Contract

0x493493f73692Ca94219D3406CE0d2bd08D686BcF

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

-

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Parent Transaction Hash Block From To
4342072024-12-15 7:46:106 days ago1734248770  Contract Creation0 S
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
FluidRevenueResolver

Compiler Version
v0.8.21+commit.d9974bed

Optimization Enabled:
Yes with 10000000 runs

Other Settings:
paris EvmVersion
File 1 of 11 : main.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import { IFluidLiquidity } from "../../../liquidity/interfaces/iLiquidity.sol";
import { LiquidityCalcs } from "../../../libraries/liquidityCalcs.sol";
import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol";
import { BigMathMinified } from "../../../libraries/bigMathMinified.sol";
import { CalcsSimulatedTime } from "./calcsSimulatedTime.sol";
import { CalcsVaultSimulatedTime } from "./calcsVaultSimulatedTime.sol";

/// @notice Fluid Revenue resolver
contract FluidRevenueResolver {
    /// @notice address of the liquidity contract
    IFluidLiquidity public immutable LIQUIDITY;

    /// @dev address that is mapped to the chain native token
    address internal constant _NATIVE_TOKEN_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    uint256 internal constant X64 = 0xffffffffffffffff;
    // constants used for BigMath conversion from and to storage
    uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
    uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;

    struct TokenRevenue {
        address token;
        uint256 revenueAmount;
    }

    constructor(IFluidLiquidity liquidity_) {
        LIQUIDITY = IFluidLiquidity(liquidity_);
    }

    /// @notice address of contract that gets sent the revenue. Configurable by governance
    function getRevenueCollector() public view returns (address) {
        return address(uint160(LIQUIDITY.readFromStorage(bytes32(0))));
    }

    /// @notice gets the currently uncollected `revenueAmount_` for a `token_`.
    function getRevenue(address token_) public view returns (uint256 revenueAmount_) {
        uint256 exchangePricesAndConfig_ = LIQUIDITY.readFromStorage(
            LiquiditySlotsLink.calculateMappingStorageSlot(
                LiquiditySlotsLink.LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT,
                token_
            )
        );
        if (exchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> revenue is 0
            return 0;
        }

        uint256 liquidityTokenBalance_ = token_ == _NATIVE_TOKEN_ADDRESS
            ? address(LIQUIDITY).balance
            : IERC20(token_).balanceOf(address(LIQUIDITY));

        uint256 totalAmounts_ = LIQUIDITY.readFromStorage(
            LiquiditySlotsLink.calculateMappingStorageSlot(
                LiquiditySlotsLink.LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT,
                token_
            )
        );

        return LiquidityCalcs.calcRevenue(totalAmounts_, exchangePricesAndConfig_, liquidityTokenBalance_);
    }

    /// @notice gets the currently uncollected revenues for all listed tokens at Liquidity
    function getRevenues() public view returns (TokenRevenue[] memory tokenRevenues_) {
        uint256 length_ = LIQUIDITY.readFromStorage(bytes32(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT));

        tokenRevenues_ = new TokenRevenue[](length_);

        uint256 startingSlotForArrayElements_ = uint256(
            keccak256(abi.encode(LiquiditySlotsLink.LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT))
        );

        for (uint256 i; i < length_; i++) {
            tokenRevenues_[i].token = address(
                uint160(LIQUIDITY.readFromStorage(bytes32(startingSlotForArrayElements_ + i)))
            );
            tokenRevenues_[i].revenueAmount = getRevenue(tokenRevenues_[i].token);
        }
    }

    /// @notice gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from stacked
    /// uint256 storage slots and the balance of the Fluid liquidity contract for the token.
    /// @dev exposed for advanced revenue calculations
    /// @param totalAmounts_ total amounts packed uint256 read from storage
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param liquidityTokenBalance_   current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
    /// @return revenueAmount_ collectable revenue amount
    function calcRevenue(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 liquidityTokenBalance_
    ) public view returns (uint256 revenueAmount_) {
        if (exchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> revenue is 0
            return 0;
        }
        return LiquidityCalcs.calcRevenue(totalAmounts_, exchangePricesAndConfig_, liquidityTokenBalance_);
    }

    /// @notice same as `calcRevenue`, but for a simulated `block.timestamp` set via `simulatedTimestamp_`.
    function calcRevenueSimulatedTime(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 liquidityTokenBalance_,
        uint256 simulatedTimestamp_
    ) public pure returns (uint256 revenueAmount_) {
        if (exchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> revenue is 0
            return 0;
        }
        return
            CalcsSimulatedTime.calcRevenue(
                totalAmounts_,
                exchangePricesAndConfig_,
                liquidityTokenBalance_,
                simulatedTimestamp_
            );
    }

