenBal ? saleTokenBal : saleAmount;

    uint256 amountUnsold = principal - totalTokensSold;

    TransferHelpers.safeTransferERC20(address(saleToken), _msgSender(), amountUnsold);

    emit Cash(_msgSender(), paymentTokenBal, amountUnsold);
  }

  function emergencyTokenRetrieve(address token) public onlyOwner onlyAfterSale {
    require(token != address(saleToken));

    uint256 tokenBalance = ERC20(token).balanceOf(address(this));

    TransferHelpers.safeTransferERC20(token, _msgSender(), tokenBalance);

    emit EmergencyTokenRetrieve(_msgSender(), tokenBalance);
  }

  function withdraw() public virtual nonReentrant {}

  function _withdraw(uint256 saleTokenOwed) internal virtual {
    require(saleTokenOwed > 0, "no token to be withdrawn");

    if (!hasWithdrawn[_msgSender()]) {
      withdrawerCount += 1;
      hasWithdrawn[_msgSender()] = true;
    }

    TransferHelpers.safeTransferERC20(address(saleToken), _msgSender(), saleTokenOwed);

    emit Withdraw(_msgSender(), saleTokenOwed);
  }
}

File 23 of 31 : TransferHelper.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/utils/Address.sol";

library TransferHelpers {
  using Address for address;
  function safeTransferERC20(address token, address to, uint256 amount) internal {
    bytes4 encodedFunc = bytes4(keccak256(bytes("transfer(address,uint256)")));
    token.functionCall(abi.encodeWithSelector(encodedFunc, to, amount));
  }

  function safeTransferFromERC20(address token, address from, address to, uint256 amount) internal {
    bytes4 encodedFunc = bytes4(keccak256(bytes("transferFrom(address,address,uint256)")));
    token.functionCall(abi.encodeWithSelector(encodedFunc, from, to, amount));
  }

  function safeTransferEther(address to, uint256 amount) internal returns (bool success) {
    (success, ) = to.call{value: amount}(new bytes(0));
  }
}

File 24 of 31 : IPresale.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPresale {
  error AlreadyInitialized();

  event PresaleCreated(
    address indexed presaleId,
    string metadataURI,
    address funder,
    uint256 salePrice,
    address indexed paymentToken,
    address indexed saleToken,
    uint256 softCap,
    uint256 hardCap,
    uint256 startTime,
    uint256 endTime,
    uint256 minTotalPayment,
    uint256 maxTotalPayment
  );
}

File 25 of 31 : IPresaleFactory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IPresaleFactory {
  error FeeReceiverIsZeroAddress();
  error FeeRequired();

  event PresaleCreated(
    address indexed presaleId,
    string metadataURI,
    address funder,
    uint256 salePrice,
    address indexed paymentToken,
    address indexed saleToken,
    uint256 softCap,
    uint256 hardCap,
    uint256 startTime,
    uint256 endTime,
    uint256 minTotalPayment,
    uint256 maxTotalPayment,
    uint256 withdrawDelay
  );

  function initialize(
    string memory metadataURI,
    address funder,
    uint256 salePrice,
    address paymentToken,
    address saleToken,
    uint256 softCap,
    uint256 hardCap,
    uint256 startTime,
    uint256 endTime,
    uint256 minTotalPayment,
    uint256 maxTotalPayment,
    uint256 withdrawDelay
  ) external payable returns (address _presale);
 
  // function isPresaleContract(address _presale) external view returns (bool);
}

File 26 of 31 : IStakingPool.sol
pragma solidity ^0.8.0;

interface IStakingPool {
  event Stake(address indexed account, uint256 amount, uint256 timestamp);
  event Unstake(address indexed account, uint256 amount);
  event Withdrawal(address indexed account, uint amount0, uint256 amount1);
  event StakeFeePercentageChange(uint16 stakeFeePercentageChange);
  event WithdrawalFeePercentageChange(uint16 withdrawalFeePercentageChange);
  event APYRateChange(uint24 apyRate);

  error ZeroAddressForFeesSet();
  error Blocked();
  error OnlyModeratorOrOwner();
  error RewardIsZero();
  error NoStake();
  error AlreadyModerator();
  error NotModerator();
  error AlreadyInitialized();

  event RewardsAdded(uint256 reward);
  event RewardDrained(uint256 amount);

  function blockedAddresses(address) external view returns (bool);

