S Price: $0.79169 (-4.71%)

Contract

0x5404Aee79B81e5BCD1600B63511747cA6269a119

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Notify Reward Am...40658392025-01-15 23:23:1522 hrs ago1736983395IN
0x5404Aee7...A6269a119
0 S0.001912133.01
Notify Reward Am...40646582025-01-15 23:13:2822 hrs ago1736982808IN
0x5404Aee7...A6269a119
0 S0.0030974933.01

Latest 1 internal transaction

Parent Transaction Hash Block From To
40598922025-01-15 22:31:4223 hrs ago1736980302  Contract Creation0 S
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x0ac98Ce5...5Af469fc0
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
GaugeV3

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 1633 runs

Other Settings:
cancun EvmVersion
File 1 of 34 : GaugeV3.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;

import "./interfaces/IGaugeV3.sol";
import "../periphery/interfaces/INonfungiblePositionManager.sol";
import "./interfaces/IFeeCollector.sol";
import "../core/libraries/FullMath.sol";

import "../core/interfaces/IRamsesV3Pool.sol";

import "../core/libraries/PoolStorage.sol";

import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

import {IVoter} from "../../interfaces/IVoter.sol";

contract GaugeV3 is IGaugeV3 {
    using SafeERC20 for IERC20;

    uint256 internal constant WEEK = 1 weeks;
    uint256 internal constant PRECISION = 10 ** 18;

    bool internal _unlocked;

    IRamsesV3Pool public immutable pool;
    address public immutable voter;
    IFeeCollector public immutable feeCollector;
    INonfungiblePositionManager public immutable nfpManager;

    /// @inheritdoc IGaugeV3
    uint256 public immutable firstPeriod;

    /// @inheritdoc IGaugeV3
    /// @dev period => token => total supply
    mapping(uint256 => mapping(address => uint256))
        public tokenTotalSupplyByPeriod;

    /// @dev period => position hash => bool
    mapping(uint256 => mapping(bytes32 => bool)) internal periodAmountsWritten;
    /// @dev period => position hash => seconds in range
    mapping(uint256 => mapping(bytes32 => uint256))
        internal periodNfpSecondsX96;

    /// @inheritdoc IGaugeV3
    /// @dev period => position hash => reward token => amount
    mapping(uint256 => mapping(bytes32 => mapping(address => uint256)))
        public periodClaimedAmount;

    /// @dev token => position hash => period
    /// @inheritdoc IGaugeV3
    mapping(address => mapping(bytes32 => uint256)) public lastClaimByToken;

    /// @inheritdoc IGaugeV3
    address[] public rewards;
    /// @inheritdoc IGaugeV3
    mapping(address => bool) public isReward;

    /// @dev Mutually exclusive reentrancy protection into the pool to/from a method. This method also prevents entrance
    /// @dev to a function before the Gauge is initialized.
    modifier lock() {
        require(_unlocked, IRamsesV3PoolErrors.LOK());
        _unlocked = false;
        _;
        _unlocked = true;
    }

    /// @dev pushes fees from the pool to fee distributor on notify rewards
    modifier pushFees() {
        feeCollector.collectProtocolFees(pool);
        _;
    }

    constructor(
        address _voter,
        address _nfpManager,
        address _feeCollector,
        address _pool
    ) {
        _unlocked = true;

        voter = _voter;
        feeCollector = IFeeCollector(_feeCollector);
        nfpManager = INonfungiblePositionManager(_nfpManager);
        pool = IRamsesV3Pool(_pool);

        firstPeriod = _blockTimestamp() / WEEK;

        (address shadow, address xshadow) = (
            IVoter(_voter).shadow(),
            IVoter(_voter).xShadow()
        );

        (address token0, address token1) = (
            IRamsesV3Pool(_pool).token0(),
            IRamsesV3Pool(_pool).token1()
        );

        rewards.push(token0);
        rewards.push(token1);
        (isReward[token0], isReward[token1], isReward[xshadow]) = (
            true,
            true,
            true
        );
        /// @dev if token0 and token1 aren't shadow add shadow in the records
        if (token0 != shadow && token1 != shadow) {
            rewards.push(shadow);
            isReward[shadow] = true;
        }

        for (uint256 i; i < rewards.length; i++) {
            emit RewardAdded(rewards[i]);
        }
    }

    function _blockTimestamp() internal view virtual returns (uint256) {
        return block.timestamp;
    }

    /// @inheritdoc IGaugeV3
    function left(address token) external view override returns (uint256) {
        uint256 period = _blockTimestamp() / WEEK;
        uint256 remainingTime = ((period + 1) * WEEK) - _blockTimestamp();
        return (tokenTotalSupplyByPeriod[period][token] * remainingTime) / WEEK;
    }

    /// @inheritdoc IGaugeV3
    function rewardRate(address token) external view returns (uint256) {
        uint256 period = _blockTimestamp() / WEEK;
        return (tokenTotalSupplyByPeriod[period][token] / WEEK);
    }

    /// @inheritdoc IGaugeV3
    function getRewardTokens()
        external
        view
        override
        returns (address[] memory)
    {
        return rewards;
    }

    /// @inheritdoc IGaugeV3
    function positionHash(
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper
    ) public pure returns (bytes32) {
        return keccak256(abi.encodePacked(owner, index, tickLower, tickUpper));
    }

    /// @inheritdoc IGaugeV3
    function notifyRewardAmount(
        address token,
        uint256 amount
    ) external override pushFees lock {
        require(amount > 0, NOT_GT_ZERO(amount));
        require(isReward[token], IVoter.NOT_WHITELISTED());
        IRamsesV3Pool(pool)._advancePeriod();
        uint256 period = _blockTimestamp() / WEEK;

        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));

        amount = balanceAfter - balanceBefore;
        tokenTotalSupplyByPeriod[period][token] += amount;
        emit NotifyReward(msg.sender, token, amount, period);
    }

    /// @inheritdoc IGaugeV3
    function notifyRewardAmountNextPeriod(
        address token,
        uint256 amount
    ) external lock {
        require(amount > 0, NOT_GT_ZERO(amount));
        require(isReward[token], IVoter.NOT_WHITELISTED());
        uint256 period = (_blockTimestamp() / WEEK) + 1;
        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));

        amount = balanceAfter - balanceBefore;
        tokenTotalSupplyByPeriod[period][token] += amount;

        emit NotifyReward(msg.sender, token, amount, period);
    }

    /// @inheritdoc IGaugeV3
    function notifyRewardAmountForPeriod(
        address token,
        uint256 amount,
        uint256 period
    ) external lock {
        require(amount > 0, NOT_GT_ZERO(amount));
        require(isReward[token], IVoter.NOT_WHITELISTED());
        require(period > _blockTimestamp() / WEEK, RETRO());
        uint256 balanceBefore = IERC20(token).balanceOf(address(this));
        IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
        uint256 balanceAfter = IERC20(token).balanceOf(address(this));

        amount = balanceAfter - balanceBefore;
        tokenTotalSupplyByPeriod[period][token] += amount;

        emit NotifyReward(msg.sender, token, amount, period);
    }

    /// @inheritdoc IGaugeV3
    function earned(
        address token,
        uint256 tokenId
    ) external view returns (uint256 reward) {
        INonfungiblePositionManager _nfpManager = nfpManager;
        (, , , int24 tickLower, int24 tickUpper, , , , , ) = _nfpManager
            .positions(tokenId);

        bytes32 _positionHash = positionHash(
            address(_nfpManager),
            tokenId,
            tickLower,
            tickUpper
        );

        uint256 lastClaim = Math.max(
            lastClaimByToken[token][_positionHash],
            firstPeriod
        );
        uint256 currentPeriod = _blockTimestamp() / WEEK;
        for (uint256 period = lastClaim; period <= currentPeriod; ++period) {
            reward += periodEarned(
                period,
                token,
                address(_nfpManager),
                tokenId,
                tickLower,
                tickUpper
            );
        }
    }

    /// @inheritdoc IGaugeV3
    function periodEarned(
        uint256 period,
        address token,
        uint256 tokenId
    ) public view override returns (uint256) {
        INonfungiblePositionManager _nfpManager = nfpManager;
        (, , , int24 tickLower, int24 tickUpper, , , , , ) = _nfpManager
            .positions(tokenId);

        return
            periodEarned(
                period,
                token,
                address(_nfpManager),
                tokenId,
                tickLower,
                tickUpper
            );
    }

    /// @inheritdoc IGaugeV3
    function periodEarned(
        uint256 period,
        address token,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper
    ) public view returns (uint256 amount) {
        (bool success, bytes memory data) = address(this).staticcall(
            abi.encodeCall(
                this.cachePeriodEarned,
                (period, token, owner, index, tickLower, tickUpper, false)
            )
        );

        if (!success) {
            return 0;
        }

        return abi.decode(data, (uint256));
    }

    /// @inheritdoc IGaugeV3
    /// @dev used by getReward() and saves gas by saving states
    function cachePeriodEarned(
        uint256 period,
        address token,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        bool caching
    ) public override returns (uint256 amount) {
        uint256 periodSecondsInsideX96;

        bytes32 _positionHash = positionHash(
            owner,
            index,
            tickLower,
            tickUpper
        );