    /// @notice calculates interest (exchange prices) at Liquidity for a token given its' exchangePricesAndConfig from storage
    ///         for a simulated `block.timestamp` set via `simulatedTimestamp_`.
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param simulatedTimestamp_ simulated block.timestamp
    /// @return supplyExchangePrice_ updated supplyExchangePrice
    /// @return borrowExchangePrice_ updated borrowExchangePrice
    function calcLiquidityExchangePricesSimulatedTime(
        uint256 exchangePricesAndConfig_,
        uint256 simulatedTimestamp_
    ) public pure returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
        if (exchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> exchange prices are 0
            return (0, 0);
        }
        return CalcsSimulatedTime.calcExchangePrices(exchangePricesAndConfig_, simulatedTimestamp_);
    }

    /// @notice Calculates new vault exchange prices based on storage data for a simulated `block.timestamp` set via `simulatedTimestamp_`.
    /// @param vaultVariables2_ vaultVariables2 read from storage for the vault (VaultResolver.getRateRaw)
    /// @param vaultRates_ rates read from storage for the vault (VaultResolver.getVaultVariables2Raw)
    /// @param liquiditySupplyExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for supply token
    /// @param liquidityBorrowExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for borrow token
    /// @param simulatedTimestamp_ simulated block.timestamp
    /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price
    /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price
    /// @return vaultSupplyExPrice_ latest vault's supply token exchange price
    /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price
    function calcVaultExchangePricesSimulatedTime(
        uint256 vaultVariables2_,
        uint256 vaultRates_,
        uint256 liquiditySupplyExchangePricesAndConfig_,
        uint256 liquidityBorrowExchangePricesAndConfig_,
        uint256 simulatedTimestamp_
    )
        public
        pure
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        )
    {
        if (liquiditySupplyExchangePricesAndConfig_ == 0 || liquidityBorrowExchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> exchange prices are 0
            return (0, 0, 0, 0);
        }
        return
            CalcsVaultSimulatedTime.updateExchangePrices(
                vaultVariables2_,
                vaultRates_,
                liquiditySupplyExchangePricesAndConfig_,
                liquidityBorrowExchangePricesAndConfig_,
                simulatedTimestamp_
            );
    }

    /// @notice returns the `totalSupply_` and `totalBorrow_` at Liquidity at a certain point in time given the stacked uint256
    ///         storage data for total amounts and exchange prices and config.
    function calcLiquidityTotalAmountsSimulatedTime(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 simulatedTimestamp_
    )
        public
        pure
        returns (uint256 totalSupply_, uint256 totalBorrow_, uint256 supplyExchangePrice_, uint256 borrowExchangePrice_)
    {
        if (exchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> amounts are 0
            return (0, 0, 0, 0);
        }

        (supplyExchangePrice_, borrowExchangePrice_) = CalcsSimulatedTime.calcExchangePrices(
            exchangePricesAndConfig_,
            simulatedTimestamp_
        );

        totalSupply_ = CalcsSimulatedTime.getTotalSupply(totalAmounts_, supplyExchangePrice_);
        totalBorrow_ = CalcsSimulatedTime.getTotalBorrow(totalAmounts_, borrowExchangePrice_);
    }

    /// @notice returns the `supply_` and `borrow_` for a user (protocol) at Liquidity at a certain point in time
    ///          given the stacked uint256 storage data for total amounts and exchange prices and config.
    function calcLiquidityUserAmountsSimulatedTime(
        uint256 userSupplyData_,
        uint256 userBorrowData_,
        uint256 liquiditySupplyExchangePricesAndConfig_,
        uint256 liquidityBorrowExchangePricesAndConfig_,
        uint256 simulatedTimestamp_
    )
        public
        pure
        returns (uint256 supply_, uint256 borrow_, uint256 supplyExchangePrice_, uint256 borrowExchangePrice_)
    {
        if (liquiditySupplyExchangePricesAndConfig_ == 0 || liquidityBorrowExchangePricesAndConfig_ == 0) {
            // token is not configured at Liquidity -> amounts are 0
            return (0, 0, 0, 0);
        }

        (supplyExchangePrice_, ) = CalcsSimulatedTime.calcExchangePrices(
            liquiditySupplyExchangePricesAndConfig_,
            simulatedTimestamp_
        );