  function stakeFeePercentage() external view returns (uint16);

  function token0() external view returns (address);

  function token1() external view returns (address);

  function apyRate() external view returns (uint24);

  function withdrawalIntervals() external view returns (uint256);

  function feeReceiver() external view returns (address);

  function amountStaked(address) external view returns (uint256);

  function lastStakeTime(address) external view returns (uint256);

  function nextWithdrawalTime(address) external view returns (uint256);

  function blocked(address _account) external view returns (bool);

  event Initialized(
    address newOwner,
    address token0,
    address token1,
    uint24 apyRate,
    uint16 stakeFeePercentage,
    uint16 withdrawalFeePercentage,
    address feeReceiver,
    uint256 intervals
  );

  function initialize(
    address _newOwner,
    address _token0,
    address _token1,
    uint24 _apyRate,
    uint16 _stakeFeePercentage,
    uint16 _withdrawalFeePercentage,
    address _feeReceiver,
    uint256 _intervals
  ) external;
}

File 27 of 31 : Presale.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/security/Pausable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "./interfaces/IStakingPool.sol";
import "./interfaces/IPresale.sol";
import "./Purchasable.sol";
import "./Fundable.sol";
import "./Vestable.sol";
import "./Whitelistable.sol";

contract Presale is Purchasable, Fundable, Vestable, Whitelistable, IPresale {
  mapping(address => uint256) public claimable;
  mapping(address => uint256) public totalPurchased;

  string public metadataURI;

  event EmergencyWithdrawal(address indexed user);
  event MetadataURIChanged(string metadataURI);

  bool private isAlreadyInitialized;

  // Main Staking Pool
  IStakingPool public stakingPool;

  constructor(
    string memory _metadataURI,
    address _funder,
    uint256 _salePrice,
    ERC20 _paymentToken,
    ERC20 _saleToken,
    uint256 _softCap,
    uint256 _hardCap,
    uint256 _startTime,
    uint256 _endTime,
    uint256 _minTotalPayment,
    uint256 _maxTotalPayment,
    uint256 _withdrawDelay
  )
    Purchasable(_paymentToken, _salePrice, _softCap, _hardCap, _minTotalPayment, _maxTotalPayment)
    Vestable(_endTime)
    Fundable(_paymentToken, _saleToken, _startTime, _endTime, _funder, _msgSender(), _msgSender(), _withdrawDelay)
    Whitelistable()
  {
    if (isAlreadyInitialized) revert AlreadyInitialized();

    metadataURI = _metadataURI;

    emit PresaleCreated(
      address(this),
      _metadataURI,
      _funder,
      _salePrice,
      address(_paymentToken),
      address(_saleToken),
      _softCap,
      _hardCap,
      _startTime,
      _endTime,
      _minTotalPayment,
      _maxTotalPayment
    );

    isAlreadyInitialized = true;
  }

  function setWithdrawDelay(uint24 _withdrawDelay) public override onlyOwner onlyBeforeSale {
    setWithdrawTime(endTime + _withdrawDelay);
    super.setWithdrawDelay(_withdrawDelay);
  }

  function setLinearVestingEndTime(uint256 _vestingEndTime) public override onlyOwner onlyBeforeSale {
    super.setLinearVestingEndTime(_vestingEndTime);
  }

  function setCliffPeriod(uint256[] calldata claimTimes, uint8[] calldata pct) public override onlyOwner onlyBeforeSale {
    super.setCliffPeriod(claimTimes, pct);
  }

  function purchase(uint256 paymentAmount) public virtual override onlyDuringSale nonReentrant {
    require(whitelistRootHash == 0, "use whitelisted purchase");
    _purchase(paymentAmount, maxTotalPayment);
  }

  function whitelistedPurchase(uint256 paymentAmount, bytes32[] calldata merkleProof) public virtual override onlyDuringSale nonReentrant {
    require(checkWhitelist(_msgSender(), merkleProof), "proof invalid");
    _purchase(paymentAmount, maxTotalPayment);
  }

  function withdraw() public virtual override onlyAfterSale nonReentrant {
    address user = _msgSender();
    require(salePrice > 0, "use withdraw giveaway");

    uint256 tokenOwed = getCurrentClaimableToken(user);
    _withdraw(tokenOwed);
    require(tokenOwed != 0, "no token to be withdrawn");
  }

