Overview
S Balance
0 S
S Value
-More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
434207 | 6 days ago | Contract Creation | 0 S |
Loading...
Loading
Contract Name:
FluidRevenueResolver
Compiler Version
v0.8.21+commit.d9974bed
Optimization Enabled:
Yes with 10000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { IFluidLiquidity } from "../../../liquidity/interfaces/iLiquidity.sol"; import { LiquidityCalcs } from "../../../libraries/liquidityCalcs.sol"; import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol"; import { BigMathMinified } from "../../../libraries/bigMathMinified.sol"; import { CalcsSimulatedTime } from "./calcsSimulatedTime.sol"; import { CalcsVaultSimulatedTime } from "./calcsVaultSimulatedTime.sol"; /// @notice Fluid Revenue resolver contract FluidRevenueResolver { /// @notice address of the liquidity contract IFluidLiquidity public immutable LIQUIDITY; /// @dev address that is mapped to the chain native token address internal constant _NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; uint256 internal constant X64 = 0xffffffffffffffff; // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; struct TokenRevenue { address token; uint256 revenueAmount; } constructor(IFluidLiquidity liquidity_) { LIQUIDITY = IFluidLiquidity(liquidity_); } /// @notice address of contract that gets sent the revenue. Configurable by governance function getRevenueCollector() public view returns (address) { return address(uint160(LIQUIDITY.readFromStorage(bytes32(0)))); } /// @notice gets the currently uncollected `revenueAmount_` for a `token_`. function getRevenue(address token_) public view returns (uint256 revenueAmount_) { uint256 exchangePricesAndConfig_ = LIQUIDITY.readFromStorage( LiquiditySlotsLink.calculateMappingStorageSlot( LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT, token_ ) ); if (exchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> revenue is 0 return 0; } uint256 liquidityTokenBalance_ = token_ == _NATIVE_TOKEN_ADDRESS ? address(LIQUIDITY).balance : IERC20(token_).balanceOf(address(LIQUIDITY)); uint256 totalAmounts_ = LIQUIDITY.readFromStorage( LiquiditySlotsLink.calculateMappingStorageSlot( LiquiditySlotsLink.LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT, token_ ) ); return LiquidityCalcs.calcRevenue(totalAmounts_, exchangePricesAndConfig_, liquidityTokenBalance_); } /// @notice gets the currently uncollected revenues for all listed tokens at Liquidity function getRevenues() public view returns (TokenRevenue[] memory tokenRevenues_) { uint256 length_ = LIQUIDITY.readFromStorage(bytes32(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT)); tokenRevenues_ = new TokenRevenue[](length_); uint256 startingSlotForArrayElements_ = uint256( keccak256(abi.encode(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT)) ); for (uint256 i; i < length_; i++) { tokenRevenues_[i].token = address( uint160(LIQUIDITY.readFromStorage(bytes32(startingSlotForArrayElements_ + i))) ); tokenRevenues_[i].revenueAmount = getRevenue(tokenRevenues_[i].token); } } /// @notice gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from stacked /// uint256 storage slots and the balance of the Fluid liquidity contract for the token. /// @dev exposed for advanced revenue calculations /// @param totalAmounts_ total amounts packed uint256 read from storage /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this))) /// @return revenueAmount_ collectable revenue amount function calcRevenue( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_ ) public view returns (uint256 revenueAmount_) { if (exchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> revenue is 0 return 0; } return LiquidityCalcs.calcRevenue(totalAmounts_, exchangePricesAndConfig_, liquidityTokenBalance_); } /// @notice same as `calcRevenue`, but for a simulated `block.timestamp` set via `simulatedTimestamp_`. function calcRevenueSimulatedTime( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_, uint256 simulatedTimestamp_ ) public pure returns (uint256 revenueAmount_) { if (exchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> revenue is 0 return 0; } return CalcsSimulatedTime.calcRevenue( totalAmounts_, exchangePricesAndConfig_, liquidityTokenBalance_, simulatedTimestamp_ ); } /// @notice calculates interest (exchange prices) at Liquidity for a token given its' exchangePricesAndConfig from storage /// for a simulated `block.timestamp` set via `simulatedTimestamp_`. /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param simulatedTimestamp_ simulated block.timestamp /// @return supplyExchangePrice_ updated supplyExchangePrice /// @return borrowExchangePrice_ updated borrowExchangePrice function calcLiquidityExchangePricesSimulatedTime( uint256 exchangePricesAndConfig_, uint256 simulatedTimestamp_ ) public pure returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { if (exchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> exchange prices are 0 return (0, 0); } return CalcsSimulatedTime.calcExchangePrices(exchangePricesAndConfig_, simulatedTimestamp_); } /// @notice Calculates new vault exchange prices based on storage data for a simulated `block.timestamp` set via `simulatedTimestamp_`. /// @param vaultVariables2_ vaultVariables2 read from storage for the vault (VaultResolver.getRateRaw) /// @param vaultRates_ rates read from storage for the vault (VaultResolver.getVaultVariables2Raw) /// @param liquiditySupplyExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for supply token /// @param liquidityBorrowExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for borrow token /// @param simulatedTimestamp_ simulated block.timestamp /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price /// @return vaultSupplyExPrice_ latest vault's supply token exchange price /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price function calcVaultExchangePricesSimulatedTime( uint256 vaultVariables2_, uint256 vaultRates_, uint256 liquiditySupplyExchangePricesAndConfig_, uint256 liquidityBorrowExchangePricesAndConfig_, uint256 simulatedTimestamp_ ) public pure returns ( uint256 liqSupplyExPrice_, uint256 liqBorrowExPrice_, uint256 vaultSupplyExPrice_, uint256 vaultBorrowExPrice_ ) { if (liquiditySupplyExchangePricesAndConfig_ == 0 || liquidityBorrowExchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> exchange prices are 0 return (0, 0, 0, 0); } return CalcsVaultSimulatedTime.updateExchangePrices( vaultVariables2_, vaultRates_, liquiditySupplyExchangePricesAndConfig_, liquidityBorrowExchangePricesAndConfig_, simulatedTimestamp_ ); } /// @notice returns the `totalSupply_` and `totalBorrow_` at Liquidity at a certain point in time given the stacked uint256 /// storage data for total amounts and exchange prices and config. function calcLiquidityTotalAmountsSimulatedTime( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 simulatedTimestamp_ ) public pure returns (uint256 totalSupply_, uint256 totalBorrow_, uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { if (exchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> amounts are 0 return (0, 0, 0, 0); } (supplyExchangePrice_, borrowExchangePrice_) = CalcsSimulatedTime.calcExchangePrices( exchangePricesAndConfig_, simulatedTimestamp_ ); totalSupply_ = CalcsSimulatedTime.getTotalSupply(totalAmounts_, supplyExchangePrice_); totalBorrow_ = CalcsSimulatedTime.getTotalBorrow(totalAmounts_, borrowExchangePrice_); } /// @notice returns the `supply_` and `borrow_` for a user (protocol) at Liquidity at a certain point in time /// given the stacked uint256 storage data for total amounts and exchange prices and config. function calcLiquidityUserAmountsSimulatedTime( uint256 userSupplyData_, uint256 userBorrowData_, uint256 liquiditySupplyExchangePricesAndConfig_, uint256 liquidityBorrowExchangePricesAndConfig_, uint256 simulatedTimestamp_ ) public pure returns (uint256 supply_, uint256 borrow_, uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { if (liquiditySupplyExchangePricesAndConfig_ == 0 || liquidityBorrowExchangePricesAndConfig_ == 0) { // token is not configured at Liquidity -> amounts are 0 return (0, 0, 0, 0); } (supplyExchangePrice_, ) = CalcsSimulatedTime.calcExchangePrices( liquiditySupplyExchangePricesAndConfig_, simulatedTimestamp_ ); (, borrowExchangePrice_) = CalcsSimulatedTime.calcExchangePrices( liquidityBorrowExchangePricesAndConfig_, simulatedTimestamp_ ); if (userSupplyData_ > 0) { // if userSupplyData_ == 0 -> user not configured yet for token at Liquidity bool modeWithInterest_ = userSupplyData_ & 1 == 1; supply_ = BigMathMinified.fromBigNumber( (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); if (modeWithInterest_) { // convert raw amounts to normal for withInterest mode supply_ = (supply_ * supplyExchangePrice_) / 1e12; } } if (userBorrowData_ > 0) { // if userBorrowData_ == 0 -> user not configured yet for token at Liquidity bool modeWithInterest_ = userBorrowData_ & 1 == 1; borrow_ = BigMathMinified.fromBigNumber( (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); if (modeWithInterest_) { // convert raw amounts to normal for withInterest mode borrow_ = (borrow_ * borrowExchangePrice_) / 1e12; } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.21; interface IProxy { function setAdmin(address newAdmin_) external; function setDummyImplementation(address newDummyImplementation_) external; function addImplementation(address implementation_, bytes4[] calldata sigs_) external; function removeImplementation(address implementation_) external; function getAdmin() external view returns (address); function getDummyImplementation() external view returns (address); function getImplementationSigs(address impl_) external view returns (bytes4[] memory); function getSigsImplementation(bytes4 sig_) external view returns (address); function readFromStorage(bytes32 slot_) external view returns (uint256 result_); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits. /// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision /// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can /// result in significant gas cost reduction due to storage space reduction. /// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision. /// @dev roundUp is more like a increase 1, which happens everytime for the same number. /// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number. library BigMathMinified { /// @dev constants to use for `roundUp` input param to increase readability bool internal constant ROUND_DOWN = false; bool internal constant ROUND_UP = true; /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision). /// e.g.: /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits] /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary) /// => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000 /// ^-------------------- 51(exponent) -------------- ^ /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011 (2236301563) /// exponent = 0011,0011 (51) /// bigNumber = 1000,0101,0100,1011,0100,0000,1111,1011,0011,0011 (572493200179) /// /// @param normal number which needs to be converted into Big Number /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision)) /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent)) /// @param roundUp signals if result should be rounded down or up /// @return bigNumber converted bigNumber (coefficient << exponent) function toBigNumber( uint256 normal, uint256 coefficientSize, uint256 exponentSize, bool roundUp ) internal pure returns (uint256 bigNumber) { assembly { let lastBit_ let number_ := normal if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit_ := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit_ := add(lastBit_, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit_ := add(lastBit_, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit_ := add(lastBit_, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit_ := add(lastBit_, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit_ := add(lastBit_, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit_ := add(lastBit_, 0x2) } if gt(number_, 0x1) { lastBit_ := add(lastBit_, 1) } if gt(number_, 0) { lastBit_ := add(lastBit_, 1) } if lt(lastBit_, coefficientSize) { // for throw exception lastBit_ := coefficientSize } let exponent := sub(lastBit_, coefficientSize) let coefficient := shr(exponent, normal) if and(roundUp, gt(exponent, 0)) { // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number coefficient := add(coefficient, 1) if eq(shl(coefficientSize, 1), coefficient) { // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1. coefficient := shl(sub(coefficientSize, 1), 1) exponent := add(exponent, 1) } } if iszero(lt(exponent, shl(exponentSize, 1))) { // if exponent is >= exponentSize, the normal number is too big to fit within // BigNumber with too small sizes for coefficient and exponent revert(0, 0) } bigNumber := shl(exponentSize, coefficient) bigNumber := add(bigNumber, exponent) } } /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask` function fromBigNumber( uint256 bigNumber, uint256 exponentSize, uint256 exponentMask ) internal pure returns (uint256 normal) { assembly { let coefficient := shr(exponentSize, bigNumber) let exponent := and(bigNumber, exponentMask) normal := shl(exponent, coefficient) } } /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format). /// e.g. /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 /// lastBit = ^--------------------------------- 83 ----------------------------------------^ function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) { assembly { let number_ := normal if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) { number_ := shr(0x80, number_) lastBit := 0x80 } if gt(number_, 0xFFFFFFFFFFFFFFFF) { number_ := shr(0x40, number_) lastBit := add(lastBit, 0x40) } if gt(number_, 0xFFFFFFFF) { number_ := shr(0x20, number_) lastBit := add(lastBit, 0x20) } if gt(number_, 0xFFFF) { number_ := shr(0x10, number_) lastBit := add(lastBit, 0x10) } if gt(number_, 0xFF) { number_ := shr(0x8, number_) lastBit := add(lastBit, 0x8) } if gt(number_, 0xF) { number_ := shr(0x4, number_) lastBit := add(lastBit, 0x4) } if gt(number_, 0x3) { number_ := shr(0x2, number_) lastBit := add(lastBit, 0x2) } if gt(number_, 0x1) { lastBit := add(lastBit, 1) } if gt(number_, 0) { lastBit := add(lastBit, 1) } } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; library LibsErrorTypes { /***********************************| | LiquidityCalcs | |__________________________________*/ /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet) uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001; /// @notice thrown when rate data is set to a version that is not implemented uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002; /// @notice thrown when the calculated borrow rate turns negative. This should never happen. uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003; /***********************************| | SafeTransfer | |__________________________________*/ /// @notice thrown when safe transfer from for an ERC20 fails uint256 internal constant SafeTransfer__TransferFromFailed = 71001; /// @notice thrown when safe transfer for an ERC20 fails uint256 internal constant SafeTransfer__TransferFailed = 71002; /***********************************| | SafeApprove | |__________________________________*/ /// @notice thrown when safe approve from for an ERC20 fails uint256 internal constant SafeApprove__ApproveFailed = 81001; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol"; import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol"; import { BigMathMinified } from "./bigMathMinified.sol"; /// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices, /// borrow rate, withdrawal / borrow limits, revenue amount. library LiquidityCalcs { error FluidLiquidityCalcsError(uint256 errorId_); /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535 event BorrowRateMaxCap(); /// @dev constants as from Liquidity variables.sol uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant TWELVE_DECIMALS = 1e12; uint256 internal constant X14 = 0x3fff; uint256 internal constant X15 = 0x7fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; /////////////////////////////////////////////////////////////////////////// ////////// CALC EXCHANGE PRICES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage. /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @return supplyExchangePrice_ updated supplyExchangePrice /// @return borrowExchangePrice_ updated borrowExchangePrice function calcExchangePrices( uint256 exchangePricesAndConfig_ ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { // Extracting exchange prices supplyExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64; borrowExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64; if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero); } uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate unchecked { // last timestamp can not be > current timestamp uint256 secondsSinceLastUpdate_ = block.timestamp - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33); uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) & X15; if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) { // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // calculate new borrow exchange price. // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_. // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0. borrowExchangePrice_ += (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS); // FOR SUPPLY EXCHANGE PRICE: // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest. // formula: previous price * supply rate * secondsSinceLastUpdate_. // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And // ratioSupplyYield = utilization * supplyRatio * borrowRatio // // Example: // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50. // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%. // yield is 10 (so half a year must have passed). // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60. // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70. // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2). // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield). // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield): // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%. // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5% // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5% // increase in supplyExchangePrice, assuming 100 as previous price. // 100 * 22,5% * 1/2 (half a year) = 0,1125. // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20. // -------------- 1. calculate ratioSupplyYield -------------------------------- // step1: utilization * supplyRatio (or actually part of lenders receiving yield) // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15; if (temp_ == 1) { // if no raw supply: no exchange price update needed // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest if (temp_ & 1 == 1) { // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = temp_ >> 1; // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return // in the if statement a little above. // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee. // supplyRawInterest must become worth 30. totalSupply must become 110. // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2. // so ratioSupplyYield must come out as 2.5 (250%). // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted. temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision) // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%). temp_ = // utilization * (100% + 100% / supplyRatio) (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS); // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31 } else { // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) temp_ = temp_ >> 1; // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0 // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%). temp_ = // 1e27 * utilization * (100% + supplyRatio) / 100% (1e27 * ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS + temp_)) / (FOUR_DECIMALS * FOUR_DECIMALS); // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27 } // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31 // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield) if (borrowRatio_ & 1 == 1) { // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered // at the beginning of the method by early return if `borrowRatio_ == 1`. // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%. // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed. // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666% // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_); // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield). } else { // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%. borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_))); // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%. // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101. // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield). } // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%. // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8 temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54; // 2. calculate supply rate // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield. // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate) // Note that all calculation divisions for supplyExchangePrice are rounded down. // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest // but more suppliers not earning interest. temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate temp_ * // ratioSupplyYield (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17. // 3. calculate increase in supply exchange price supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS)); // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0. } } /////////////////////////////////////////////////////////////////////////// ////////// CALC REVENUE ///////// /////////////////////////////////////////////////////////////////////////// /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage /// and the current balance of the Fluid liquidity contract for the token. /// @param totalAmounts_ total amounts packed uint256 read from storage /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this))) /// @return revenueAmount_ collectable revenue amount function calcRevenue( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_ ) internal view returns (uint256 revenueAmount_) { // @dev no need to super-optimize this method as it is only used by admin // calculate the new exchange prices based on earned interest (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_); // total supply = interest free + with interest converted from raw uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_); if (totalSupply_ > 0) { // available revenue: balanceOf(token) + totalBorrowings - totalLendings. revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_); // ensure there is no possible case because of rounding etc. where this would revert, // explicitly check if > revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0; // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization // can only be revenue. } else { // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck revenueAmount_ = liquidityTokenBalance_; } } /////////////////////////////////////////////////////////////////////////// ////////// CALC LIMITS ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates withdrawal limit before an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitBeforeOperate( uint256 userSupplyData_, uint256 userSupply_ ) internal view returns (uint256 currentWithdrawalLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet). // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet. // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be // a deposit anyway. Important is that it would not revert. // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit // is the fully expanded limit immediately. // extract last set withdrawal limit uint256 lastWithdrawalLimit_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64; lastWithdrawalLimit_ = (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) << (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK); if (lastWithdrawalLimit_ == 0) { // withdrawal limit is not activated. Max withdrawal allowed return 0; } uint256 maxWithdrawableLimit_; uint256 temp_; unchecked { // extract max withdrawable percent of user supply and // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed. // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxWithdrawableLimit_ = (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) / FOUR_DECIMALS; // time elapsed since last withdrawal limit was set (in seconds) // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before. // last timestamp can not be > current timestamp temp_ = block.timestamp - ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33); } // calculate withdrawable amount of expandPercent that is elapsed of expandDuration. // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%. // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed. temp_ = (maxWithdrawableLimit_ * temp_) / // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit) ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0 // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount. // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration, // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0 // which will cause minimum (fully expanded) withdrawal limit to be set in lines below. unchecked { // underflow explicitly checked & handled currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0; // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion. // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - maxWithdrawableLimit_; } // if withdrawal limit is decreased below minimum then set minimum // (e.g. when more than expandDuration time has elapsed) if (temp_ > currentWithdrawalLimit_) { currentWithdrawalLimit_ = temp_; } } /// @dev calculates withdrawal limit after an operate execution: /// amount of user supply that must stay supplied (not amount that can be withdrawn). /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M /// @param userSupplyData_ user supply data packed uint256 from storage /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate` /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcWithdrawalLimitAfterOperate( uint256 userSupplyData_, uint256 userSupply_, uint256 newWithdrawalLimit_ ) internal pure returns (uint256) { // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // if user supply is below base limit then max withdrawals are allowed if (userSupply_ < temp_) { return 0; } // temp_ => withdrawal limit expandPercent (is in 1e2 decimals) temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14; unchecked { // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent)) // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_ temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS); } // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit. // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where // increased deposit amount outpaces withrawals. if (temp_ > newWithdrawalLimit_) { return temp_; } return newWithdrawalLimit_; } /// @dev calculates borrow limit before an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in /// raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitBeforeOperate( uint256 userBorrowData_, uint256 userBorrow_ ) internal view returns (uint256 currentBorrowLimit_) { // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit. // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0. // temp_ = extract borrow expand percent (is in 1e2 decimals) uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; uint256 maxExpansionLimit_; uint256 maxExpandedBorrowLimit_; unchecked { // calculate max expansion limit: Max amount limit can expand to since last interaction // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS); // calculate max borrow limit: Max point limit can increase to since last interaction maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_; } // currentBorrowLimit_ = extract base borrow limit currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; currentBorrowLimit_ = (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) << (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK); if (maxExpandedBorrowLimit_ < currentBorrowLimit_) { return currentBorrowLimit_; } // time elapsed since last borrow limit was set (in seconds) unchecked { // temp_ = timeElapsed_ (last timestamp can not be > current timestamp) temp_ = block.timestamp - ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp } // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit currentBorrowLimit_ = // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`. // divisor is extract expand duration (after this, full expansion to expandPercentage happened). ((maxExpansionLimit_ * temp_) / ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0 // extract last set borrow limit BigMathMinified.fromBigNumber( (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64, DEFAULT_EXPONENT_SIZE, DEFAULT_EXPONENT_MASK ); // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion, // so set to `maxExpandedBorrowLimit_` in that case. // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big) if (currentBorrowLimit_ > maxExpandedBorrowLimit_) { currentBorrowLimit_ = maxExpandedBorrowLimit_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (currentBorrowLimit_ > temp_) { currentBorrowLimit_ = temp_; } } /// @dev calculates borrow limit after an operate execution: /// total amount user borrow can reach (not borrowable amount in current operation). /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M /// @param userBorrowData_ user borrow data packed uint256 from storage /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate` /// @return borrowLimit_ updated borrow limit that should be written to storage. /// returned value is in raw for with interest mode, normal amount for interest free mode! function calcBorrowLimitAfterOperate( uint256 userBorrowData_, uint256 userBorrow_, uint256 newBorrowLimit_ ) internal pure returns (uint256 borrowLimit_) { // temp_ = extract borrow expand percent uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals) unchecked { // borrowLimit_ = calculate maximum borrow limit at full expansion. // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible). borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS); } // temp_ = extract base borrow limit temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); if (borrowLimit_ < temp_) { // below base limit, borrow limit is always base limit return temp_; } // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above) temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18; temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK); // make sure fully expanded borrow limit is not above hard max borrow limit if (borrowLimit_ > temp_) { borrowLimit_ = temp_; } // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit. // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant) if (newBorrowLimit_ > borrowLimit_) { return borrowLimit_; } return newBorrowLimit_; } /////////////////////////////////////////////////////////////////////////// ////////// CALC RATES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev Calculates new borrow rate from utilization for a token /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500) function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) { // extract rate version: 4 bits (0xF) starting from bit 0 uint256 rateVersion_ = (rateData_ & 0xF); if (rateVersion_ == 1) { rate_ = calcRateV1(rateData_, utilization_); } else if (rateVersion_ == 2) { rate_ = calcRateV2(rateData_, utilization_); } else { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion); } if (rate_ > X16) { // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space. // this is unlikely to ever happen if configs stay within expected levels. rate_ = X16; // emit event to more easily become aware emit BorrowRateMaxCap(); } } /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e2 