        /// @dev get seconds from pool if not already written into storage
        if (!periodAmountsWritten[period][_positionHash]) {
            (bool success, bytes memory data) = address(pool).staticcall(
                abi.encodeCall(
                    IRamsesV3PoolState.positionPeriodSecondsInRange,
                    (period, owner, index, tickLower, tickUpper)
                )
            );

            if (!success) {
                return 0;
            }

            (periodSecondsInsideX96) = abi.decode(data, (uint256));

            if (period < _blockTimestamp() / WEEK && caching) {
                periodAmountsWritten[period][_positionHash] = true;
                periodNfpSecondsX96[period][
                    _positionHash
                ] = periodSecondsInsideX96;
            }
        } else {
            periodSecondsInsideX96 = periodNfpSecondsX96[period][_positionHash];
        }

        amount = FullMath.mulDiv(
            tokenTotalSupplyByPeriod[period][token],
            periodSecondsInsideX96,
            WEEK << 96
        );

        uint256 claimed = periodClaimedAmount[period][_positionHash][token];
        if (amount >= claimed) {
            amount -= claimed;
        } else {
            amount = 0;
        }

        return amount;
    }

    /// @inheritdoc IGaugeV3
    function getPeriodReward(
        uint256 period,
        address[] calldata tokens,
        uint256 tokenId,
        address receiver
    ) external override lock {
        require(period <= _blockTimestamp() / WEEK, CANT_CLAIM_FUTURE());
        INonfungiblePositionManager _nfpManager = nfpManager;
        address owner = _nfpManager.ownerOf(tokenId);
        address operator = _nfpManager.getApproved(tokenId);

        /// @dev check if owner, operator, or approved for all
        require(
            msg.sender == owner ||
                msg.sender == operator ||
                _nfpManager.isApprovedForAll(owner, msg.sender),
            NOT_AUTHORIZED()
        );

        (, , , int24 tickLower, int24 tickUpper, , , , , ) = _nfpManager
            .positions(tokenId);

        bytes32 _positionHash = positionHash(
            address(_nfpManager),
            tokenId,
            tickLower,
            tickUpper
        );

        for (uint256 i = 0; i < tokens.length; ++i) {
            if (period < _blockTimestamp() / WEEK) {
                lastClaimByToken[tokens[i]][_positionHash] = period;
            }

            _getReward(
                period,
                tokens[i],
                address(_nfpManager),
                tokenId,
                tickLower,
                tickUpper,
                _positionHash,
                receiver
            );
        }
    }

    /// @inheritdoc IGaugeV3
    function getPeriodReward(
        uint256 period,
        address[] calldata tokens,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        address receiver
    ) external override lock {
        require(msg.sender == owner, NOT_AUTHORIZED());
        bytes32 _positionHash = positionHash(
            owner,
            index,
            tickLower,
            tickUpper
        );

        for (uint256 i = 0; i < tokens.length; ++i) {
            if (period < _blockTimestamp() / WEEK) {
                lastClaimByToken[tokens[i]][_positionHash] = period;
            }

            _getReward(
                period,
                tokens[i],
                owner,
                index,
                tickLower,
                tickUpper,
                _positionHash,
                receiver
            );
        }
    }
    /// @inheritdoc IGaugeV3
    function getReward(
        uint256[] calldata tokenIds,
        address[] memory tokens
    ) external {
        uint256 length = tokenIds.length;

        for (uint256 i = 0; i < length; ++i) {
            getReward(tokenIds[i], tokens);
        }
    }
    /// @inheritdoc IGaugeV3
    function getReward(uint256 tokenId, address[] memory tokens) public lock {
        INonfungiblePositionManager _nfpManager = nfpManager;
        address owner = _nfpManager.ownerOf(tokenId);
        address operator = _nfpManager.getApproved(tokenId);
        /// @dev check if owner, operator, or approved for all
        require(
            msg.sender == owner ||
                msg.sender == operator ||
                _nfpManager.isApprovedForAll(owner, msg.sender),
            NOT_AUTHORIZED()
        );

        (, , , int24 tickLower, int24 tickUpper, , , , , ) = _nfpManager
            .positions(tokenId);

        _getAllRewards(
            address(_nfpManager),
            tokenId,
            tickLower,
            tickUpper,
            tokens,
            msg.sender
        );
    }
    /// @inheritdoc IGaugeV3
    function getRewardForOwner(
        uint256 tokenId,
        address[] memory tokens
    ) external lock {
        require(
            msg.sender == voter || msg.sender == address(nfpManager),
            NOT_AUTHORIZED()
        );

        INonfungiblePositionManager _nfpManager = nfpManager;
        address owner = _nfpManager.ownerOf(tokenId);

        (, , , int24 tickLower, int24 tickUpper, , , , , ) = _nfpManager
            .positions(tokenId);

        _getAllRewards(
            address(_nfpManager),
            tokenId,
            tickLower,
            tickUpper,
            tokens,
            owner
        );
    }

    function getReward(
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        address[] memory tokens,
        address receiver
    ) external lock {
        require(msg.sender == owner, NOT_AUTHORIZED());
        _getAllRewards(owner, index, tickLower, tickUpper, tokens, receiver);
    }

    function _getAllRewards(
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        address[] memory tokens,
        address receiver
    ) internal {
        bytes32 _positionHash = positionHash(
            owner,
            index,
            tickLower,
            tickUpper
        );
        uint256 currentPeriod = _blockTimestamp() / WEEK;
        uint256 lastClaim;
        for (uint256 i = 0; i < tokens.length; ++i) {
            lastClaim = Math.max(
                lastClaimByToken[tokens[i]][_positionHash],
                firstPeriod
            );
            for (
                uint256 period = lastClaim;
                period <= currentPeriod;
                ++period
            ) {
                _getReward(
                    period,
                    tokens[i],
                    owner,
                    index,
                    tickLower,
                    tickUpper,
                    _positionHash,
                    receiver
                );
            }
            lastClaimByToken[tokens[i]][_positionHash] = currentPeriod - 1;
        }
    }

    function _getReward(
        uint256 period,
        address token,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        bytes32 _positionHash,
        address receiver
    ) internal {
        uint256 _reward = cachePeriodEarned(
            period,
            token,
            owner,
            index,
            tickLower,
            tickUpper,
            true
        );

        if (_reward > 0) {
            periodClaimedAmount[period][_positionHash][token] += _reward;

            IERC20(token).safeTransfer(receiver, _reward);
            emit ClaimRewards(period, _positionHash, receiver, token, _reward);
        }
    }

    function addRewards(address reward) external {
        require(msg.sender == voter, NOT_VOTER());
        if (!isReward[reward]) {
            rewards.push(reward);
            isReward[reward] = true;
            emit RewardAdded(reward);
        }
    }

    function removeRewards(address reward) external {
        require(msg.sender == voter, NOT_VOTER());
        if (isReward[reward]) {
            uint256 idx;

            for (uint256 i; i < rewards.length; ++i) {
                if (rewards[i] == reward) {
                    idx = i;
                    break;
                }
            }

            for (uint256 i = idx; i < rewards.length - 1; ++i) {
                rewards[i] = rewards[i + 1];
            }

            rewards.pop();
            isReward[reward] = false;

            emit RewardRemoved(reward);
        }
    }
}

File 2 of 34 : IGaugeV3.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;

interface IGaugeV3 {
    error NOT_AUTHORIZED();
    error NOT_VOTER();
    error NOT_GT_ZERO(uint256 amt);
    error CANT_CLAIM_FUTURE();
    error RETRO();

    /// @notice Emitted when a reward notification is made.
    /// @param from The address from which the reward is notified.
    /// @param reward The address of the reward token.
    /// @param amount The amount of rewards notified.
    /// @param period The period for which the rewards are notified.
    event NotifyReward(
        address indexed from,
        address indexed reward,
        uint256 amount,
        uint256 period
    );

    /// @notice Emitted when a bribe is made.
    /// @param from The address from which the bribe is made.
    /// @param reward The address of the reward token.
    /// @param amount The amount of tokens bribed.
    /// @param period The period for which the bribe is made.
    event Bribe(
        address indexed from,
        address indexed reward,
        uint256 amount,
        uint256 period
    );

    /// @notice Emitted when rewards are claimed.
    /// @param period The period for which the rewards are claimed.
    /// @param _positionHash The identifier of the NFP for which rewards are claimed.
    /// @param receiver The address of the receiver of the claimed rewards.
    /// @param reward The address of the reward token.
    /// @param amount The amount of rewards claimed.
    event ClaimRewards(
        uint256 period,
        bytes32 _positionHash,
        address receiver,
        address reward,
        uint256 amount
    );

    /// @notice Emitted when a new reward token was pushed to the rewards array
    event RewardAdded(address reward);

    /// @notice Emitted when a reward token was removed from the rewards array
    event RewardRemoved(address reward);

    /// @notice Retrieves the value of the firstPeriod variable.
    /// @return The value of the firstPeriod variable.
    function firstPeriod() external returns (uint256);

    /// @notice Retrieves the total supply of a specific token for a given period.
    /// @param period The period for which to retrieve the total supply.
    /// @param token The address of the token for which to retrieve the total supply.
    /// @return The total supply of the specified token for the given period.
    function tokenTotalSupplyByPeriod(
        uint256 period,
        address token
    ) external view returns (uint256);

    /// @notice Retrieves the getTokenTotalSupplyByPeriod of the current period.
    /// @dev included to support voter's left() check during distribute().
    /// @param token The address of the token for which to retrieve the remaining amount.
    /// @return The amount of tokens left to distribute in this period.
    function left(address token) external view returns (uint256);

    /// @notice Retrieves the reward rate for a specific reward address.
    /// @dev this method returns the base rate without boost
    /// @param token The address of the reward for which to retrieve the reward rate.
    /// @return The reward rate for the specified reward address.
    function rewardRate(address token) external view returns (uint256);

    /// @notice Retrieves the claimed amount for a specific period, position hash, and user address.
    /// @param period The period for which to retrieve the claimed amount.
    /// @param _positionHash The identifier of the NFP for which to retrieve the claimed amount.
    /// @param reward The address of the token for the claimed amount.
    /// @return The claimed amount for the specified period, token ID, and user address.
    function periodClaimedAmount(
        uint256 period,
        bytes32 _positionHash,
        address reward
    ) external view returns (uint256);