  function emergencyWithdraw() public nonReentrant {
    address user = _msgSender();
    require(!hasCashed, "sale has been cashed already");
    require(!hasWithdrawn[user], "cannot use emergency withdrawal after regular withdrawal");
    require(paymentReceived[user] > 0, "you did not contribute to this sale");
    TransferHelpers.safeTransferERC20(address(paymentToken), user, paymentReceived[user]);

    totalPaymentReceived -= paymentReceived[user];

    purchaserCount -= 1;
    paymentReceived[user] = 0;
    totalPurchased[user] = 0;
    claimable[user] = 0;

    emit EmergencyWithdrawal(user);
  }

  function withdrawGiveaway(bytes32[] calldata merkleProof) public virtual override onlyAfterSale nonReentrant {
    address user = _msgSender();
    require(salePrice == 0, "not a giveaway");
    require(whitelistRootHash == 0 || checkWhitelist(user, merkleProof), "proof invalid");

    uint256 tokenOwed = getCurrentClaimableToken(user);
    if (!hasWithdrawn[user]) {
      claimable[user] = tokenOwed;
      totalPurchased[user] = tokenOwed;
    }
    _withdraw(tokenOwed);
    require(tokenOwed > 0, "withdraw giveaway amount low");
  }

  function _purchase(uint256 paymentAmount, uint256 remaining) internal override {
    totalPaymentReceived += paymentAmount;
    super._purchase(paymentAmount, remaining);

    uint256 tokenPurchased = (paymentReceived[_msgSender()] * SALE_PRICE_DECIMALS) / salePrice;
    totalPurchased[_msgSender()] = tokenPurchased;
    claimable[_msgSender()] = tokenPurchased;
  }

  function _withdraw(uint256 tokenOwed) internal override {
    super._withdraw(tokenOwed);
    latestClaimTime[_msgSender()] = block.timestamp;
    claimable[_msgSender()] -= tokenOwed;
  }

  function getSaleTokensSold() internal view override returns (uint256 amount) {
    return (totalPaymentReceived * SALE_PRICE_DECIMALS) / salePrice;
  }

  function getCurrentClaimableToken(address user) public view returns (uint256) {
    uint256 baseTokens = getUnlockedToken(totalPurchased[user], claimable[user], user);
    StakingTiers rank = getUserRank();

    // Apply multiplier based on staking rank
    if (rank == StakingTiers.RANK1) {
      return (baseTokens * 15000) / 10000; // 1.5x
    } else if (rank == StakingTiers.RANK2) {
      return (baseTokens * 20000) / 10000; // 2x
    } else if (rank == StakingTiers.RANK3) {
      return (baseTokens * 25000) / 10000; // 2.5x
    } else if (rank == StakingTiers.RANK4) {
      return (baseTokens * 30000) / 10000; // 3x
    } else if (rank == StakingTiers.RANK5) {
      return (baseTokens * 35000) / 10000; // 3.5x
    }

    // Default: no multiplier
    return baseTokens;
  }

  function checkWhitelist(address user, bytes32[] calldata merkleProof) public view virtual returns (bool) {
    bytes32 leaf = keccak256(abi.encodePacked(user));
    return MerkleProof.verify(merkleProof, whitelistRootHash, leaf);
  }

  function setMetadataURI(string memory _metadataURI) external onlyOwner {
    metadataURI = _metadataURI;
    emit MetadataURIChanged(_metadataURI);
  }

  function setStakingPool(IStakingPool _stakingPool) external onlyOwner {
    stakingPool = _stakingPool;
  }

  function getUserRank() internal view returns (StakingTiers) {
    address account = _msgSender();
    uint256 amountStaked = stakingPool.amountStaked(account) / 1e18; // Adjust for 18 decimals

    if (amountStaked >= 50000) {
      return StakingTiers.RANK5;
    } else if (amountStaked >= 15000) {
      return StakingTiers.RANK4;
    } else if (amountStaked >= 10000) {
      return StakingTiers.RANK3;
    } else if (amountStaked >= 5000) {
      return StakingTiers.RANK2;
    } else if (amountStaked >= 1000) {
      return StakingTiers.RANK1;
    } else {
      return StakingTiers.NONE;
    }
  }

  receive() external payable {}
}

File 28 of 31 : Purchasable.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "./helpers/TransferHelper.sol";

abstract contract Purchasable is Ownable, ReentrancyGuard {
  using Address for address;
  using SafeERC20 for ERC20;

  enum StakingTiers {
    NONE,
    RANK1,
    RANK2,
    RANK3,
    RANK4,
    RANK5
  }