precision function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v1 (one kink) ------------------------------------------------------ /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 188 bits => 68-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16; if (utilization_ < kink1_) { // if utilization is less than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // else utilization is greater than kink y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink1_; x2_ = FOUR_DECIMALS; // 100% } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision /// @param rateData_ rate data packed uint256 from storage for the token /// @param utilization_ in 1e2 (100% = 1e4) /// @return rate_ rate in 1e4 precision function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) { /// For rate v2 (two kinks) ----------------------------------------------------- /// Next 16 bits => 4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Next 16 bits => 84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535) /// Last 156 bits => 100-255 => blank, might come in use in future // y = mx + c. // y is borrow rate // x is utilization // m = slope (m can also be negative for declining rates) // c is constant (c can be negative) uint256 y1_; uint256 y2_; uint256 x1_; uint256 x2_; // extract kink1: 16 bits (0xFFFF) starting from bit 20 // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16; if (utilization_ < kink1_) { // if utilization is less than kink1 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; x1_ = 0; // 0% x2_ = kink1_; } else { // extract kink2: 16 bits (0xFFFF) starting from bit 52 uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16; if (utilization_ < kink2_) { // if utilization is less than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; x1_ = kink1_; x2_ = kink2_; } else { // else utilization is greater than kink2 y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16; y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16; x1_ = kink2_; x2_ = FOUR_DECIMALS; } } int256 constant_; int256 slope_; unchecked { // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1). // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor) // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_)); // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx. // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256 // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12; // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256 // subtraction most extreme case would be 0 - max value slope_ * x1_ => can not underflow int256 constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_)); // calculating new borrow rate // - slope_ max value is 65535 * 1e12, // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply) // - constant max value is 65535 * 1e12 // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256 // divisor TWELVE_DECIMALS can not be 0 slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings if (slope_ < 0) { revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative); } rate_ = uint256(slope_) / TWELVE_DECIMALS; } } /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_` function getTotalSupply( uint256 totalAmounts_, uint256 supplyExchangePrice_ ) internal pure returns (uint256 totalSupply_) { // totalSupply_ => supplyInterestFree totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64; totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK); uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK); // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION); } /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_` function getTotalBorrow( uint256 totalAmounts_, uint256 borrowExchangePrice_ ) internal pure returns (uint256 totalBorrow_) { // totalBorrow_ => borrowInterestFree // no & mask needed for borrow interest free as it occupies the last bits in the storage slot totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK); uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64; totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK); // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; /// @notice library that helps in reading / working with storage slot data of Fluid Liquidity. /// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual /// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver. library LiquiditySlotsLink { /// @dev storage slot for status at Liquidity uint256 internal constant LIQUIDITY_STATUS_SLOT = 1; /// @dev storage slot for auths mapping at Liquidity uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2; /// @dev storage slot for guardians mapping at Liquidity uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3; /// @dev storage slot for user class mapping at Liquidity uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4; /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5; /// @dev storage slot for rateData mapping at Liquidity uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6; /// @dev storage slot for totalAmounts mapping at Liquidity uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7; /// @dev storage slot for user supply double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8; /// @dev storage slot for user borrow double mapping at Liquidity uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10; /// @dev storage slot for listed tokens array at Liquidity uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11; // -------------------------------- // @dev stacked uint256 storage slots bits position data for each: // ExchangePricesAndConfig uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0; uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16; uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30; uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44; uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155; uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219; uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234; uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249; // RateData: uint256 internal constant BITS_RATE_DATA_VERSION = 0; // RateData: V1 uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36; uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52; // RateData: V2 uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36; uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68; uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84; // TotalAmounts uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0; uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128; uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192; // UserSupplyData uint256 internal constant BITS_USER_SUPPLY_MODE = 0; uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1; uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65; uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200; uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255; // UserBorrowData uint256 internal constant BITS_USER_BORROW_MODE = 0; uint256 internal constant BITS_USER_BORROW_AMOUNT = 1; uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65; uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129; uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162; uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176; uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200; uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218; uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255; // Configs2 uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0; // -------------------------------- /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_` function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) { return keccak256(abi.encode(key_, slot_)); } /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_` function calculateDoubleMappingStorageSlot( uint256 slot_, address key1_, address key2_ ) internal pure returns (bytes32) { bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_)); return keccak256(abi.encode(key2_, intermediateSlot_)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; abstract contract Structs { struct AddressBool { address addr; bool value; } struct AddressUint256 { address addr; uint256 value; } /// @notice struct to set borrow rate data for version 1 struct RateDataV1Params { /// /// @param token for rate data address token; /// /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast uint256 kink; /// /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100 /// i.e. constant minimum borrow rate /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then) uint256 rateAtUtilizationZero; /// /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700 uint256 rateAtUtilizationKink; /// /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500 uint256 rateAtUtilizationMax; } /// @notice struct to set borrow rate data for version 2 struct RateDataV2Params { /// /// @param token for rate data address token; /// /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster uint256 kink1; /// /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100 /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast uint256 kink2; /// /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100 /// i.e. constant minimum borrow rate /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then) uint256 rateAtUtilizationZero; /// /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700 uint256 rateAtUtilizationKink1; /// /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200 uint256 rateAtUtilizationKink2; /// /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100 /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500 uint256 rateAtUtilizationMax; } /// @notice struct to set token config struct TokenConfig { /// /// @param token address address token; /// /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100 uint256 fee; /// /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100 uint256 threshold; /// /// @param maxUtilization maximum allowed utilization. in 1e2: 100% = 10_000; 1% = 100 /// set to 100% to disable and have default limit of 100% (avoiding SLOAD). uint256 maxUtilization; } /// @notice struct to set user supply & withdrawal config struct UserSupplyConfig { /// /// @param user address address user; /// /// @param token address address token; /// /// @param mode: 0 = without interest. 1 = with interest uint8 mode; /// /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100 /// Also used to calculate rate at which withdrawal limit should decrease (instant). uint256 expandPercent; /// /// @param expandDuration withdrawal limit expand duration in seconds. /// used to calculate rate together with expandPercent uint256 expandDuration; /// /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 baseWithdrawalLimit; } /// @notice struct to set user borrow & payback config struct UserBorrowConfig { /// /// @param user address address user; /// /// @param token address address token; /// /// @param mode: 0 = without interest. 1 = with interest uint8 mode; /// /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100 /// Also used to calculate rate at which debt limit should decrease (instant). uint256 expandPercent; /// /// @param expandDuration debt limit expand duration in seconds. /// used to calculate rate together with expandPercent uint256 expandDuration; /// /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 baseDebtCeiling; /// /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow. /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token: /// with interest -> raw, without interest -> normal uint256 maxDebtCeiling; } }