        (, borrowExchangePrice_) = CalcsSimulatedTime.calcExchangePrices(
            liquidityBorrowExchangePricesAndConfig_,
            simulatedTimestamp_
        );

        if (userSupplyData_ > 0) {
            // if userSupplyData_ == 0 -> user not configured yet for token at Liquidity

            bool modeWithInterest_ = userSupplyData_ & 1 == 1;
            supply_ = BigMathMinified.fromBigNumber(
                (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_AMOUNT) & X64,
                DEFAULT_EXPONENT_SIZE,
                DEFAULT_EXPONENT_MASK
            );

            if (modeWithInterest_) {
                // convert raw amounts to normal for withInterest mode
                supply_ = (supply_ * supplyExchangePrice_) / 1e12;
            }
        }

        if (userBorrowData_ > 0) {
            // if userBorrowData_ == 0 -> user not configured yet for token at Liquidity

            bool modeWithInterest_ = userBorrowData_ & 1 == 1;
            borrow_ = BigMathMinified.fromBigNumber(
                (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_AMOUNT) & X64,
                DEFAULT_EXPONENT_SIZE,
                DEFAULT_EXPONENT_MASK
            );

            if (modeWithInterest_) {
                // convert raw amounts to normal for withInterest mode
                borrow_ = (borrow_ * borrowExchangePrice_) / 1e12;
            }
        }
    }
}

File 2 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 3 of 11 : iProxy.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface IProxy {
    function setAdmin(address newAdmin_) external;

    function setDummyImplementation(address newDummyImplementation_) external;

    function addImplementation(address implementation_, bytes4[] calldata sigs_) external;

    function removeImplementation(address implementation_) external;

    function getAdmin() external view returns (address);

    function getDummyImplementation() external view returns (address);

    function getImplementationSigs(address impl_) external view returns (bytes4[] memory);

    function getSigsImplementation(bytes4 sig_) external view returns (address);

    function readFromStorage(bytes32 slot_) external view returns (uint256 result_);
}

File 4 of 11 : bigMathMinified.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @title library that represents a number in BigNumber(coefficient and exponent) format to store in smaller bits.
/// @notice the number is divided into two parts: a coefficient and an exponent. This comes at a cost of losing some precision
/// at the end of the number because the exponent simply fills it with zeroes. This precision is oftentimes negligible and can
/// result in significant gas cost reduction due to storage space reduction.
/// Also note, a valid big number is as follows: if the exponent is > 0, then coefficient last bits should be occupied to have max precision.
/// @dev roundUp is more like a increase 1, which happens everytime for the same number.
/// roundDown simply sets trailing digits after coefficientSize to zero (floor), only once for the same number.
library BigMathMinified {
    /// @dev constants to use for `roundUp` input param to increase readability
    bool internal constant ROUND_DOWN = false;
    bool internal constant ROUND_UP = true;

    /// @dev converts `normal` number to BigNumber with `exponent` and `coefficient` (or precision).
    /// e.g.:
    /// 5035703444687813576399599 (normal) = (coefficient[32bits], exponent[8bits])[40bits]
    /// 5035703444687813576399599 (decimal) => 10000101010010110100000011111011110010100110100000000011100101001101001101011101111 (binary)
    ///                                     => 10000101010010110100000011111011000000000000000000000000000000000000000000000000000
    ///                                                                        ^-------------------- 51(exponent) -------------- ^
    /// coefficient = 1000,0101,0100,1011,0100,0000,1111,1011               (2236301563)
    /// exponent =                                            0011,0011     (51)
    /// bigNumber =   1000,0101,0100,1011,0100,0000,1111,1011,0011,0011     (572493200179)
    ///
    /// @param normal number which needs to be converted into Big Number
    /// @param coefficientSize at max how many bits of precision there should be (64 = uint64 (64 bits precision))
    /// @param exponentSize at max how many bits of exponent there should be (8 = uint8 (8 bits exponent))
    /// @param roundUp signals if result should be rounded down or up
    /// @return bigNumber converted bigNumber (coefficient << exponent)
    function toBigNumber(
        uint256 normal,
        uint256 coefficientSize,
        uint256 exponentSize,
        bool roundUp
    ) internal pure returns (uint256 bigNumber) {
        assembly {
            let lastBit_
            let number_ := normal
            if gt(number_, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
                number_ := shr(0x80, number_)
                lastBit_ := 0x80
            }
            if gt(number_, 0xFFFFFFFFFFFFFFFF) {
                number_ := shr(0x40, number_)
                lastBit_ := add(lastBit_, 0x40)
            }
            if gt(number_, 0xFFFFFFFF) {
                number_ := shr(0x20, number_)
                lastBit_ := add(lastBit_, 0x20)
            }
            if gt(number_, 0xFFFF) {
                number_ := shr(0x10, number_)
                lastBit_ := add(lastBit_, 0x10)
            }
            if gt(number_, 0xFF) {
                number_ := shr(0x8, number_)
                lastBit_ := add(lastBit_, 0x8)
            }
            if gt(number_, 0xF) {
                number_ := shr(0x4, number_)
                lastBit_ := add(lastBit_, 0x4)
            }
            if gt(number_, 0x3) {
                number_ := shr(0x2, number_)
                lastBit_ := add(lastBit_, 0x2)
            }
            if gt(number_, 0x1) {
                lastBit_ := add(lastBit_, 1)
            }
            if gt(number_, 0) {
                lastBit_ := add(lastBit_, 1)
            }
            if lt(lastBit_, coefficientSize) {
                // for throw exception
                lastBit_ := coefficientSize
            }
            let exponent := sub(lastBit_, coefficientSize)
            let coefficient := shr(exponent, normal)
            if and(roundUp, gt(exponent, 0)) {
                // rounding up is only needed if exponent is > 0, as otherwise the coefficient fully holds the original number
                coefficient := add(coefficient, 1)
                if eq(shl(coefficientSize, 1), coefficient) {
                    // case were coefficient was e.g. 111, with adding 1 it became 1000 (in binary) and coefficientSize 3 bits
                    // final coefficient would exceed it's size. -> reduce coefficent to 100 and increase exponent by 1.
                    coefficient := shl(sub(coefficientSize, 1), 1)
                    exponent := add(exponent, 1)
                }
            }
            if iszero(lt(exponent, shl(exponentSize, 1))) {
                // if exponent is >= exponentSize, the normal number is too big to fit within
                // BigNumber with too small sizes for coefficient and exponent
                revert(0, 0)
            }
            bigNumber := shl(exponentSize, coefficient)
            bigNumber := add(bigNumber, exponent)
        }
    }