  // payment token
  ERC20 public immutable paymentToken;
  // price of the sale token
  uint256 public salePrice;
  // max for payment token amount
  uint256 public maxTotalPayment;
  // optional min for payment token amount
  uint256 public minTotalPayment;
  // Soft Cap
  uint256 public softCap;
  // Hard Cap
  uint256 public hardCap;

  mapping(address => uint256) public paymentReceived;

  uint32 public purchaserCount;

  event Purchase(address indexed sender, uint256 paymentAmount);
  event SetMinTotalPayment(uint256 indexed minTotalPayment);
  event SetMaxTotalPayment(uint256 indexed maxTotalPayment);
  event SetSalePrice(uint256 indexed salePrice);
  event SetSoftCap(uint256 indexed softCap);
  event SetHardCap(uint256 indexed hardCap);
  event SetRefundPeriod(uint256 indexed refundPeriod);

  constructor(ERC20 _paymentToken, uint256 _salePrice, uint256 _softCap, uint256 _hardCap, uint256 _minTotalPayment, uint256 _maxTotalPayment) {
    require(
      _salePrice == 0 || (_salePrice != 0 && address(_paymentToken).isContract()),
      "Invalid payment token for non-zero sale price"
    );
    require(_minTotalPayment <= _maxTotalPayment, "minTotalPayment must be <= maxTotalPayment");
    require(_softCap <= _hardCap, "softCap must be <= hardCap");
    require(_maxTotalPayment > 0, "maxTotalPayment must be positive");
    
    salePrice = _salePrice;
    paymentToken = _paymentToken;
    minTotalPayment = _minTotalPayment;
    maxTotalPayment = _maxTotalPayment;
    softCap = _softCap;
    hardCap = _hardCap;
  }

  function setMinTotalPayment(uint256 _minTotalPayment) public onlyOwner {
    minTotalPayment = _minTotalPayment;

    emit SetMinTotalPayment(_minTotalPayment);
  }

  function setMaxTotalPayment(uint256 _maxTotalPayment) public onlyOwner {
    maxTotalPayment = _maxTotalPayment;

    emit SetMaxTotalPayment(_maxTotalPayment);
  }

  function setSalePrice(uint256 _salePrice) public onlyOwner {
    require(_salePrice > 0, "Price must be positive");
    salePrice = _salePrice;
    emit SetSalePrice(_salePrice);
  }

  function setSoftCap(uint256 _softCap) public onlyOwner {
    softCap = _softCap;

    emit SetSoftCap(_softCap);
  }

  function setHardCap(uint256 _hardCap) public onlyOwner {
    hardCap = _hardCap;

    emit SetHardCap(_hardCap);
  }

  function purchase(uint256 paymentAmount) public virtual nonReentrant {}

  function _purchase(uint256 paymentAmount, uint256 remaining) internal virtual {
    require(paymentAmount >= minTotalPayment, "amount below min");
    require(paymentAmount <= remaining, "exceeds max payment");

    TransferHelpers.safeTransferFromERC20(address(paymentToken), _msgSender(), address(this), paymentAmount);

    if (paymentReceived[_msgSender()] == 0) purchaserCount += 1;

    paymentReceived[_msgSender()] += paymentAmount;

    emit Purchase(_msgSender(), paymentAmount);
  }
}

File 29 of 31 : Taxable.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/utils/Context.sol";

abstract contract Taxable is Context, AccessControl {
  address public taxCollector;
  uint16 public taxPercentage = 1000; // Default : 10% (Basis Points)
  bytes32 public taxSetterRole = keccak256(abi.encodePacked("TAX_SETTER_ROLE"));

  constructor(
    address _taxCollector,
    address _taxSetter
  ) {
    taxCollector = _taxCollector;
    _grantRole(taxSetterRole, _taxSetter);
  }

  modifier onlyTaxSetter() {
    require(hasRole(taxSetterRole, _msgSender()), "must be tax setter");
    _;
  }

  function setTaxPercentage(uint8 _taxPercentage) external onlyTaxSetter {
    taxPercentage = _taxPercentage;
  }

  function setTaxCollector(address _taxCollector) external onlyTaxSetter {
    taxCollector = _taxCollector;
  }
}