    /// @notice Retrieves the last claimed period for a specific token, token ID combination.
    /// @param token The address of the reward token for which to retrieve the last claimed period.
    /// @param _positionHash The identifier of the NFP for which to retrieve the last claimed period.
    /// @return The last claimed period for the specified token and token ID.
    function lastClaimByToken(
        address token,
        bytes32 _positionHash
    ) external view returns (uint256);

    /// @notice Retrieves the reward address at the specified index in the rewards array.
    /// @param index The index of the reward address to retrieve.
    /// @return The reward address at the specified index.
    function rewards(uint256 index) external view returns (address);

    /// @notice Checks if a given address is a valid reward.
    /// @param reward The address to check.
    /// @return A boolean indicating whether the address is a valid reward.
    function isReward(address reward) external view returns (bool);

    /// @notice Returns an array of reward token addresses.
    /// @return An array of reward token addresses.
    function getRewardTokens() external view returns (address[] memory);

    /// @notice Returns the hash used to store positions in a mapping
    /// @param owner The address of the position owner
    /// @param index The index of the position
    /// @param tickLower The lower tick boundary of the position
    /// @param tickUpper The upper tick boundary of the position
    /// @return _hash The hash used to store positions in a mapping
    function positionHash(
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper
    ) external pure returns (bytes32);

    /*
    /// @notice Retrieves the liquidity and boosted liquidity for a specific NFP.
    /// @param tokenId The identifier of the NFP.
    /// @return liquidity The liquidity of the position token.
    function positionInfo(
        uint256 tokenId
    ) external view returns (uint128 liquidity);
    */

    /// @notice Returns the amount of rewards earned for an NFP.
    /// @param token The address of the token for which to retrieve the earned rewards.
    /// @param tokenId The identifier of the specific NFP for which to retrieve the earned rewards.
    /// @return reward The amount of rewards earned for the specified NFP and tokens.
    function earned(
        address token,
        uint256 tokenId
    ) external view returns (uint256 reward);

    /// @notice Returns the amount of rewards earned during a period for an NFP.
    /// @param period The period for which to retrieve the earned rewards.
    /// @param token The address of the token for which to retrieve the earned rewards.
    /// @param tokenId The identifier of the specific NFP for which to retrieve the earned rewards.
    /// @return reward The amount of rewards earned for the specified NFP and tokens.
    function periodEarned(
        uint256 period,
        address token,
        uint256 tokenId
    ) external view returns (uint256);

    /// @notice Retrieves the earned rewards for a specific period, token, owner, index, tickLower, and tickUpper.
    /// @param period The period for which to retrieve the earned rewards.
    /// @param token The address of the token for which to retrieve the earned rewards.
    /// @param owner The address of the owner for which to retrieve the earned rewards.
    /// @param index The index for which to retrieve the earned rewards.
    /// @param tickLower The tick lower bound for which to retrieve the earned rewards.
    /// @param tickUpper The tick upper bound for which to retrieve the earned rewards.
    /// @return The earned rewards for the specified period, token, owner, index, tickLower, and tickUpper.
    function periodEarned(
        uint256 period,
        address token,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper
    ) external view returns (uint256);

    /// @notice Retrieves the earned rewards for a specific period, token, owner, index, tickLower, and tickUpper.
    /// @dev used by getReward() and saves gas by saving states
    /// @param period The period for which to retrieve the earned rewards.
    /// @param token The address of the token for which to retrieve the earned rewards.
    /// @param owner The address of the owner for which to retrieve the earned rewards.
    /// @param index The index for which to retrieve the earned rewards.
    /// @param tickLower The tick lower bound for which to retrieve the earned rewards.
    /// @param tickUpper The tick upper bound for which to retrieve the earned rewards.
    /// @param caching Whether to cache the results or not.
    /// @return The earned rewards for the specified period, token, owner, index, tickLower, and tickUpper.
    function cachePeriodEarned(
        uint256 period,
        address token,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        bool caching
    ) external returns (uint256);

    /// @notice Notifies the contract about the amount of rewards to be distributed for a specific token.
    /// @param token The address of the token for which to notify the reward amount.
    /// @param amount The amount of rewards to be distributed.
    function notifyRewardAmount(address token, uint256 amount) external;

    /// @notice Retrieves the reward amount for a specific period, NFP, and token addresses.
    /// @param period The period for which to retrieve the reward amount.
    /// @param tokens The addresses of the tokens for which to retrieve the reward amount.
    /// @param tokenId The identifier of the specific NFP for which to retrieve the reward amount.
    /// @param receiver The address of the receiver of the reward amount.
    function getPeriodReward(
        uint256 period,
        address[] calldata tokens,
        uint256 tokenId,
        address receiver
    ) external;

    /// @notice Retrieves the rewards for a specific period, set of tokens, owner, index, tickLower, tickUpper, and receiver.
    /// @param period The period for which to retrieve the rewards.
    /// @param tokens An array of token addresses for which to retrieve the rewards.
    /// @param owner The address of the owner for which to retrieve the rewards.
    /// @param index The index for which to retrieve the rewards.
    /// @param tickLower The tick lower bound for which to retrieve the rewards.
    /// @param tickUpper The tick upper bound for which to retrieve the rewards.
    /// @param receiver The address of the receiver of the rewards.
    function getPeriodReward(
        uint256 period,
        address[] calldata tokens,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        address receiver
    ) external;

    /// @notice retrieves rewards based on an NFP id and an array of tokens
    function getReward(uint256 tokenId, address[] memory tokens) external;
    /// @notice retrieves rewards based on an array of NFP ids and an array of tokens
    function getReward(
        uint256[] calldata tokenIds,
        address[] memory tokens
    ) external;
    /// @notice get reward for an owner of an NFP
    function getRewardForOwner(
        uint256 tokenId,
        address[] memory tokens
    ) external;

    function addRewards(address reward) external;

    function removeRewards(address reward) external;

    /// @notice Notifies rewards for periods greater than current period
    /// @dev does not push fees
    /// @dev requires reward token to be whitelisted
    function notifyRewardAmountForPeriod(
        address token,
        uint256 amount,
        uint256 period
    ) external;

    /// @notice Notifies rewards for the next period
    /// @dev does not push fees
    /// @dev requires reward token to be whitelisted
    function notifyRewardAmountNextPeriod(
        address token,
        uint256 amount
    ) external;
}

File 3 of 34 : INonfungiblePositionManager.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import {IPoolInitializer} from './IPoolInitializer.sol';
import {IPeripheryPayments} from './IPeripheryPayments.sol';
import {IPeripheryImmutableState} from './IPeripheryImmutableState.sol';
import {PoolAddress} from '../libraries/PoolAddress.sol';

import {IERC721} from '@openzeppelin/contracts/token/ERC721/IERC721.sol';
import {IERC721Metadata} from '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import {IERC721Enumerable} from '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';

import {IPeripheryErrors} from './IPeripheryErrors.sol';

/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
    IPeripheryErrors,
    IPoolInitializer,
    IPeripheryPayments,
    IPeripheryImmutableState,
    IERC721,
    IERC721Metadata,
    IERC721Enumerable
{
    /// @notice Emitted when liquidity is increased for a position NFT
    /// @dev Also emitted when a token is minted
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param liquidity The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when liquidity is decreased for a position NFT
    /// @param tokenId The ID of the token for which liquidity was decreased
    /// @param liquidity The amount by which liquidity for the NFT position was decreased
    /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
    event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when tokens are collected for a position NFT
    /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
    /// @param tokenId The ID of the token for which underlying tokens were collected
    /// @param recipient The address of the account that received the collected tokens
    /// @param amount0 The amount of token0 owed to the position that was collected
    /// @param amount1 The amount of token1 owed to the position that was collected
    event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);

    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param tokenId The ID of the token that represents the position
    /// @return token0 The address of the token0 for a specific pool
    /// @return token1 The address of the token1 for a specific pool
    /// @return tickSpacing The tickSpacing the pool
    /// @return tickLower The lower end of the tick range for the position
    /// @return tickUpper The higher end of the tick range for the position
    /// @return liquidity The liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(
        uint256 tokenId
    )
        external
        view
        returns (
            address token0,
            address token1,
            int24 tickSpacing,
            int24 tickLower,
            int24 tickUpper,
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    struct MintParams {
        address token0;
        address token1;
        int24 tickSpacing;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    /// @notice Creates a new position wrapped in a NFT
    /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
    /// a method does not exist, i.e. the pool is assumed to be initialized.
    /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
    /// @return tokenId The ID of the token that represents the minted position
    /// @return liquidity The amount of liquidity for this position
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function mint(
        MintParams calldata params
    ) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);

    struct IncreaseLiquidityParams {
        uint256 tokenId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
    /// @param params tokenId The ID of the token for which liquidity is being increased,
    /// amount0Desired The desired amount of token0 to be spent,
    /// amount1Desired The desired amount of token1 to be spent,
    /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
    /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return liquidity The new liquidity amount as a result of the increase
    /// @return amount0 The amount of token0 to acheive resulting liquidity
    /// @return amount1 The amount of token1 to acheive resulting liquidity
    function increaseLiquidity(
        IncreaseLiquidityParams calldata params
    ) external payable returns (uint128 liquidity, uint256 amount0, uint256 amount1);

    struct DecreaseLiquidityParams {
        uint256 tokenId;
        uint128 liquidity;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Decreases the amount of liquidity in a position and accounts it to the position
    /// @param params tokenId The ID of the token for which liquidity is being decreased,
    /// amount The amount by which liquidity will be decreased,
    /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
    /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return amount0 The amount of token0 accounted to the position's tokens owed
    /// @return amount1 The amount of token1 accounted to the position's tokens owed
    function decreaseLiquidity(
        DecreaseLiquidityParams calldata params
    ) external payable returns (uint256 amount0, uint256 amount1);