//SPDX-License-Identifier: MIT pragma solidity 0.8.21; import { IProxy } from "../../infiniteProxy/interfaces/iProxy.sol"; import { Structs as AdminModuleStructs } from "../adminModule/structs.sol"; interface IFluidLiquidityAdmin { /// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract. /// auths can be helpful in reducing governance overhead where it's not needed. /// @param authsStatus_ array of structs setting allowed status for an address. /// status true => add auth, false => remove auth function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external; /// @notice adds/removes guardians. Only callable by Governance. /// @param guardiansStatus_ array of structs setting allowed status for an address. /// status true => add guardian, false => remove guardian function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external; /// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance. /// @param revenueCollector_ new revenue collector address function updateRevenueCollector(address revenueCollector_) external; /// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths. /// @param newStatus_ new status /// status = 2 -> pause, status = 1 -> resume. function changeStatus(uint256 newStatus_) external; /// @notice update tokens rate data version 1. Only callable by Auths. /// @param tokensRateData_ array of RateDataV1Params with rate data to set for each token function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external; /// @notice update tokens rate data version 2. Only callable by Auths. /// @param tokensRateData_ array of RateDataV2Params with rate data to set for each token function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external; /// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold. /// Only callable by Auths. /// @param tokenConfigs_ contains token address, fee & utilization threshold function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external; /// @notice updates user classes: 0 is for new protocols, 1 is for established protocols. /// Only callable by Auths. /// @param userClasses_ struct array of uint256 value to assign for each user address function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external; /// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits. /// Only callable by Auths. /// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external; /// @notice sets a new withdrawal limit as the current limit for a certain user /// @param user_ user address for which to update the withdrawal limit /// @param token_ token address for which to update the withdrawal limit /// @param newLimit_ new limit until which user supply can decrease to. /// Important: input in raw. Must account for exchange price in input param calculation. /// Note any limit that is < max expansion or > current user supply will set max expansion limit or /// current user supply as limit respectively. /// - set 0 to make maximum possible withdrawable: instant full expansion, and if that goes /// below base limit then fully down to 0. /// - set type(uint256).max to make current withdrawable 0 (sets current user supply as limit). function updateUserWithdrawalLimit(address user_, address token_, uint256 newLimit_) external; /// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits. /// Only callable by Auths. /// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external; /// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians). /// Only callable by Guardians. /// @param user_ address of user to pause operations for /// @param supplyTokens_ token addresses to pause withdrawals for /// @param borrowTokens_ token addresses to pause borrowings for function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external; /// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians). /// Only callable by Guardians. /// @param user_ address of user to unpause operations for /// @param supplyTokens_ token addresses to unpause withdrawals for /// @param borrowTokens_ token addresses to unpause borrowings for function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external; /// @notice collects revenue for tokens to configured revenueCollector address. /// @param tokens_ array of tokens to collect revenue for /// @dev Note that this can revert if token balance is < revenueAmount (utilization > 100%) function collectRevenue(address[] calldata tokens_) external; /// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage. /// @param tokens_ tokens to update exchange prices for /// @return supplyExchangePrices_ new supply rates of overall system for each token /// @return borrowExchangePrices_ new borrow rates of overall system for each token function updateExchangePrices( address[] calldata tokens_ ) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_); } interface IFluidLiquidityLogic is IFluidLiquidityAdmin { /// @notice Single function which handles supply, withdraw, borrow & payback /// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native) /// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing /// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing /// @param withdrawTo_ if withdrawal then to which address /// @param borrowTo_ if borrow then to which address /// @param callbackData_ callback data passed to `liquidityCallback` method of protocol /// @return memVar3_ updated supplyExchangePrice /// @return memVar4_ updated borrowExchangePrice /// @dev to trigger skipping in / out transfers (gas optimization): /// - ` callbackData_` MUST be encoded so that "from" address is the last 20 bytes in the last 32 bytes slot, /// also for native token operations where liquidityCallback is not triggered! /// from address must come at last position if there is more data. I.e. encode like: /// abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end /// so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end. /// - this "from" address must match withdrawTo_ or borrowTo_ and must be == `msg.sender` /// - `callbackData_` must in addition to the from address as described above include bytes32 SKIP_TRANSFERS /// in the slot before (bytes 32 to 63) /// - `msg.value` must be 0. /// - Amounts must be either: /// - supply(+) == borrow(+), withdraw(-) == payback(-). /// - Liquidity must be on the winning side (deposit < borrow OR payback < withdraw). function operate( address token_, int256 supplyAmount_, int256 borrowAmount_, address withdrawTo_, address borrowTo_, bytes calldata callbackData_ ) external payable returns (uint256 memVar3_, uint256 memVar4_); } interface IFluidLiquidity is IProxy, IFluidLiquidityLogic {}
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { LibsErrorTypes as ErrorTypes } from "../../../libraries/errorTypes.sol"; import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol"; import { BigMathMinified } from "../../../libraries/bigMathMinified.sol"; /// @dev this is the exact same code as `LiquidityCalcs` library, just that it supports a simulated /// block.timestamp to expose historical calculations. library CalcsSimulatedTime { error FluidCalcsSimulatedTimeError(uint256 errorId_); error FluidCalcsSimulatedTimeInvalidTimestamp(); /// @dev constants as from Liquidity variables.sol uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12; /// @dev Ignoring leap years uint256 internal constant SECONDS_PER_YEAR = 365 days; // constants used for BigMath conversion from and to storage uint256 internal constant DEFAULT_EXPONENT_SIZE = 8; uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF; uint256 internal constant FOUR_DECIMALS = 1e4; uint256 internal constant TWELVE_DECIMALS = 1e12; uint256 internal constant X14 = 0x3fff; uint256 internal constant X15 = 0x7fff; uint256 internal constant X16 = 0xffff; uint256 internal constant X18 = 0x3ffff; uint256 internal constant X24 = 0xffffff; uint256 internal constant X33 = 0x1ffffffff; uint256 internal constant X64 = 0xffffffffffffffff; /////////////////////////////////////////////////////////////////////////// ////////// CALC EXCHANGE PRICES ///////// /////////////////////////////////////////////////////////////////////////// /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage. /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param blockTimestamp_ simulated block.timestamp /// @return supplyExchangePrice_ updated supplyExchangePrice /// @return borrowExchangePrice_ updated borrowExchangePrice function calcExchangePrices( uint256 exchangePricesAndConfig_, uint256 blockTimestamp_ ) internal pure returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) { // Extracting exchange prices supplyExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) & X64; borrowExchangePrice_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) & X64; if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) { revert FluidCalcsSimulatedTimeError(ErrorTypes.LiquidityCalcs__ExchangePriceZero); } uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate // @dev HERE CUSTOM: added check for simulated timestamp if ( blockTimestamp_ < ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33) ) { revert FluidCalcsSimulatedTimeInvalidTimestamp(); } unchecked { // last timestamp can not be > current timestamp uint256 secondsSinceLastUpdate_ = blockTimestamp_ - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33); uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) & X15; if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) { // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // calculate new borrow exchange price. // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_. // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0. borrowExchangePrice_ += (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS); // FOR SUPPLY EXCHANGE PRICE: // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest. // formula: previous price * supply rate * secondsSinceLastUpdate_. // where supply rate = (borrow rate - revenueFee%) * ratioSupplyYield. And // ratioSupplyYield = utilization * supplyRatio * borrowRatio // // Example: // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50. // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%. // yield is 10 (so half a year must have passed). // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60. // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70. // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2). // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield). // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield): // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%. // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5% // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5% // increase in supplyExchangePrice, assuming 100 as previous price. // 100 * 22,5% * 1/2 (half a year) = 0,1125. // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20. // -------------- 1. calculate ratioSupplyYield -------------------------------- // step1: utilization * supplyRatio (or actually part of lenders receiving yield) // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383) // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15; if (temp_ == 1) { // if no raw supply: no exchange price update needed // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0) return (supplyExchangePrice_, borrowExchangePrice_); } // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest if (temp_ & 1 == 1) { // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger) temp_ = temp_ >> 1; // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return // in the if statement a little above. // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee. // supplyRawInterest must become worth 30. totalSupply must become 110. // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2. // so ratioSupplyYield must come out as 2.5 (250%). // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted. temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision) // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%). temp_ = // utilization * (100% + 100% / supplyRatio) (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS); // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31 } else { // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger) temp_ = temp_ >> 1; // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0 // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%). temp_ = // 1e27 * utilization * (100% + supplyRatio) / 100% (1e27 * ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow). (FOUR_DECIMALS + temp_)) / (FOUR_DECIMALS * FOUR_DECIMALS); // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27 } // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31 // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield) if (borrowRatio_ & 1 == 1) { // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered // at the beginning of the method by early return if `borrowRatio_ == 1`. // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%. // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed. // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666% // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_); // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield). } else { // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger) borrowRatio_ = borrowRatio_ >> 1; // borrowRatio_ => x of total bororwers paying yield. scale to 1e27. // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%. borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_))); // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%. // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101. // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield). } // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%. // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8 temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54; // 2. calculate supply rate // temp_ => supply rate (borrow rate - revenueFee%) * ratioSupplyYield. // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate) // Note that all calculation divisions for supplyExchangePrice are rounded down. // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest // but more suppliers not earning interest. temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate temp_ * // ratioSupplyYield (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17. // 3. calculate increase in supply exchange price supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) / (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS)); // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0. } } /////////////////////////////////////////////////////////////////////////// ////////// CALC REVENUE ///////// /////////////////////////////////////////////////////////////////////////// /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage /// and the current balance of the Fluid liquidity contract for the token. /// @param totalAmounts_ total amounts packed uint256 read from storage /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage /// @param liquidityTokenBalance_ current balance of Liquidity contract (IERC20(token_).balanceOf(address(this))) /// @param blockTimestamp_ simulated block.timestamp /// @return revenueAmount_ collectable revenue amount function calcRevenue( uint256 totalAmounts_, uint256 exchangePricesAndConfig_, uint256 liquidityTokenBalance_, uint256 blockTimestamp_ ) internal pure returns (uint256 revenueAmount_) { // @dev no need to super-optimize this method as it is only used by admin // calculate the new exchange prices based on earned interest (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices( exchangePricesAndConfig_, blockTimestamp_ ); // total supply = interest free + with interest converted from raw uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_); if (totalSupply_ > 0) { // available revenue: balanceOf(token) + totalBorrowings - totalLendings. revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_); // ensure there is no possible case because of rounding etc. where this would revert, // explicitly check if > revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0; // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization // can only be revenue. } else { // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck revenueAmount_ = liquidityTokenBalance_; } } /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_` function getTotalSupply( uint256 totalAmounts_, uint256 supplyExchangePrice_ ) internal pure returns (uint256 totalSupply_) { // totalSupply_ => supplyInterestFree totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64; totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK); uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK); // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION); } /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_` function getTotalBorrow( uint256 totalAmounts_, uint256 borrowExchangePrice_ ) internal pure returns (uint256 totalBorrow_) { // totalBorrow_ => borrowInterestFree // no & mask needed for borrow interest free as it occupies the last bits in the storage slot totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE); totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK); uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64; totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK); // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.21; import { CalcsSimulatedTime } from "./calcsSimulatedTime.sol"; /// @dev this is the exact same code as in vault protocol codebase, just that it supports a simulated /// block.timestamp to expose historical calculations. library CalcsVaultSimulatedTime { error FluidCalcsVaultSimulatedTimeError(); uint256 internal constant X16 = 0xffff; uint256 internal constant X64 = 0xffffffffffffffff; // @dev copied from vault protocol helper.sol and adjusted to have liquidity storage data and vault rates // storage data passed in instead of read /// @dev Calculates new vault exchange prices. /// @param vaultVariables2_ vaultVariables2 read from storage for the vault (VaultResolver.getRateRaw) /// @param vaultRates_ rates read from storage for the vault (VaultResolver.getVaultVariables2Raw) /// @param liquiditySupplyExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for supply token /// @param liquidityBorrowExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for borrow token /// @param blockTimestamp_ simulated block.timestamp /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price /// @return vaultSupplyExPrice_ latest vault's supply token exchange price /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price function updateExchangePrices( uint256 vaultVariables2_, uint256 vaultRates_, uint256 liquiditySupplyExchangePricesAndConfig_, uint256 liquidityBorrowExchangePricesAndConfig_, uint256 blockTimestamp_ ) internal pure returns ( uint256 liqSupplyExPrice_, uint256 liqBorrowExPrice_, uint256 vaultSupplyExPrice_, uint256 vaultBorrowExPrice_ ) { (liqSupplyExPrice_, ) = CalcsSimulatedTime.calcExchangePrices( liquiditySupplyExchangePricesAndConfig_, blockTimestamp_ ); (, liqBorrowExPrice_) = CalcsSimulatedTime.calcExchangePrices( liquidityBorrowExchangePricesAndConfig_, blockTimestamp_ ); uint256 oldLiqSupplyExPrice_ = (vaultRates_ & X64); uint256 oldLiqBorrowExPrice_ = ((vaultRates_ >> 64) & X64); if (liqSupplyExPrice_ < oldLiqSupplyExPrice_ || liqBorrowExPrice_ < oldLiqBorrowExPrice_) { // new liquidity exchange price is < than the old one. liquidity exchange price should only ever increase. // If not, something went wrong and avoid proceeding with unknown outcome. revert FluidCalcsVaultSimulatedTimeError(); } // liquidity Exchange Prices always increases in next block. Hence substraction with old will never be negative // uint64 * 1e18 is the max the number that could be unchecked { // Calculating increase in supply exchange price w.r.t last stored liquidity's exchange price // vaultSupplyExPrice_ => supplyIncreaseInPercent_ vaultSupplyExPrice_ = ((((liqSupplyExPrice_ * 1e18) / oldLiqSupplyExPrice_) - 1e18) * (vaultVariables2_ & X16)) / 10000; // supply rate magnifier // Calculating increase in borrow exchange price w.r.t last stored liquidity's exchange price // vaultBorrowExPrice_ => borrowIncreaseInPercent_ vaultBorrowExPrice_ = ((((liqBorrowExPrice_ * 1e18) / oldLiqBorrowExPrice_) - 1e18) * ((vaultVariables2_ >> 16) & X16)) / 10000; // borrow rate magnifier // It's extremely hard the exchange prices to overflow even in 100 years but if it does it's not an // issue here as we are not updating on storage // (vaultRates_ >> 128) & X64) -> last stored vault's supply token exchange price vaultSupplyExPrice_ = (((vaultRates_ >> 128) & X64) * (1e18 + vaultSupplyExPrice_)) / 1e18; // (vaultRates_ >> 192) -> last stored vault's borrow token exchange price (no need to mask with & X64 as it is anyway max 64 bits) vaultBorrowExPrice_ = ((vaultRates_ >> 192) * (1e18 + vaultBorrowExPrice_)) / 1e18; } } }