File 30 of 31 : Vestable.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./helpers/TransferHelper.sol";

// Inspiration: https://github.com/ImpossibleFinance/launchpad-contracts/blob/main/contracts/IFVestable.sol
abstract contract Vestable is Ownable {
  uint256 public withdrawTime;
  mapping(address => uint256) public latestClaimTime;
  using SafeMath for uint256;

  // for linear vesting
  uint256 public linearVestingEndTime;
  event SetLinearVestingEndTime(uint256 indexed linearVestingEndTime);

  // for cliff vesting
  struct CliffVesting {
    uint256 claimTime;
    uint8 percentage;
  }

  CliffVesting[] public cliffPeriod;
  event SetCliffVestingPeriod(CliffVesting[] indexed cliffPeriod);

  constructor(uint256 _withdrawTime) {
    withdrawTime = _withdrawTime;
  }

  function setWithdrawTime(uint256 _withdrawTime) internal {
    withdrawTime = _withdrawTime;
  }

  function getCliffPeriod() external view returns (CliffVesting[] memory) {
    return cliffPeriod;
  }

  function setLinearVestingEndTime(uint256 _linearVestingEndTime) public virtual onlyOwner {
    require(_linearVestingEndTime > withdrawTime, "vesting end time has to be after withdrawal start time");
    linearVestingEndTime = _linearVestingEndTime;
    delete cliffPeriod;
    emit SetLinearVestingEndTime(_linearVestingEndTime);
  }

  function setCliffPeriod(uint256[] calldata claimTimes, uint8[] calldata pct) public virtual onlyOwner {
    require(claimTimes.length == pct.length, "dates and pct doesn't match");
    require(claimTimes.length > 0, "input is empty");
    require(claimTimes.length <= 100, "input length cannot exceed 100");

    delete cliffPeriod;

    uint256 maxDate;
    uint8 totalPct;
    require(claimTimes[0] > withdrawTime, "first claim time is before end time + withdraw delay");
    for (uint256 i = 0; i < claimTimes.length; i++) {
      require(maxDate < claimTimes[i], "dates not in ascending order");
      maxDate = claimTimes[i];
      totalPct += pct[i];
      cliffPeriod.push(CliffVesting(claimTimes[i], pct[i]));
    }
    require(totalPct == 100, "total input percentage doesn't equal to 100");

    linearVestingEndTime = 0;
    emit SetCliffVestingPeriod(cliffPeriod);
  }

  function getUnlockedToken(
    uint256 totalPurchased,
    uint256 claimable,
    address user
  ) public view virtual returns (uint256) {
    // linear vesting
    if (linearVestingEndTime > block.timestamp) {
      // current claimable = total purchased * (now - last claimed time) / (total vesting time)
      return (totalPurchased * (block.timestamp - Math.max(latestClaimTime[user], withdrawTime))) / (linearVestingEndTime - withdrawTime);
    }

    // cliff vesting
    uint256 cliffPeriodLength = cliffPeriod.length;
    if (cliffPeriodLength != 0 && cliffPeriod[cliffPeriodLength - 1].claimTime > block.timestamp) {
      uint8 claimablePct;
      for (uint8 i; i < cliffPeriodLength; i++) {
        // if the cliff timestamp has been passed, add the claimable percentage
        if (cliffPeriod[i].claimTime > block.timestamp) {
          break;
        }
        if (latestClaimTime[user] < cliffPeriod[i].claimTime) {
          claimablePct += cliffPeriod[i].percentage;
        }
      }
      if (claimablePct == 0) {
        return 0;
      }
      return (totalPurchased * claimablePct) / 100;
    }
    return claimable;
  }
}

File 31 of 31 : Whitelistable.sol
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import "@openzeppelin/contracts/access/AccessControl.sol";

abstract contract Whitelistable is Ownable, AccessControl, ReentrancyGuard {
  bytes32 public whitelistRootHash;
  bytes32 public WHITELIST_SETTER_ROLE = keccak256(abi.encodePacked("WHITELIST_SETTER_ROLE"));

  event SetWhitelistSetter(address indexed whitelistSetter);
  event RemoveWhitelistSetter(address indexed whitelistSetter);
  event SetWhitelist(bytes32 indexed whitelistRootHash);

  modifier onlyWhitelistSetterOrOwner() {
    require(hasRole(WHITELIST_SETTER_ROLE, _msgSender()) || _msgSender() == owner(), "caller not whitelist setter or owner");
    _;
  }

  function setWhitelistSetter(address _whitelistSetter) public onlyOwner {
    require(!hasRole(WHITELIST_SETTER_ROLE, _whitelistSetter), "already whitelist setter");