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param params tokenId The ID of the NFT for which tokens are being collected,
    /// recipient The account that should receive the tokens,
    /// amount0Max The maximum amount of token0 to collect,
    /// amount1Max The maximum amount of token1 to collect
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);

    /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
    /// must be collected first.
    /// @param tokenId The ID of the token that is being burned
    function burn(uint256 tokenId) external payable;

    /// @notice Claims gauge rewards from liquidity incentives for a specific tokenId
    /// @param tokenId The ID of the token to claim rewards from
    /// @param tokens an array of reward tokens to claim
    function getReward(uint256 tokenId, address[] calldata tokens) external;
}

File 4 of 34 : IFeeCollector.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

import {IRamsesV3Pool} from "../../core/interfaces/IRamsesV3Pool.sol";

interface IFeeCollector {
    error NOT_AUTHORIZED();
    error FTL();

    /// @notice Emitted when the treasury address is changed.
    /// @param oldTreasury The previous treasury address.
    /// @param newTreasury The new treasury address.
    event TreasuryChanged(address oldTreasury, address newTreasury);

    /// @notice Emitted when the treasury fees value is changed.
    /// @param oldTreasuryFees The previous value of the treasury fees.
    /// @param newTreasuryFees The new value of the treasury fees.
    event TreasuryFeesChanged(uint256 oldTreasuryFees, uint256 newTreasuryFees);

    /// @notice Emitted when protocol fees are collected from a pool and distributed to the fee distributor and treasury.
    /// @param pool The address of the pool from which the fees were collected.
    /// @param feeDistAmount0 The amount of fee tokens (token 0) distributed to the fee distributor.
    /// @param feeDistAmount1 The amount of fee tokens (token 1) distributed to the fee distributor.
    /// @param treasuryAmount0 The amount of fee tokens (token 0) allocated to the treasury.
    /// @param treasuryAmount1 The amount of fee tokens (token 1) allocated to the treasury.
    event FeesCollected(
        address pool,
        uint256 feeDistAmount0,
        uint256 feeDistAmount1,
        uint256 treasuryAmount0,
        uint256 treasuryAmount1
    );

    /// @notice Returns the treasury address.
    function treasury() external returns (address);

    /// @notice Sets the treasury address to a new value.
    /// @param newTreasury The new address to set as the treasury.
    function setTreasury(address newTreasury) external;

    /// @notice Sets the value of treasury fees to a new amount.
    /// @param _treasuryFees The new amount of treasury fees to be set.
    function setTreasuryFees(uint256 _treasuryFees) external;

    /// @notice Collects protocol fees from a specified pool and distributes them to the fee distributor and treasury.
    /// @param pool The pool from which to collect the protocol fees.
    function collectProtocolFees(IRamsesV3Pool pool) external;
}

File 5 of 34 : FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.26;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

File 6 of 34 : IRamsesV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IRamsesV3PoolImmutables} from './pool/IRamsesV3PoolImmutables.sol';
import {IRamsesV3PoolState} from './pool/IRamsesV3PoolState.sol';
import {IRamsesV3PoolDerivedState} from './pool/IRamsesV3PoolDerivedState.sol';
import {IRamsesV3PoolActions} from './pool/IRamsesV3PoolActions.sol';
import {IRamsesV3PoolOwnerActions} from './pool/IRamsesV3PoolOwnerActions.sol';
import {IRamsesV3PoolErrors} from './pool/IRamsesV3PoolErrors.sol';
import {IRamsesV3PoolEvents} from './pool/IRamsesV3PoolEvents.sol';

/// @title The interface for a Ramses V3 Pool
/// @notice A Ramses pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IRamsesV3Pool is
    IRamsesV3PoolImmutables,
    IRamsesV3PoolState,
    IRamsesV3PoolDerivedState,
    IRamsesV3PoolActions,
    IRamsesV3PoolOwnerActions,
    IRamsesV3PoolErrors,
    IRamsesV3PoolEvents
{
    /// @notice if a new period, advance on interaction
    function _advancePeriod() external;
}

File 7 of 34 : PoolStorage.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.26;

struct Slot0 {
    /// @dev the current price
    uint160 sqrtPriceX96;
    /// @dev the current tick
    int24 tick;
    /// @dev the most-recently updated index of the observations array
    uint16 observationIndex;
    /// @dev the current maximum number of observations that are being stored
    uint16 observationCardinality;
    /// @dev the next maximum number of observations to store, triggered in observations.write
    uint16 observationCardinalityNext;
    /// @dev the current protocol fee as a percentage of the swap fee taken on withdrawal
    /// @dev represented as an integer denominator (1/x)%
    uint8 feeProtocol;
    /// @dev whether the pool is locked
    bool unlocked;
}

struct Observation {
    /// @dev the block timestamp of the observation
    uint32 blockTimestamp;
    /// @dev the tick accumulator, i.e. tick * time elapsed since the pool was first initialized
    int56 tickCumulative;
    /// @dev the seconds per liquidity, i.e. seconds elapsed / max(1, liquidity) since the pool was first initialized
    uint160 secondsPerLiquidityCumulativeX128;
    /// @dev whether or not the observation is initialized
    bool initialized;
}

struct RewardInfo {
    /// @dev used to account for changes in the deposit amount
    int256 secondsDebtX96;
    /// @dev used to check if starting seconds have already been written
    bool initialized;
    /// @dev used to account for changes in secondsPerLiquidity
    int160 secondsPerLiquidityPeriodStartX128;
}

/// @dev info stored for each user's position
struct PositionInfo {
    /// @dev the amount of liquidity owned by this position
    uint128 liquidity;
    /// @dev fee growth per unit of liquidity as of the last update to liquidity or fees owed
    uint256 feeGrowthInside0LastX128;
    uint256 feeGrowthInside1LastX128;
    /// @dev the fees owed to the position owner in token0/token1
    uint128 tokensOwed0;
    uint128 tokensOwed1;
    mapping(uint256 => RewardInfo) periodRewardInfo;
}

/// @dev info stored for each initialized individual tick
struct TickInfo {
    /// @dev the total position liquidity that references this tick
    uint128 liquidityGross;
    /// @dev amount of net liquidity added (subtracted) when tick is crossed from left to right (right to left),
    int128 liquidityNet;
    /// @dev fee growth per unit of liquidity on the _other_ side of this tick (relative to the current tick)
    /// @dev only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint256 feeGrowthOutside0X128;
    uint256 feeGrowthOutside1X128;
    /// @dev the cumulative tick value on the other side of the tick
    int56 tickCumulativeOutside;
    /// @dev the seconds per unit of liquidity on the _other_ side of this tick (relative to the current tick)
    /// @dev only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint160 secondsPerLiquidityOutsideX128;
    /// @dev the seconds spent on the other side of the tick (relative to the current tick)
    /// @dev only has relative meaning, not absolute — the value depends on when the tick is initialized
    uint32 secondsOutside;
    /// @dev true iff the tick is initialized, i.e. the value is exactly equivalent to the expression liquidityGross != 0
    /// @dev these 8 bits are set to prevent fresh sstores when crossing newly initialized ticks
    bool initialized;
    /// @dev secondsPerLiquidityOutsideX128 separated into periods, placed here to preserve struct slots
    mapping(uint256 => uint256) periodSecondsPerLiquidityOutsideX128;
}

/// @dev info stored for each period
struct PeriodInfo {
    uint32 previousPeriod;
    int24 startTick;
    int24 lastTick;
    uint160 endSecondsPerLiquidityPeriodX128;
}

/// @dev accumulated protocol fees in token0/token1 units
struct ProtocolFees {
    uint128 token0;
    uint128 token1;
}

/// @dev Position period and liquidity
struct PositionCheckpoint {
    uint256 period;
    uint256 liquidity;
}

library PoolStorage {
    /// @dev keccak256(abi.encode(uint256(keccak256("pool.storage")) - 1)) & ~bytes32(uint256(0xff));
    bytes32 public constant POOL_STORAGE_LOCATION = 0xf047b0c59244a0faf8e48cb6b6fde518e6717176152b6dd953628cd9dccb2800;

    /// @custom꞉storage‑location erc7201꞉pool.storage
    struct PoolState {
        Slot0 slot0;
        uint24 fee;
        uint256 feeGrowthGlobal0X128;
        uint256 feeGrowthGlobal1X128;
        ProtocolFees protocolFees;
        uint128 liquidity;
        mapping(int24 => TickInfo) _ticks;
        mapping(int16 => uint256) tickBitmap;
        mapping(bytes32 => PositionInfo) positions;
        Observation[65535] observations;
        mapping(uint256 => PeriodInfo) periods;
        uint256 lastPeriod;
        mapping(bytes32 => PositionCheckpoint[]) positionCheckpoints;
        bool initialized;
        address nfpManager;
    }

    /// @dev Return state storage struct for reading and writing
    function getStorage() internal pure returns (PoolState storage $) {
        assembly {
            $.slot := POOL_STORAGE_LOCATION
        }
    }
}