{ "optimizer": { "enabled": true, "runs": 10000000 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IFluidLiquidity","name":"liquidity_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"errorId_","type":"uint256"}],"name":"FluidCalcsSimulatedTimeError","type":"error"},{"inputs":[],"name":"FluidCalcsSimulatedTimeInvalidTimestamp","type":"error"},{"inputs":[],"name":"FluidCalcsVaultSimulatedTimeError","type":"error"},{"inputs":[{"internalType":"uint256","name":"errorId_","type":"uint256"}],"name":"FluidLiquidityCalcsError","type":"error"},{"inputs":[],"name":"LIQUIDITY","outputs":[{"internalType":"contract IFluidLiquidity","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityExchangePricesSimulatedTime","outputs":[{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityTotalAmountsSimulatedTime","outputs":[{"internalType":"uint256","name":"totalSupply_","type":"uint256"},{"internalType":"uint256","name":"totalBorrow_","type":"uint256"},{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"userSupplyData_","type":"uint256"},{"internalType":"uint256","name":"userBorrowData_","type":"uint256"},{"internalType":"uint256","name":"liquiditySupplyExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityBorrowExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityUserAmountsSimulatedTime","outputs":[{"internalType":"uint256","name":"supply_","type":"uint256"},{"internalType":"uint256","name":"borrow_","type":"uint256"},{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityTokenBalance_","type":"uint256"}],"name":"calcRevenue","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityTokenBalance_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcRevenueSimulatedTime","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultVariables2_","type":"uint256"},{"internalType":"uint256","name":"vaultRates_","type":"uint256"},{"internalType":"uint256","name":"liquiditySupplyExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityBorrowExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcVaultExchangePricesSimulatedTime","outputs":[{"internalType":"uint256","name":"liqSupplyExPrice_","type":"uint256"},{"internalType":"uint256","name":"liqBorrowExPrice_","type":"uint256"},{"internalType":"uint256","name":"vaultSupplyExPrice_","type":"uint256"},{"internalType":"uint256","name":"vaultBorrowExPrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"token_","type":"address"}],"name":"getRevenue","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRevenueCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRevenues","outputs":[{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"revenueAmount","type":"uint256"}],"internalType":"struct FluidRevenueResolver.TokenRevenue[]","name":"tokenRevenues_","type":"tuple[]"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60a060405234801561001057600080fd5b5060405161152238038061152283398101604081905261002f91610040565b6001600160a01b0316608052610070565b60006020828403121561005257600080fd5b81516001600160a01b038116811461006957600080fd5b9392505050565b6080516114676100bb6000396000818160ee015281816102a20152818161044c01528181610573015281816105ed0152818161062a01528181610719015261084f01526114676000f3fe608060405234801561001057600080fd5b50600436106100be5760003560e01c806380f971cc11610076578063ab8921751161005b578063ab892175146101be578063f3bd3c89146101d3578063f7fdd139146101e657600080fd5b806380f971cc1461018357806385b67095146101ab57600080fd5b8063318a5b80116100a7578063318a5b801461013557806334a2e659146101685780636bc6f5801461017057600080fd5b80631170e219146100c35780632861c7d1146100e9575b600080fd5b6100d66100d1366004611156565b6101f9565b6040519081526020015b60405180910390f35b6101107f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100e0565b610148610143366004611156565b610220565b6040805194855260208501939093529183015260608201526080016100e0565b610110610270565b61014861017e366004611182565b610327565b6101966101913660046111bd565b61041b565b604080519283526020830191909152016100e0565b6100d66101b93660046111df565b610447565b6101c66106e4565b6040516100e09190611215565b6101486101e1366004611182565b6109a4565b6100d66101f436600461127a565b6109ea565b60008260000361020b57506000610219565b610216848484610a13565b90505b9392505050565b6000806000808560000361023f57506000925082915081905080610267565b6102498686610a7c565b90925090506102588783610cd6565b93506102648782610d21565b92505b93509350935093565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600060048201819052907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa1580156102fe573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061032291906112ac565b905090565b6000808080861580610337575085155b1561034d5750600092508291508190508061040f565b6103578786610a7c565b5091506103648686610a7c565b91505088156103bb576001808a16811490610394908b901c67ffffffffffffffff16600860ff9082901c91161b90565b945080156103b95764e8d4a510006103ac84876112f4565b6103b6919061133a565b94505b505b871561040f5760018089168114906103e8908a901c67ffffffffffffffff16600860ff9082901c91161b90565b9350801561040d5764e8d4a5100061040083866112f4565b61040a919061133a565b93505b505b95509550955095915050565b6000808360000361043157506000905080610440565b61043b8484610a7c565b915091505b9250929050565b6000807f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663b5c736e4610491600586610d5b565b6040518263ffffffff1660e01b81526004016104af91815260200190565b602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f091906112ac565b9050806000036105035750600092915050565b600073ffffffffffffffffffffffffffffffffffffffff841673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146105eb576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000811660048301528516906370a0823190602401602060405180830381865afa1580156105c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105e691906112ac565b610624565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16315b905060007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663b5c736e461066f600788610d5b565b6040518263ffffffff1660e01b815260040161068d91815260200190565b602060405180830381865afa1580156106aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ce91906112ac565b90506106db818484610a13565b95945050505050565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600a60048201526060906000907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa158015610775573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061079991906112ac565b90508067ffffffffffffffff8111156107b4576107b4611375565b6040519080825280602002602001820160405280156107f957816020015b60408051808201909152600080825260208201528152602001906001900390816107d25790505b5091506000600a60405160200161081291815260200190565b6040516020818303038152906040528051906020012060001c905060005b8281101561099e5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663b5c736e461087e83856113a4565b60405160e083901b7fffffffff000000000000000000000000000000000000000000000000000000001681526004810191909152602401602060405180830381865afa1580156108d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f691906112ac565b848281518110610908576109086113b7565b60200260200101516000019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505061096c84828151811061095b5761095b6113b7565b602002602001015160000151610447565b84828151811061097e5761097e6113b7565b602090810291909101810151015280610996816113e6565b915050610830565b50505090565b60008080808615806109b4575085155b156109ca5750600092508291508190508061040f565b6109d78989898989610da6565b929c919b50995090975095505050505050565b6000836000036109fc57506000610a0b565b610a0885858585610edd565b90505b949350505050565b6000806000610a2185610f48565b915091506000610a318784610cd6565b90508015610a6e57610a438783610d21565b610a4d90866113a4565b9350808411610a5d576000610a67565b610a67818561141e565b9350610a72565b8493505b5050509392505050565b67ffffffffffffffff605b83901c811690609b84901c16811580610a9e575080155b15610adf576040517fb838681e0000000000000000000000000000000000000000000000000000000081526201117160048201526024015b60405180910390fd5b61ffff8416603a85901c6401ffffffff16841015610b29576040517faba77fab00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b603a85901c6401ffffffff168085039060ea87901c617fff1690861480610b4e575082155b80610b595750806001145b15610b6657505050610440565b64496cebb80084840283020484019350617fff60db88901c16925082600103610b9157505050610440565b82600116600103610be65760019290921c91826c7e37be2022c0914b268000000081610bbf57610bbf61130b565b049250612710601e88901c613fff166b033b2e3c9fd0803ce8000000850102049250610c13565b60019290921c916305f5e100601e88901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b80600116600103610c4a5760011c61271081016b033b2e3c9fd0803ce8000000820281610c4257610c4261130b565b049050610c80565b60011c61271081016b033b2e3c9fd0803ce8000000820281610c6e57610c6e61130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff891691900402601088901c613fff16612710030292506801b5a660ea44b80000858402830204850194505050509250929050565b66ffffffffffffff604883901c811660ff604085901c81169190911b91600885901c169084161b64e8d4a51000610d0d84836112f4565b610d17919061133a565b610a0b90836113a4565b60c882901c60ff60c084901c81169190911b9066ffffffffffffff608885901c16608085901c9091161b64e8d4a51000610d0d84836112f4565b6040805173ffffffffffffffffffffffffffffffffffffffff831660208201529081018390526000906060016040516020818303038152906040528051906020012090505b92915050565b600080600080610db68786610a7c565b509350610dc38686610a7c565b93505067ffffffffffffffff8881169060408a901c1681861080610de657508085105b15610e1d576040517fea77fd6f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61271061ffff8c16670de0b6b3a76400008489670de0b6b3a76400000281610e4757610e4761130b565b04030281610e5757610e5761130b565b04935061271061ffff60108d901c16670de0b6b3a76400008388670de0b6b3a76400000281610e8857610e8861130b565b04030281610e9857610e9861130b565b049250670de0b6b3a764000060808b901c67ffffffffffffffff1685820102049350670de0b6b3a764000060c08b901c84820102049250505095509550955095915050565b6000806000610eec8685610a7c565b915091506000610efc8884610cd6565b90508015610f3957610f0e8883610d21565b610f1890876113a4565b9350808411610f28576000610f32565b610f32818561141e565b9350610f3d565b8593505b505050949350505050565b67ffffffffffffffff605b82901c811690609b83901c16811580610f6a575080155b15610fa6576040517fd50d7512000000000000000000000000000000000000000000000000000000008152620111716004820152602401610ad6565b61ffff8316603a84901c6401ffffffff16428181039160ea87901c617fff16911480610fd0575082155b80610fdb5750806001145b15610fe857505050915091565b64496cebb80084840283020484019350617fff60db87901c1692508260010361101357505050915091565b826001166001036110685760019290921c91826c7e37be2022c0914b2680000