    _grantRole(WHITELIST_SETTER_ROLE, _whitelistSetter);

    emit SetWhitelistSetter(_whitelistSetter);
  }

  function removeWhitelistSetter(address _whitelistSetter) public onlyOwner {
    require(hasRole(WHITELIST_SETTER_ROLE, _whitelistSetter), "not whitelist setter");
    _revokeRole(WHITELIST_SETTER_ROLE, _whitelistSetter);
    emit RemoveWhitelistSetter(_whitelistSetter);
  }

  function setWhitelist(bytes32 _whitelistRootHash) public onlyWhitelistSetterOrOwner {
    whitelistRootHash = _whitelistRootHash;

    emit SetWhitelist(_whitelistRootHash);
  }

  function whitelistedPurchase(uint256 paymentAmount, bytes32[] calldata merkleProof) public virtual {}

  function withdrawGiveaway(bytes32[] calldata merkleProof) public virtual nonReentrant {}
}

Settings
{
  "viaIR": true,
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint16","name":"_salePercentageForEcosystem","type":"uint16"},{"internalType":"address","name":"_feeReceiver","type":"address"},{"internalType":"address","name":"_implementation","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"FeeReceiverIsZeroAddress","type":"error"},{"inputs":[],"name":"FeeRequired","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"presaleId","type":"address"},{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"},{"indexed":false,"internalType":"address","name":"funder","type":"address"},{"indexed":false,"internalType":"uint256","name":"salePrice","type":"uint256"},{"indexed":true,"internalType":"address","name":"paymentToken","type":"address"},{"indexed":true,"internalType":"address","name":"saleToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"softCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"hardCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"minTotalPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxTotalPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"withdrawDelay","type":"uint256"}],"name":"PresaleCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EXCLUDED_FROM_FEE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allPresales","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"excludeFromFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"grantAdminRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"includeInFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"metadataURI","type":"string"},{"internalType":"address","name":"funder","type":"address"},{"internalType":"uint256","name":"salePrice","type":"uint256"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"address","name":"saleToken","type":"address"},{"internalType":"uint256","name":"softCap","type":"uint256"},{"internalType":"uint256","name":"hardCap","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256","name":"minTotalPayment","type":"uint256"},{"internalType":"uint256","name":"maxTotalPayment","type":"uint256"},{"internalType":"uint256","name":"withdrawDelay","type":"uint256"}],"name":"initialize","outputs":[{"internalType":"address","name":"_presale","type":"address"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_account","type":"address"}],"name":"isExcludedFromFees","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"revokeAdminRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"salePercentageForEcosystem","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_feeReceiver","type":"address"}],"name":"setFeeReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"_salePercentage","type":"uint16"}],"name":"setSalePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"withdrawEther","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Deployed Bytecode