File 8 of 34 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 9 of 34 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 10 of 34 : IVoter.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
pragma abicoder v2;

interface IVoter {
    error ACTIVE_GAUGE(address gauge);

    error GAUGE_INACTIVE(address gauge);

    error ALREADY_WHITELISTED(address token);

    error NOT_AUTHORIZED(address caller);

    error NOT_WHITELISTED();

    error NOT_POOL();

    error NOT_INIT();

    error LENGTH_MISMATCH();

    error NO_GAUGE();

    error ALREADY_DISTRIBUTED(address gauge, uint256 period);

    error ZERO_VOTE(address pool);

    error RATIO_TOO_HIGH(uint256 _xRatio);

    error VOTE_UNSUCCESSFUL();

    event GaugeCreated(
        address indexed gauge,
        address creator,
        address feeDistributor,
        address indexed pool
    );

    event GaugeKilled(address indexed gauge);

    event GaugeRevived(address indexed gauge);

    event Voted(address indexed owner, uint256 weight, address indexed pool);

    event Abstained(address indexed owner, uint256 weight);

    event Deposit(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event Withdraw(
        address indexed lp,
        address indexed gauge,
        address indexed owner,
        uint256 amount
    );

    event NotifyReward(
        address indexed sender,
        address indexed reward,
        uint256 amount
    );

    event DistributeReward(
        address indexed sender,
        address indexed gauge,
        uint256 amount
    );

    event EmissionsRatio(
        address indexed caller,
        uint256 oldRatio,
        uint256 newRatio
    );

    event NewGovernor(address indexed sender, address indexed governor);

    event Whitelisted(address indexed whitelister, address indexed token);

    event WhitelistRevoked(
        address indexed forbidder,
        address indexed token,
        bool status
    );

    event MainTickSpacingChanged(
        address indexed token0,
        address indexed token1,
        int24 indexed newMainTickSpacing
    );

    event Poke(address indexed user);

    function initialize(
        address _shadow,
        address _legacyFactory,
        address _gauges,
        address _feeDistributorFactory,
        address _minter,
        address _msig,
        address _xShadow,
        address _clFactory,
        address _clGaugeFactory,
        address _nfpManager,
        address _feeRecipientFactory,
        address _voteModule,
        address _launcherPlugin
    ) external;

    /// @notice denominator basis
    function BASIS() external view returns (uint256);

    /// @notice ratio of xShadow emissions globally
    function xRatio() external view returns (uint256);

    /// @notice xShadow contract address
    function xShadow() external view returns (address);

    /// @notice legacy factory address (uni-v2/stableswap)
    function legacyFactory() external view returns (address);

    /// @notice concentrated liquidity factory
    function clFactory() external view returns (address);

    /// @notice gauge factory for CL
    function clGaugeFactory() external view returns (address);

    /// @notice legacy fee recipient factory
    function feeRecipientFactory() external view returns (address);

    /// @notice peripheral NFPManager contract
    function nfpManager() external view returns (address);

    /// @notice returns the address of the current governor
    /// @return _governor address of the governor
    function governor() external view returns (address _governor);

    /// @notice the address of the vote module
    /// @return _voteModule the vote module contract address
    function voteModule() external view returns (address _voteModule);

    /// @notice address of the central access Hub
    function accessHub() external view returns (address);

    /// @notice the address of the shadow launcher plugin to enable third party launchers
    /// @return _launcherPlugin the address of the plugin
    function launcherPlugin() external view returns (address _launcherPlugin);

    /// @notice distributes emissions from the minter to the voter
    /// @param amount the amount of tokens to notify
    function notifyRewardAmount(uint256 amount) external;

    /// @notice distributes the emissions for a specific gauge
    /// @param _gauge the gauge address
    function distribute(address _gauge) external;

    /// @notice returns the address of the gauge factory
    /// @param _gaugeFactory gauge factory address
    function gaugeFactory() external view returns (address _gaugeFactory);

    /// @notice returns the address of the feeDistributor factory
    /// @return _feeDistributorFactory feeDist factory address
    function feeDistributorFactory()
        external
        view
        returns (address _feeDistributorFactory);

    /// @notice returns the address of the minter contract
    /// @return _minter address of the minter
    function minter() external view returns (address _minter);

    /// @notice check if the gauge is active for governance use
    /// @param _gauge address of the gauge
    /// @return _trueOrFalse if the gauge is alive
    function isAlive(address _gauge) external view returns (bool _trueOrFalse);

    /// @notice allows the token to be paired with other whitelisted assets to participate in governance
    /// @param _token the address of the token
    function whitelist(address _token) external;

    /// @notice effectively disqualifies a token from governance
    /// @param _token the address of the token
    function revokeWhitelist(address _token) external;

    /// @notice returns if the address is a gauge
    /// @param gauge address of the gauge
    /// @return _trueOrFalse boolean if the address is a gauge
    function isGauge(address gauge) external view returns (bool _trueOrFalse);

    /// @notice disable a gauge from governance
    /// @param _gauge address of the gauge
    function killGauge(address _gauge) external;

    /// @notice re-activate a dead gauge
    /// @param _gauge address of the gauge
    function reviveGauge(address _gauge) external;

    /// @notice re-cast a tokenID's votes
    /// @param owner address of the owner
    function poke(address owner) external;

    /// @notice sets the main tickspacing of a token pairing
    /// @param tokenA address of tokenA
    /// @param tokenB address of tokenB
    /// @param tickSpacing the main tickspacing to set to
    function setMainTickSpacing(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external;

    /// @notice returns if the address is a fee distributor
    /// @param _feeDistributor address of the feeDist
    /// @return _trueOrFalse if the address is a fee distributor
    function isFeeDistributor(
        address _feeDistributor
    ) external view returns (bool _trueOrFalse);

    /// @notice returns the address of the emission's token
    /// @return _shadow emissions token contract address
    function shadow() external view returns (address _shadow);

    /// @notice returns the address of the pool's gauge, if any
    /// @param _pool pool address
    /// @return _gauge gauge address
    function gaugeForPool(address _pool) external view returns (address _gauge);

    /// @notice returns the address of the pool's feeDistributor, if any
    /// @param _gauge address of the gauge
    /// @return _feeDistributor address of the pool's feedist
    function feeDistributorForGauge(
        address _gauge
    ) external view returns (address _feeDistributor);

    /// @notice returns the new toPool that was redirected fromPool
    /// @param fromPool address of the original pool
    /// @return toPool the address of the redirected pool
    function poolRedirect(
        address fromPool
    ) external view returns (address toPool);

    /// @notice returns the gauge address of a CL pool
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @param tickSpacing tickspacing of the pool
    /// @return gauge address of the gauge
    function gaugeForClPool(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external view returns (address gauge);

    /// @notice returns the array of all tickspacings for the tokenA/tokenB combination
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts array of all the tickspacings
    function tickSpacingsForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24[] memory _ts);

    /// @notice returns the main tickspacing used in the gauge/governance process
    /// @param tokenA address of token A in the pair
    /// @param tokenB address of token B in the pair
    /// @return _ts the main tickspacing
    function mainTickSpacingForPair(
        address tokenA,
        address tokenB
    ) external view returns (int24 _ts);

    /// @notice returns the block.timestamp divided by 1 week in seconds
    /// @return period the period used for gauges
    function getPeriod() external view returns (uint256 period);

    /// @notice cast a vote to direct emissions to gauges and earn incentives
    /// @param owner address of the owner
    /// @param _pools the list of pools to vote on
    /// @param _weights an arbitrary weight per pool which will be normalized to 100% regardless of numerical inputs
    function vote(
        address owner,
        address[] calldata _pools,
        uint256[] calldata _weights
    ) external;

    /// @notice reset the vote of an address
    /// @param owner address of the owner
    function reset(address owner) external;

    /// @notice set the governor address
    /// @param _governor the new governor address
    function setGovernor(address _governor) external;

    /// @notice recover stuck emissions
    /// @param _gauge the gauge address
    /// @param _period the period
    function stuckEmissionsRecovery(address _gauge, uint256 _period) external;

    /// @notice whitelists extra rewards for a gauge
    /// @param _gauge the gauge to whitelist rewards to
    /// @param _reward the reward to whitelist
    function whitelistGaugeRewards(address _gauge, address _reward) external;

    /// @notice removes a reward from the gauge whitelist
    /// @param _gauge the gauge to remove the whitelist from
    /// @param _reward the reward to remove from the whitelist
    function removeGaugeRewardWhitelist(
        address _gauge,
        address _reward
    ) external;

    /// @notice creates a legacy gauge for the pool
    /// @param _pool pool's address
    /// @return _gauge address of the new gauge
    function createGauge(address _pool) external returns (address _gauge);

    /// @notice create a concentrated liquidity gauge
    /// @param tokenA the address of tokenA
    /// @param tokenB the address of tokenB
    /// @param tickSpacing the tickspacing of the pool
    /// @return _clGauge address of the new gauge
    function createCLGauge(
        address tokenA,
        address tokenB,
        int24 tickSpacing
    ) external returns (address _clGauge);

    /// @notice claim concentrated liquidity gauge rewards for specific NFP token ids
    /// @param _gauges array of gauges
    /// @param _tokens two dimensional array for the tokens to claim
    /// @param _nfpTokenIds two dimensional array for the NFPs
    function claimClGaugeRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens,
        uint256[][] calldata _nfpTokenIds
    ) external;

    /// @notice claim arbitrary rewards from specific feeDists
    /// @param owner address of the owner
    /// @param _feeDistributors address of the feeDists
    /// @param _tokens two dimensional array for the tokens to claim
    function claimIncentives(
        address owner,
        address[] calldata _feeDistributors,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific gauges
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimRewards(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice claim arbitrary rewards from specific legacy gauges, and exit to shadow
    /// @param _gauges address of the gauges
    /// @param _tokens two dimensional array for the tokens to claim
    function claimLegacyRewardsAndExit(
        address[] calldata _gauges,
        address[][] calldata _tokens
    ) external;

    /// @notice distribute emissions to a gauge for a specific period
    /// @param _gauge address of the gauge
    /// @param _period value of the period
    function distributeForPeriod(address _gauge, uint256 _period) external;

    /// @notice attempt distribution of emissions to all gauges
    function distributeAll() external;

    /// @notice distribute emissions to gauges by index
    /// @param startIndex start of the loop
    /// @param endIndex end of the loop
    function batchDistributeByIndex(
        uint256 startIndex,
        uint256 endIndex
    ) external;

    /// @notice returns the votes cast for a tokenID
    /// @param owner address of the owner
    /// @return votes an array of votes casted
    /// @return weights an array of the weights casted per pool
    function getVotes(
        address owner,
        uint256 period
    ) external view returns (address[] memory votes, uint256[] memory weights);