000816110415761104161130b565b049250612710601e87901c613fff166b033b2e3c9fd0803ce8000000850102049250611095565b60019290921c916305f5e100601e87901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b806001166001036110cc5760011c61271081016b033b2e3c9fd0803ce80000008202816110c4576110c461130b565b049050611102565b60011c61271081016b033b2e3c9fd0803ce80000008202816110f0576110f061130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff881691900402601087901c613fff16612710030292506801b5a660ea44b8000085840283020485019450505050915091565b60008060006060848603121561116b57600080fd5b505081359360208301359350604090920135919050565b600080600080600060a0868803121561119a57600080fd5b505083359560208501359550604085013594606081013594506080013592509050565b600080604083850312156111d057600080fd5b50508035926020909101359150565b6000602082840312156111f157600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461021957600080fd5b602080825282518282018190526000919060409081850190868401855b8281101561126d578151805173ffffffffffffffffffffffffffffffffffffffff168552860151868501529284019290850190600101611232565b5091979650505050505050565b6000806000806080858703121561129057600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156112be57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082611370577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b80820180821115610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611417576114176112c5565b5060010190565b81810381811115610da057610da06112c556fea2646970667358221220f486c9f3a28c5a39ac91440cb8ec1ef2efd9e1c54a0c26d7eb6925de987e620264736f6c6343000815003300000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100be5760003560e01c806380f971cc11610076578063ab8921751161005b578063ab892175146101be578063f3bd3c89146101d3578063f7fdd139146101e657600080fd5b806380f971cc1461018357806385b67095146101ab57600080fd5b8063318a5b80116100a7578063318a5b801461013557806334a2e659146101685780636bc6f5801461017057600080fd5b80631170e219146100c35780632861c7d1146100e9575b600080fd5b6100d66100d1366004611156565b6101f9565b6040519081526020015b60405180910390f35b6101107f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49781565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100e0565b610148610143366004611156565b610220565b6040805194855260208501939093529183015260608201526080016100e0565b610110610270565b61014861017e366004611182565b610327565b6101966101913660046111bd565b61041b565b604080519283526020830191909152016100e0565b6100d66101b93660046111df565b610447565b6101c66106e4565b6040516100e09190611215565b6101486101e1366004611182565b6109a4565b6100d66101f436600461127a565b6109ea565b60008260000361020b57506000610219565b610216848484610a13565b90505b9392505050565b6000806000808560000361023f57506000925082915081905080610267565b6102498686610a7c565b90925090506102588783610cd6565b93506102648782610d21565b92505b93509350935093565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600060048201819052907f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa1580156102fe573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061032291906112ac565b905090565b6000808080861580610337575085155b1561034d5750600092508291508190508061040f565b6103578786610a7c565b5091506103648686610a7c565b91505088156103bb576001808a16811490610394908b901c67ffffffffffffffff16600860ff9082901c91161b90565b945080156103b95764e8d4a510006103ac84876112f4565b6103b6919061133a565b94505b505b871561040f5760018089168114906103e8908a901c67ffffffffffffffff16600860ff9082901c91161b90565b9350801561040d5764e8d4a5100061040083866112f4565b61040a919061133a565b93505b505b95509550955095915050565b6000808360000361043157506000905080610440565b61043b8484610a7c565b915091505b9250929050565b6000807f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff1663b5c736e4610491600586610d5b565b6040518263ffffffff1660e01b81526004016104af91815260200190565b602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f091906112ac565b9050806000036105035750600092915050565b600073ffffffffffffffffffffffffffffffffffffffff841673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146105eb576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497811660048301528516906370a0823190602401602060405180830381865afa1580156105c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105e691906112ac565b610624565b7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff16315b905060007f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff1663b5c736e461066f600788610d5b565b6040518263ffffffff1660e01b815260040161068d91815260200190565b602060405180830381865afa1580156106aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ce91906112ac565b90506106db818484610a13565b95945050505050565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600a60048201526060906000907f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa158015610775573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061079991906112ac565b90508067ffffffffffffffff8111156107b4576107b4611375565b6040519080825280602002602001820160405280156107f957816020015b60408051808201909152600080825260208201528152602001906001900390816107d25790505b5091506000600a60405160200161081291815260200190565b6040516020818303038152906040528051906020012060001c905060005b8281101561099e5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e4971663b5c736e461087e83856113a4565b60405160e083901b7fffffffff000000000000000000000000000000000000000000000000000000001681526004810191909152602401602060405180830381865afa1580156108d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f691906112ac565b848281518110610908576109086113b7565b60200260200101516000019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505061096c84828151811061095b5761095b6113b7565b602002602001015160000151610447565b84828151811061097e5761097e6113b7565b602090810291909101810151015280610996816113e6565b915050610830565b50505090565b60008080808615806109b4575085155b156109ca5750600092508291508190508061040f565b6109d78989898989610da6565b929c919b50995090975095505050505050565b6000836000036109fc57506000610a0b565b610a0885858585610edd565b90505b949350505050565b6000806000610a2185610f48565b915091506000610a318784610cd6565b90508015610a6e57610a438783610d21565b610a4d90866113a4565b9350808411610a5d576000610a67565b610a67818561141e565b9350610a72565b8493505b5050509392505050565b67ffffffffffffffff605b83901c811690609b84901c16811580610a9e575080155b15610adf576040517fb838681e0000000000000000000000000000000000000000000000000000000081526201117160048201526024015b60405180910390fd5b61ffff8416603a85901c6401ffffffff16841015610b29576040517faba77fab00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b603a85901c6401ffffffff168085039060ea87901c617fff1690861480610b4e575082155b80610b595750806001145b15610b6657505050610440565b64496cebb80084840283020484019350617fff60db88901c16925082600103610b9157505050610440565b82600116600103610be65760019290921c91826c7e37be2022c0914b268000000081610bbf57610bbf61130b565b049250612710601e88901c613fff166b033b2e3c9fd0803ce8000000850102049250610c13565b60019290921c916305f5e100601e88901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b80600116600103610c4a5760011c61271081016b033b2e3c9fd0803ce8000000820281610c4257610c4261130b565b049050610c80565b60011c61271081016b033b2e3c9fd0803ce8000000820281610c6e57610c6e61130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff891691900402601088901c613fff16612710030292506801b5a660ea44b80000858402830204850194505050509250929050565b66ffffffffffffff604883901c811660ff604085901c81169190911b91600885901c169084161b64e8d4a51000610d0d84836112f4565b610d17919061133a565b610a0b90836113a4565b60c882901c60ff60c084901c81169190911b9066ffffffffffffff608885901c16608085901c9091161b64e8d4a51000610d0d84836112f4565b6040805173ffffffffffffffffffffffffffffffffffffffff831660208201529081018390526000906060016040516020818303038152906040528051906020012090505b92915050565b600080600080610db68786610a7c565b509350610dc38686610a7c565b93505067ffffffffffffffff8881169060408a901c1681861080610de657508085105b15610e1d576040517fea77fd6f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61271061ffff8c16670de0b6b3a76400008489670de0b6b3a76400000281610e4757610e4761130b565b04030281610e5757610e5761130b565b04935061271061ffff60108d901c16670de0b6b3a76400008388670de0b6b3a76400000281610e8857610e8861130b565b04030281610e9857610e9861130b565b049250670de0b6b3a764000060808b901c67ffffffffffffffff1685820102049350670de0b6b3a764000060c08b901c84820102049250505095509550955095915050565b6000806000610eec8685610a7c565b915091506000610efc8884610cd6565b90508015610f3957610f0e8883610d21565b610f1890876113a4565b9350808411610f28576000610f32565b610f32818561141e565b9350610f3d565b8593505b505050949350505050565b67ffffffffffffffff605b82901c811690609b83901c16811580610f6a575080155b15610fa6576040517fd50d7512000000000000000000000000000000000000000000000000000000008152620111716004820152602401610ad6565b61ffff8316603a84901c6401ffffffff16428181039160ea87901c617fff16911480610fd0575082155b80610fdb5750806001145b15610fe857505050915091565b64496cebb80084840283020484019350617fff60db87901c1692508260010361101357505050915091565b826001166001036110685760019290921c91826c7e37be2022c0914b2680000000816110415761104161130b565b049250612710601e87901c613fff166b033b2e3c9fd0803ce8000000850102049250611095565b60019290921c916305f5e100601e87901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b806001166001036110cc5760011c61271081016b033b2e3c9fd0803ce80000008202816110c4576110c461130b565b049050611102565b60011c61271081016b033b2e3c9fd0803ce80000008202816110f0576110f061130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff881691900402601087901c613fff16612710030292506801b5a660ea44b8000085840283020485019450505050915091565b60008060006060848603121561116b57600080fd5b505081359360208301359350604090920135919050565b600080600080600060a0868803121561119a57600080fd5b505083359560208501359550604085013594606081013594506080013592509050565b600080604083850312156111d057600080fd5b50508035926020909101359150565b6000602082840312156111f157600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461021957600080fd5b602080825282518282018190526000919060409081850190868401855b8281101561126d578151805173ffffffffffffffffffffffffffffffffffffffff168552860151868501529284019290850190600101611232565b5091979650505050505050565b6000806000806080858703121561129057600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156112be57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082611370577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b80820180821115610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611417576114176112c5565b5060010190565b81810381811115610da057610da06112c556fea2646970667358221220f486c9f3a28c5a39ac91440cb8ec1ef2efd9e1c54a0c26d7eb6925de987e620264736f6c63430008150033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497
-----Decoded View---------------
Arg [0] : liquidity_ (address): 0x52Aa899454998Be5b000Ad077a46Bbe360F4e497
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.