0x6080604052600436101561001b575b361561001957600080fd5b005b60003560e01c806301e3366714610cb357806301ffc9a714610c5d5780632408f02b14610c3b578063248a9ca314610c0c5780632f2ff15d14610bcd57806336568abe14610b3b5780633dafaa9c14610b1d578063437823ec14610abe5780634fbee19314610a6b5780635c60da1b14610a4257806369fe0e2d146109fb578063715018a6146109a257806375b238fc146109845780638da5cb5b1461095b57806391d148541461090e57806394017c35146105655780639a19c7b0146104c0578063a217fddf146104a4578063a9e1a14a14610449578063af933b571461041e578063b3f00674146103f1578063b8a0e1cf146103b8578063c634b78e14610324578063d547741f146102e5578063ddca3f43146102c7578063ea2f0b3714610267578063efdcd9741461021d5763f2fde38b0361000e57346102185760203660031901126102185761016d610da9565b610175611273565b6001600160a01b039081169081156101c457600054826001600160601b0360a01b821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a3005b60405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608490fd5b600080fd5b3461021857602036600319011261021857610236610da9565b61023e611273565b6004805462010000600160b01b03191660109290921b62010000600160b01b0316919091179055005b3461021857602036600319011261021857610280610da9565b610288611273565b600754906102b98183600052600160205260406000209060018060a01b031660005260205260ff6040600020541690565b1561021857610019916111fd565b34610218576000366003190112610218576020600554604051908152f35b3461021857604036600319011261021857610019600435610304610dbf565b9080600052600160205261031f600160406000200154610e2f565b6111fd565b346102185760203660031901126102185761033d610da9565b610345611273565b600654906103768183600052600160205260406000209060018060a01b031660005260205260ff6040600020541690565b6103835761001991611183565b60405162461bcd60e51b815260206004820152600d60248201526c30b63932b0b23c9030b236b4b760991b6044820152606490fd5b346102185760203660031901126102185760043561ffff8116809103610218576103e0611273565b61ffff196004541617600455600080f35b346102185760003660031901126102185760045460405160109190911c6001600160a01b03168152602090f35b346102185760203660031901126102185761001961043a610da9565b610442611273565b47906113a5565b34610218576020366003190112610218576004356003548110156102185760036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b01546040516001600160a01b039091168152602090f35b3461021857600036600319011261021857602060405160008152f35b34610218576020366003190112610218576104d9610da9565b6104e1611273565b600654906105128183600052600160205260406000209060018060a01b031660005260205260ff6040600020541690565b1561052057610019916111fd565b60405162461bcd60e51b815260206004820152601760248201527f6163636f756e74206973206e6f7420616e2061646d696e0000000000000000006044820152606490fd5b6101803660031901126102185760043567ffffffffffffffff8111610218573660238201121561021857806004013561059d81610e13565b906105ab6040519283610df1565b808252366024828501011161021857602081600092602483860196018637830101526105d5610dbf565b606435906001600160a01b038216820361021857608435936001600160a01b038516850361021857600754600090815260016020908152604080832033845290915290205460ff16156108a5575b6040516106c561017c60208301933360601b855261064888518092603487019061113b565b830160443560348201526001600160601b0319808860601b1660548301528960601b16606882015260a435607c82015260c435609c82015260e43560bc8201526101043560dc8201526101243560fc8201526101443561011c8201526101643561013c8201528361015c9142838201520390810184520182610df1565b5190206e5af43d82803e903d91602b57fd5bf3600254763d602d80600a3d3981f3363d3d373d3d3d363d7300000062ffffff8260881c16176000526effffffffffffffffffffffffffffff199060781b161760205260018060a01b0390603760096000f51692831561086057600354946801000000000000000086101561084a576001860180600355861015610834576107cc85927f9a6cc326070b373860e53299e8d0309d5b235af1370c1296eac26d10bc083d489260209860036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b01856001600160601b0360a01b82541617905560405192839261014080855284019061115e565b6001600160a01b03968716838b0152604435604084015260a435606084015260c435608084015260e43560a08401526101043560c08401526101243560e0840152610144356101008401526101643561012084015290861696909516940390a4604051908152f35b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052604160045260246000fd5b60405162461bcd60e51b815260206004820152601760248201527f455243313136373a2063726561746532206661696c65640000000000000000006044820152606490fd5b60055434106108db5760045460101c6001600160a01b0316806108c9575b50610623565b6108d49034906113a5565b50856108c3565b60405162461bcd60e51b815260206004820152600b60248201526a11995954995c5d5a5c995960aa1b6044820152606490fd5b3461021857604036600319011261021857610927610dbf565b600435600052600160205260406000209060018060a01b0316600052602052602060ff604060002054166040519015158152f35b34610218576000366003190112610218576000546040516001600160a01b039091168152602090f35b34610218576000366003190112610218576020600654604051908152f35b34610218576000366003190112610218576109bb611273565b600080546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b3461