    /// @notice returns an array of all the gauges
    /// @return _gauges the array of gauges
    function getAllGauges() external view returns (address[] memory _gauges);

    /// @notice returns an array of all the feeDists
    /// @return _feeDistributors the array of feeDists
    function getAllFeeDistributors()
        external
        view
        returns (address[] memory _feeDistributors);

    /// @notice sets the xShadowRatio default
    function setGlobalRatio(uint256 _xRatio) external;

    /// @notice whether the token is whitelisted in governance
    function isWhitelisted(address _token) external view returns (bool _tf);

    /// @notice function for removing malicious or stuffed tokens
    function removeFeeDistributorReward(
        address _feeDist,
        address _token
    ) external;
}

File 11 of 34 : IPoolInitializer.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
    /// @notice Creates a new pool if it does not exist, then initializes if not initialized
    /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
    /// @param token0 The contract address of token0 of the pool
    /// @param token1 The contract address of token1 of the pool
    /// @param tickSpacing The tickSpacing of the v3 pool for the specified token pair
    /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
    /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
    function createAndInitializePoolIfNecessary(
        address token0,
        address token1,
        int24 tickSpacing,
        uint160 sqrtPriceX96
    ) external payable returns (address pool);
}

File 12 of 34 : IPeripheryPayments.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
    /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
    /// @param amountMinimum The minimum amount of WETH9 to unwrap
    /// @param recipient The address receiving ETH
    function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(
        address token,
        uint256 amountMinimum,
        address recipient
    ) external payable;
}

File 13 of 34 : IPeripheryImmutableState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 deployer
    function deployer() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

File 14 of 34 : PoolAddress.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the deployer, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xc701ee63862761c31d620a4a083c61bdc1e81761e6b9c9267fd19afd22e0821d;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        int24 tickSpacing;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param tickSpacing The tickSpacing of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(address tokenA, address tokenB, int24 tickSpacing) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, tickSpacing: tickSpacing});
    }

    /// @notice Deterministically computes the pool address given the deployer and PoolKey
    /// @param deployer The Uniswap V3 deployer contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address deployer, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1, "!TokenOrder");
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex'ff',
                            deployer,
                            keccak256(abi.encode(key.token0, key.token1, key.tickSpacing)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}

File 15 of 34 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 16 of 34 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 17 of 34 : IERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 18 of 34 : IPeripheryErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by the NonFungiblePositionManager
/// @notice Contains all events emitted by the NfpManager
interface IPeripheryErrors {
    error InvalidTokenId(uint256 tokenId);
    error CheckSlippage();
    error NotCleared();
}

File 19 of 34 : IRamsesV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IRamsesV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IRamsesV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}

File 20 of 34 : IRamsesV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IRamsesV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(
        int24 tick
    )
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(
        bytes32 key
    )
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(
        uint256 index
    )
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );


    /// @notice get the period seconds in range of a specific position
    /// @param period the period number
    /// @param owner owner address
    /// @param index position index
    /// @param tickLower lower bound of range
    /// @param tickUpper upper bound of range
    /// @return periodSecondsInsideX96 seconds the position was not in range for the period
    function positionPeriodSecondsInRange(
        uint256 period,
        address owner,
        uint256 index,
        int24 tickLower,
        int24 tickUpper
    ) external view returns (uint256 periodSecondsInsideX96);
}

File 21 of 34 : IRamsesV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IRamsesV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(
        uint32[] calldata secondsAgos
    ) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(
        int24 tickLower,
        int24 tickUpper
    ) external view returns (int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside);
}

File 22 of 34 : IRamsesV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IRamsesV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param index The index for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param index The index of the position to be collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param index The index for which the liquidity will be burned
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        uint256 index,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    
    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;
    

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}

File 23 of 34 : IRamsesV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IRamsesV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    function setFeeProtocol() external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    function setFee(uint24 _fee) external;
}

File 24 of 34 : IRamsesV3PoolErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IRamsesV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
    error SPL();
}

File 25 of 34 : IRamsesV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IRamsesV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}

File 26 of 34 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 27 of 34 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 28 of 34 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 29 of 34 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 30 of 34 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 31 of 34 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 32 of 34 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 33 of 34 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 34 of 34 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

Settings
{
  "remappings": [
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@forge-std-1.9.4/=dependencies/forge-std-1.9.4/",
    "@layerzerolabs/=node_modules/@layerzerolabs/",
    "@layerzerolabs/lz-evm-protocol-v2/=node_modules/@layerzerolabs/lz-evm-protocol-v2/",
    "@openzeppelin-contracts-upgradeable/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@openzeppelin-contracts/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/",
    "erc4626-tests/=dependencies/erc4626-property-tests-1.0/",
    "forge-std/=dependencies/forge-std-1.9.4/src/",
    "permit2/=lib/permit2/",
    "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/",
    "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/",
    "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/",
    "@uniswap/=node_modules/@uniswap/",
    "base64-sol/=node_modules/base64-sol/",
    "ds-test/=node_modules/ds-test/",
    "erc4626-property-tests-1.0/=dependencies/erc4626-property-tests-1.0/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/",
    "hardhat/=node_modules/hardhat/",
    "solidity-bytes-utils/=node_modules/solidity-bytes-utils/",
    "solmate/=node_modules/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1633
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_voter","type":"address"},{"internalType":"address","name":"_nfpManager","type":"address"},{"internalType":"address","name":"_feeCollector","type":"address"},{"internalType":"address","name":"_pool","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CANT_CLAIM_FUTURE","type":"error"},{"inputs":[],"name":"LOK","type":"error"},{"inputs":[],"name":"NOT_AUTHORIZED","type":"error"},{"inputs":[{"internalType":"uint256","name":"amt","type":"uint256"}],"name":"NOT_GT_ZERO","type":"error"},{"inputs":[],"name":"NOT_VOTER","type":"error"},{"inputs":[],"name":"NOT_WHITELISTED","type":"error"},{"inputs":[],"name":"RETRO","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"reward","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"period","type":"uint256"}],"name":"Bribe","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"period","type":"uint256"},{"indexed":false,"internalType":"bytes32","name":"_positionHash","type":"bytes32"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"address","name":"reward","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ClaimRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"reward","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"period","type":"uint256"}],"name":"NotifyReward","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"reward","type":"address"}],"name":"RewardAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"reward","type":"address"}],"name":"RewardRemoved","type":"event"},{"inputs":[{"internalType":"address","name":"reward","type":"address"}],"name":"addRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"bool","name":"caching","type":"bool"}],"name":"cachePeriodEarned","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"earned","outputs":[{"internalType":"uint256","name":"reward","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"contract IFeeCollector","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"firstPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"address","name":"receiver","type":"address"}],"name":"getPeriodReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"getPeriodReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"},{"internalType":"address[]","name":"tokens","type":"address[]"},{"internalType":"address","name":"receiver","type":"address"}],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"getReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"getRewardForOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getRewardTokens","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isReward","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"lastClaimByToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"left","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nfpManager","outputs":[{"internalType":"contract INonfungiblePositionManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"notifyRewardAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"period","type":"uint256"}],"name":"notifyRewardAmountForPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"notifyRewardAmountNextPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"address","name":"","type":"address"}],"name":"periodClaimedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"periodEarned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"period","type":"uint256"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"name":"periodEarned","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"contract IRamsesV3Pool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"int24","name":"tickLower","type":"int24"},{"internalType":"int24","name":"tickUpper","type":"int24"}],"name":"positionHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"reward","type":"address"}],"name":"removeRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"rewardRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewards","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"tokenTotalSupplyByPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"voter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f905f3560e01c90816316f0115b14611bf8575080631b9e88b114611a1c578063221ca18c146119cf57806329b2f637146118e95780633e491d471461179557806346c96aac146117525780634d5ce0381461171557806362da4afd146116605780637af618331461161c5780638ed6a18c146112ff57806398bbc3c7146112bc57806399bcc0521461122f5780639a32421a14610faa5780639dfb338114610e0d578063a230575614610dd5578063a7852afa14610c25578063b66503cf14610a44578063be171c5e146109ed578063c415b95c146109a9578063c4e3a63b1461096e578063c4f59f9b146108a6578063c6cee758146107f5578063e102dac4146107a4578063e73b49b414610686578063e77b11d2146104b9578063e92a9fa914610473578063eb6ebc2714610425578063f301af42146103e25763f5f8d3651461015d575f80fd5b346103df5761016b36611d99565b825460ff8116156103d05760ff191683556001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f440616906040516331a9108f60e11b8152836004820152602081602481865afa9081156102a5578591610392575b506040519063020604bf60e21b8252846004830152602082602481875afa918215610387578692610347575b506001600160a01b0381163314918215610332575b5081156102bf575b50156102b05760405163133f757160e31b815283600482015261014081602481865afa9081156102a5576102599486918793610267575b503394612512565b805460ff1916600117815580f35b90925061028c91506101403d811161029e575b6102848183611cec565b810190611ea8565b5050505050935091505090915f610251565b503d61027a565b6040513d87823e3d90fd5b600484633d83866f60e01b8152fd5b60405163e985e9c560e01b81526001600160a01b039190911660048201523360248201529050602081604481865afa9081156102a5578591610303575b505f61021a565b610325915060203d60201161032b575b61031d8183611cec565b810190611f34565b5f6102fc565b503d610313565b6001600160a01b03919250163314905f610212565b9091506020813d60201161037f575b8161036360209383611cec565b8101031261037b5761037490611e69565b905f6101fd565b8580fd5b3d9150610356565b6040513d88823e3d90fd5b90506020813d6020116103c8575b816103ad60209383611cec565b810103126103c4576103be90611e69565b5f6101d1565b8480fd5b3d91506103a0565b6004846350dfbc4360e11b8152fd5b80fd5b50346103df5760203660031901126103df57600435906006548210156103df5760206001600160a01b0361041584611dcc565b90549060031b1c16604051908152f35b50346103df5760c03660031901126103df57602061046b610444611c65565b61044c611c4f565b90610455611cac565b9061045e611cbc565b92606435916004356122f8565b604051908152f35b50346103df5760403660031901126103df576001600160a01b036040610497611c65565b92600435815260016020522091165f52602052602060405f2054604051908152f35b50346103df5760403660031901126103df576104d3611c39565b60243590825460ff8116156103d05760ff191683556001600160a01b03906104fd83801515611df8565b1690818352600760205260ff604084205416156106775762093a804204906001820180921161066357604051906370a0823160e01b8252306004830152602082602481875afa9182156102a557859261062d575b5061055e903033866123a2565b604051906370a0823160e01b8252306004830152602082602481875afa80156102a55785906105f5575b6105929250611e2b565b90808452600160205260408420835f5260205260405f206105b4838254611e38565b905560405191825260208201527f52977ea98a2220a03ee9ba5cb003ada08d394ea10155483c95dc2dc77a7eb24b60403392a3805460ff1916600117815580f35b506020823d602011610625575b8161060f60209383611cec565b81010312610621576105929151610588565b5f80fd5b3d9150610602565b9091506020813d60201161065b575b8161064960209383611cec565b8101031261062157519061055e610551565b3d915061063c565b602484634e487b7160e01b81526011600452fd5b600483635ffde35f60e11b8152fd5b50346103df5760203660031901126103df576106a0611c39565b6001600160a01b037f0000000000000000000000003af1dd7a2755201f8e2d6dcda1a61d9f54838f4f163303610795576001600160a01b03811690818352600760205260ff604084205416156106f4578280f35b60065468010000000000000000811015610781579161075f6020926107408560017fb13fd610fe4e1b384966826794a9b2f6100ad031f352cc5ec6f22667f60749809701600655611dcc565b9091906001600160a01b038084549260031b9316831b921b1916179055565b808452600782526040808520805460ff1916600117905551908152a15f808280f35b602484634e487b7160e01b81526041600452fd5b6004826337dff68560e21b8152fd5b50346103df5760603660031901126103df576001600160a01b0360406107c8611c4f565b926004358152600460205281812060243582526020522091165f52602052602060405f2054604051908152f35b50346103df5760c03660031901126103df5761080f611c39565b90610818611ccc565b610820611cdc565b60843567ffffffffffffffff81116108a257610840903690600401611d22565b9060a435926001600160a01b03841684036103c457845460ff8116156108935760ff191685556001600160a01b038616330361088457610259949560243590612512565b600485633d83866f60e01b8152fd5b6004866350dfbc4360e11b8152fd5b8380fd5b50346103df57806003193601126103df5760405180602060065491828152018091600685527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f90855b81811061094f5750505082610905910383611cec565b604051928392602084019060208552518091526040840192915b81811061092d575050500390f35b82516001600160a01b031684528594506020938401939092019160010161091f565b82546001600160a01b03168452602090930192600192830192016108ef565b50346103df57806003193601126103df5760206040517f0000000000000000000000000000000000000000000000000000000000000b378152f35b50346103df57806003193601126103df5760206040516001600160a01b037f000000000000000000000000cc0365f8f453c55ea7471c9f89767928c8f8d27f168152f35b50346103df5760e03660031901126103df57610a07611c65565b610a0f611c4f565b90610a18611cac565b90610a21611cbc565b9260c4359485151586036103df57602061046b87878760643587896004356121ae565b503461062157604036600319011261062157610a5e611c39565b6024356001600160a01b037f000000000000000000000000cc0365f8f453c55ea7471c9f89767928c8f8d27f1691823b15610621576040517f2a54db010000000000000000000000000000000000000000000000000000000081525f81602481836001600160a01b037f000000000000000000000000097d8b97d15567fb9966ba7bfaec35cb86b0983416988960048401525af18015610c1a57610c05575b50835460ff811615610bf65760ff191684556001600160a01b0390610b2483801515611df8565b1691828452600760205260ff60408520541615610be7578084913b15610be3578180916004604051809481937fc2e0f9b20000000000000000000000000000000000000000000000000000000083525af18015610bd857610bbf575b50506040516370a0823160e01b815230600482015262093a80420491602082602481875afa9182156102a557859261062d575061055e903033866123a2565b81610bc991611cec565b610bd457825f610b80565b8280fd5b6040513d84823e3d90fd5b5080fd5b600484635ffde35f60e11b8152fd5b6004856350dfbc4360e11b8152fd5b610c129194505f90611cec565b5f925f610afd565b6040513d5f823e3d90fd5b3461062157610c3336611d99565b905f5460ff811615610dc65760ff19165f55337f0000000000000000000000003af1dd7a2755201f8e2d6dcda1a61d9f54838f4f6001600160a01b0316148015610d94575b15610d85576001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f44061691604051916331a9108f60e11b8352806004840152602083602481875afa928315610c1a575f93610d49575b5060405163133f757160e31b815281600482015261014081602481885afa918215610c1a57610d0b955f925f94610d19575b50612512565b5f805460ff19166001179055005b909350610d369192506101403d811161029e576102848183611cec565b5050505050949350915050919287610d05565b9092506020813d602011610d7d575b81610d6560209383611cec565b8101031261062157610d7690611e69565b9184610cd3565b3d9150610d58565b633d83866f60e01b5f5260045ffd5b506001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f4406163314610c78565b6350dfbc4360e11b5f5260045ffd5b3461062157608036600319011261062157602061046b610df3611c39565b610dfb611ccc565b610e03611cdc565b9160243590611f4c565b3461062157602036600319011261062157610e26611c39565b6001600160a01b037f0000000000000000000000003af1dd7a2755201f8e2d6dcda1a61d9f54838f4f163303610f9b576001600160a01b0316805f52600760205260ff60405f205416610e7557005b5f5f600654905b818110610f6a575b50505b6006545f198