021857602036600319011261021857610a14611273565b60045460101c6001600160a01b031615610a3057600435600555005b604051631b37623f60e11b8152600490fd5b34610218576000366003190112610218576002546040516001600160a01b039091168152602090f35b34610218576020366003190112610218576020610ab4610a89610da9565b600754600052600160205260406000209060018060a01b031660005260205260ff6040600020541690565b6040519015158152f35b3461021857602036600319011261021857610ad7610da9565b610adf611273565b60075490610b108183600052600160205260406000209060018060a01b031660005260205260ff6040600020541690565b6102185761001991611183565b34610218576000366003190112610218576020600754604051908152f35b3461021857604036600319011261021857610b54610dbf565b336001600160a01b03821603610b7057610019906004356111fd565b60405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b6064820152608490fd5b3461021857604036600319011261021857610019600435610bec610dbf565b90806000526001602052610c07600160406000200154610e2f565b611183565b346102185760203660031901126102185760043560005260016020526020600160406000200154604051908152f35b3461021857600036600319011261021857602061ffff60045416604051908152f35b346102185760203660031901126102185760043563ffffffff60e01b811680910361021857602090637965db0b60e01b8114908115610ca2575b506040519015158152f35b6301ffc9a760e01b14905082610c97565b3461021857606036600319011261021857610ccc610da9565b610cd4610dbf565b610cdc611273565b7f7472616e7366657228616464726573732c75696e7432353629000000000000006020604051610d0b81610dd5565b60198152015260405163a9059cbb60e01b602082019081526001600160a01b0390921660248201526044803581830152815291608083019167ffffffffffffffff83118484101761084a57600080916100199585604052610d6b86610dd5565b601e86527f416464726573733a206c6f772d6c6576656c2063616c6c206661696c6564000060a0820152519082855af1610da36112dc565b9161130c565b600435906001600160a01b038216820361021857565b602435906001600160a01b038216820361021857565b6040810190811067ffffffffffffffff82111761084a57604052565b90601f8019910116810190811067ffffffffffffffff82111761084a57604052565b67ffffffffffffffff811161084a57601f01601f191660200190565b60008181526001602091818352604093848220338352845260ff858320541615610e5a575050505050565b33855193606085019267ffffffffffffffff9386811085821117611067578852602a8652868601928836853786511561112757603084538651831015611127576078602188015360295b8381116110bd575061107b579087519360808501908582109082111761106757885260428452868401946060368737845115611053576030865384518210156110535790607860218601536041915b818311610fe557505050610fa357610f9f938693610f8393610f74604894610f4b9a519a8b957f416363657373436f6e74726f6c3a206163636f756e74200000000000000000008c880152518092603788019061113b565b8401917001034b99036b4b9b9b4b733903937b6329607d1b60378401525180938684019061113b565b01036028810187520185610df1565b5192839262461bcd60e51b84526004840152602483019061115e565b0390fd5b60648587519062461bcd60e51b825280600483015260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152fd5b909192600f8116601081101561103f576f181899199a1a9b1b9c1cb0b131b232b360811b901a61101585886112cb565b5360041c92801561102b57600019019190610ef3565b634e487b7160e01b82526011600452602482fd5b634e487b7160e01b83526032600452602483fd5b634e487b7160e01b81526032600452602490fd5b634e487b7160e01b86526041600452602486fd5b60648789519062461bcd60e51b825280600483015260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152fd5b90600f81166010811015611113576f181899199a1a9b1b9c1cb0b131b232b360811b901a6110eb838a6112cb565b5360041c9080156110ff5760001901610ea4565b634e487b7160e01b87526011600452602487fd5b634e487b7160e01b88526032600452602488fd5b634e487b7160e01b86526032600452602486fd5b60005b83811061114e5750506000910152565b818101518382015260200161113e565b906020916111778151809281855285808601910161113b565b601f01601f1916010190565b906000918083526001602052604083209160018060a01b03169182845260205260ff604084205416156111b557505050565b80835260016020526040832082845260205260408320600160ff198254161790557f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d339380a4565b906000918083526001602052604083209160018060a01b03169182845260205260ff60408420541661122e57505050565b8083526001602052604083208284526020526040832060ff1981541690557ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b339380a4565b6000546001600160a01b0316330361128757565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b908151811015610834570160200190565b3d15611307573d906112ed82610e13565b916112fb6040519384610df1565b82523d6000602084013e565b606090565b9192901561136e5750815115611320575090565b3b156113295790565b60405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606490fd5b8251909150156113815750805190602001fd5b60405162461bcd60e51b815260206004820152908190610f9f90602483019061115e565b604051602081019080821067ffffffffffffffff83111761084a576000938493848094938194604052525af16113d96112dc565b509056fea2646970667358221220eedadbb8a4ed19bfa361ff1cbd6c91db67be6682a0c580132f80391f7c06b24764736f6c63430008110033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.