101908111610ed557811015610ee9576001810190818111610ed557610ecf6001600160a01b03610ebe600194611dcc565b90549060031b1c1661074083611dcc565b01610e87565b634e487b7160e01b5f52601160045260245ffd5b506006548015610f56577f755c47ac85b75fe2251607db5a480aac818b88bb535814bf1e3c4784ae4f6baa916020915f1901610f2481611dcc565b6001600160a01b0382549160031b1b19169055600655805f526007825260405f2060ff198154169055604051908152a1005b634e487b7160e01b5f52603160045260245ffd5b836001600160a01b03610f7c83611dcc565b90549060031b1c1614610f9157600101610e7c565b9150508280610e84565b6337dff68560e21b5f5260045ffd5b346106215760403660031901126106215760043567ffffffffffffffff811161062157610fdb903690600401611c7b565b60243567ffffffffffffffff811161062157610ffc83913690600401611d22565b917f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f44066001600160a01b0316905f5b81811061103357005b61103e818386611e45565b35905f5460ff811615610dc65760ff19165f556040516331a9108f60e11b8152826004820152602081602481885afa908115610c1a575f916111f6575b506040519063020604bf60e21b8252836004830152602082602481895afa918215610c1a575f926111bb575b506001600160a01b03811633149182156111a6575b508115611144575b5015610d85576040519163133f757160e31b835280600484015261014083602481885afa908115610c1a5787611109926001955f905f92611119575b50339389612512565b8160ff195f5416175f550161102a565b905061113491506101403d811161029e576102848183611cec565b505050505093509150508b611100565b60405163e985e9c560e01b81526001600160a01b039190911660048201523360248201529050602081604481885afa908115610c1a575f91611188575b50876110c4565b6111a0915060203d811161032b5761031d8183611cec565b87611181565b6001600160a01b0391925016331490886110bc565b9091506020813d82116111ee575b816111d660209383611cec565b81010312610621576111e790611e69565b90886110a7565b3d91506111c9565b90506020813d8211611227575b8161121060209383611cec565b810103126106215761122190611e69565b8761107b565b3d9150611203565b3461062157602036600319011261062157611248611c39565b62093a8042049060018201808311610ed55762093a8081029080820462093a801490151715610ed55761127c904290611e2b565b915f5260016020526001600160a01b0360405f2091165f5260205260405f2054818102918183041490151715610ed55760209062093a8060405191048152f35b34610621575f3660031901126106215760206040516001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f4406168152f35b346106215760803660031901126106215760043560243567ffffffffffffffff811161062157611333903690600401611c7b565b60449291923591606435906001600160a01b0382168203610621575f5460ff811615610dc65760ff19165f5562093a804204938482116115f4576001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f440616906040516331a9108f60e11b8152816004820152602081602481865afa908115610c1a575f916115ba575b506040519063020604bf60e21b8252826004830152602082602481875afa918215610c1a575f9261157e575b506001600160a01b0381163314918215611569575b508115611506575b5015610d85576040519063133f757160e31b825280600483015261014082602481865afa928315610c1a575f925f946114d6575b5061144f848484849b9a9b611f4c565b945f978110975b89811061146b575f805460ff19166001179055005b8061149d8989898f8f8f61149761149260019a8f95948f958f958f906114a3575b50611e45565b611e55565b8a612403565b01611456565b6001600160a01b036114b9611492868686611e45565b165f52600560205260405f208b5f5260205260405f20558e61148c565b9093506114f39192506101403d811161029e576102848183611cec565b505050505094935091505091928961143f565b60405163e985e9c560e01b81526001600160a01b039190911660048201523360248201529050602081604481865afa908115610c1a575f9161154a575b508861140b565b611563915060203d60201161032b5761031d8183611cec565b88611543565b6001600160a01b039192501633149089611403565b9091506020813d6020116115b2575b8161159a60209383611cec565b81010312610621576115ab90611e69565b90896113ee565b3d915061158d565b90506020813d6020116115ec575b816115d560209383611cec565b81010312610621576115e690611e69565b886113c2565b3d91506115c8565b7ff21ef343000000000000000000000000000000000000000000000000000000005f5260045ffd5b34610621576040366003190112610621576001600160a01b0361163d611c39565b165f52600560205260405f206024355f52602052602060405f2054604051908152f35b3461062157606036600319011261062157611679611c65565b604435906001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f4406169160405163133f757160e31b815281600482015261014081602481875afa918215610c1a5760209461046b945f935f956116e5575b506004356122f8565b9094506117029193506101403d811161029e576102848183611cec565b50505050509593509150509293876116dc565b34610621576020366003190112610621576001600160a01b03611736611c39565b165f526007602052602060ff60405f2054166040519015158152f35b34610621575f3660031901126106215760206040516001600160a01b037f0000000000000000000000003af1dd7a2755201f8e2d6dcda1a61d9f54838f4f168152f35b34610621576040366003190112610621576117ae611c39565b602435905f916001600160a01b037f00000000000000000000000012e66c8f215ddd5d48d150c8f46ad0c6fb0f440616906040519063133f757160e31b825280600483015261014082602481865afa928315610c1a575f925f946118b9575b5092919061182083838387999899611f4c565b6001600160a01b0387165f52600560205260405f20905f5260205260405f2054937f0000000000000000000000000000000000000000000000000000000000000b3762093a804204958180821191180218965b8588111561188657602087604051908152f35b9091929394956118a76118ad916118a188888888888f6122f8565b90611e38565b97611f26565b96959493929190611873565b9093506118d69192506101403d811161029e576102848183611cec565b505050505094935091505091928661180d565b346106215760e03660031901126106215760043560243567ffffffffffffffff81116106215761191d903690600401611c7b565b611928929192611c4f565b60643590611934611cac565b61193c611cbc565b9060c435936001600160a01b0385168503610621575f5460ff811615610dc65760ff19165f556001600160a01b0384163303610d8557611981838383879a999a611f4c565b935f9662093a8042048110975b8981106119a3575f805460ff19166001179055005b806119c98989898f8f8f61149761149260019a8f95948f958f958f906114a35750611e45565b0161198e565b34610621576020366003190112610621576119e8611c39565b62093a8042045f5260016020526001600160a01b0360405f2091165f52602052602062093a8060405f205404604051908152f35b3461062157606036600319011261062157611a35611c39565b60243590604435905f549060ff821615610dc6576001600160a01b039160ff19165f55611a6484801515611df8565b1691825f52600760205260ff60405f20541615611be95762093a804204821115611bc157604051906370a0823160e01b8252306004830152602082602481875afa918215610c1a575f92611b8b575b50611ac0903033866123a2565b604051906370a0823160e01b8252306004830152602082602481875afa8015610c1a575f90611b57575b611af49250611e2b565b90805f52600160205260405f20835f5260205260405f20611b16838254611e38565b905560405191825260208201527f52977ea98a2220a03ee9ba5cb003ada08d394ea10155483c95dc2dc77a7eb24b60403392a35f805460ff19166001179055005b506020823d602011611b83575b81611b7160209383611cec565b8101031261062157611af49151611aea565b3d9150611b64565b9091506020813d602011611bb9575b81611ba760209383611cec565b81010312610621575190611ac0611ab3565b3d9150611b9a565b7fe0d7f1e3000000000000000000000000000000000000000000000000000000005f5260045ffd5b635ffde35f60e11b5f5260045ffd5b34610621575f366003190112610621576020906001600160a01b037f000000000000000000000000097d8b97d15567fb9966ba7bfaec35cb86b09834168152f35b600435906001600160a01b038216820361062157565b604435906001600160a01b038216820361062157565b602435906001600160a01b038216820361062157565b9181601f840112156106215782359167ffffffffffffffff8311610621576020808501948460051b01011161062157565b608435908160020b820361062157565b60a435908160020b820361062157565b604435908160020b820361062157565b606435908160020b820361062157565b90601f8019910116810190811067ffffffffffffffff821117611d0e57604052565b634e487b7160e01b5f52604160045260245ffd5b81601f820112156106215780359167ffffffffffffffff8311611d0e578260051b9160405193611d556020850186611cec565b845260208085019382010191821161062157602001915b818310611d795750505090565b82356001600160a01b038116810361062157815260209283019201611d6c565b90604060031983011261062157600435916024359067ffffffffffffffff821161062157611dc991600401611d22565b90565b600654811015611de45760065f5260205f2001905f90565b634e487b7160e01b5f52603260045260245ffd5b15611e005750565b7f7d86a014000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b91908203918211610ed557565b91908201809211610ed557565b9190811015611de45760051b0190565b356001600160a01b03811681036106215790565b51906001600160a01b038216820361062157565b51908160020b820361062157565b51906fffffffffffffffffffffffffffffffff8216820361062157565b91908261014091031261062157611ebe82611e69565b91611ecb60208201611e69565b91611ed860408301611e7d565b91611ee560608201611e7d565b91611ef260808301611e7d565b91611eff60a08201611e8b565b9160c08201519160e081015191611dc9610120611f1f6101008501611e8b565b9301611e8b565b5f198114610ed55760010190565b90816020910312610621575180151581036106215790565b929091604051927fffffffffffffffffffffffffffffffffffffffff000000000000000000000000602085019560601b168552603484015260e81b605483015260e81b6057820152603a8152611fa3605a82611cec565b51902090565b3d15611fe3573d9067ffffffffffffffff8211611d0e5760405191611fd8601f8201601f191660200184611cec565b82523d5f602084013e565b606090565b9491939093611ff983838684611f4c565b93865f52600260205260405f20855f5260205260ff60405f205416155f1461218b575f938493604051926001600160a01b036020850195634c8c7ddb60e11b87528b6024870152166044850152606484015260020b608483015260020b60a482015260a4815261206a60c482611cec565b51906001600160a01b037f000000000000000000000000097d8b97d15567fb9966ba7bfaec35cb86b09834165afa6120a0611fa9565b90156121835760208151918180820193849201010312610621576120fa90518062093a80420486108061217b575b61213d575b505b845f52600160205260405f206001600160a01b0385165f5260205260405f2054612636565b925f52600460205260405f20905f526020526001600160a01b0360405f2091165f5260205260405f2054808210155f1461213757611dc991611e2b565b50505f90565b855f52600260205260405f20845f5260205260405f20600160ff19825416179055855f52600360205260405f20845f5260205260405f20555f6120d3565b5060016120ce565b505050505f90565b50505050825f52600360205260405f20815f526020526120fa60405f20546120d5565b9592939094916121c083838784611f4c565b94875f52600260205260405f20865f5260205260ff60405f205416155f146122d4575f938493604051926001600160a01b036020850195634c8c7ddb60e11b87528c6024870152166044850152606484015260020b608483015260020b60a482015260a4815261223160c482611cec565b51906001600160a01b037f000000000000000000000000097d8b97d15567fb9966ba7bfaec35cb86b09834165afa90612268611fa9565b91156122cb5760208251928180820194859201010312610621576120fa9151809162093a804204871090816122c3575b5061213d5750845f52600160205260405f206001600160a01b0385165f5260205260405f2054612636565b90505f612298565b50505050505f90565b5050505050825f52600360205260405f20815f526020526120fa60405f20546120d5565b92935f959192946001600160a01b038796816040519660208801987fbe171c5e000000000000000000000000000000000000000000000000000000008a526024890152166044870152166064850152608484015260020b60a483015260020b60c48201528260e482015260e4815261237261010482611cec565b5190305afa61237f611fa9565b901561239d5760208151918180820193849201010312610621575190565b505f90565b9091926001600160a01b036124019481604051957f23b872dd0000000000000000000000000000000000000000000000000000000060208801521660248601521660448401526064830152606482526123fc608483611cec565b6126cf565b565b94919261241593969491968787611fe8565b9081612423575b5050505050565b7fc8c7ebd754a625a8677ab2031c7674259be1e8c1a7f3521cbf5edbca8f48099c946001600160a01b0360a095855f52600460205260405f20845f5260205260405f208282165f5260205260405f2061247d868254611e38565b905516916124d96001600160a01b03604051937fa9059cbb0000000000000000000000000000000000000000000000000000000060208601521692836024820152856044820152604481526124d3606482611cec565b846126cf565b6040519485526020850152604084015260608301526080820152a15f8080808061241c565b8051821015611de45760209160051b010190565b93959491909161252484838588611f4c565b9362093a804204925f947f0000000000000000000000000000000000000000000000000000000000000b37975f19860198868a11975b8c51811015612627578089898f8d8a8a8a8a8f956001600160a01b036125808b836124fe565b51165f52600560205260405f20865f5260205260405f20548c8082119118028c18975b8811156125ed5750505050505050509050610ed557806001600160a01b036125ce8f936001946124fe565b51165f52600560205260405f208b5f526020528b60405f20550161255a565b6126109798506126086126159a6001600160a01b03926124fe565b511688612403565b611f26565b8982918f8d8a8a8a8f8f958c916125a3565b50505050505050505050509050565b9091905f905f1984820990848102928380841093039280840393146126b557826e093a8000000000000000000000000011156103df57507f0332554776998bbaddcfff221443665887aa9ccbeee110332554776998bbaddd93946e093a80000000000000000000000000910990828211900360991b910360671c170290565b5050506e093a800000000000000000000000009192500490565b905f602091828151910182855af115610c1a575f513d61273357506001600160a01b0381163b155b6126fe5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b600114156126f756fea26469706673582212201aa350c0dfea3d3840054953070862cce04e32cd2bae2475f757cacce954e8c664736f6c634300081c0033

Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.