    /// @dev get `normal` number from `bigNumber`, `exponentSize` and `exponentMask`
    function fromBigNumber(
        uint256 bigNumber,
        uint256 exponentSize,
        uint256 exponentMask
    ) internal pure returns (uint256 normal) {
        assembly {
            let coefficient := shr(exponentSize, bigNumber)
            let exponent := and(bigNumber, exponentMask)
            normal := shl(exponent, coefficient)
        }
    }

    /// @dev gets the most significant bit `lastBit` of a `normal` number (length of given number of binary format).
    /// e.g.
    /// 5035703444687813576399599 = 10000101010010110100000011111011110010100110100000000011100101001101001101011101111
    /// lastBit =                   ^---------------------------------   83   ----------------------------------------^
    function mostSignificantBit(uint256 normal) internal pure returns (uint lastBit) {
        assembly {
            let number_ := normal
            if gt(normal, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF) {
                number_ := shr(0x80, number_)
                lastBit := 0x80
            }
            if gt(number_, 0xFFFFFFFFFFFFFFFF) {
                number_ := shr(0x40, number_)
                lastBit := add(lastBit, 0x40)
            }
            if gt(number_, 0xFFFFFFFF) {
                number_ := shr(0x20, number_)
                lastBit := add(lastBit, 0x20)
            }
            if gt(number_, 0xFFFF) {
                number_ := shr(0x10, number_)
                lastBit := add(lastBit, 0x10)
            }
            if gt(number_, 0xFF) {
                number_ := shr(0x8, number_)
                lastBit := add(lastBit, 0x8)
            }
            if gt(number_, 0xF) {
                number_ := shr(0x4, number_)
                lastBit := add(lastBit, 0x4)
            }
            if gt(number_, 0x3) {
                number_ := shr(0x2, number_)
                lastBit := add(lastBit, 0x2)
            }
            if gt(number_, 0x1) {
                lastBit := add(lastBit, 1)
            }
            if gt(number_, 0) {
                lastBit := add(lastBit, 1)
            }
        }
    }
}

File 5 of 11 : errorTypes.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

library LibsErrorTypes {
    /***********************************|
    |         LiquidityCalcs            | 
    |__________________________________*/

    /// @notice thrown when supply or borrow exchange price is zero at calc token data (token not configured yet)
    uint256 internal constant LiquidityCalcs__ExchangePriceZero = 70001;

    /// @notice thrown when rate data is set to a version that is not implemented
    uint256 internal constant LiquidityCalcs__UnsupportedRateVersion = 70002;

    /// @notice thrown when the calculated borrow rate turns negative. This should never happen.
    uint256 internal constant LiquidityCalcs__BorrowRateNegative = 70003;

    /***********************************|
    |           SafeTransfer            | 
    |__________________________________*/

    /// @notice thrown when safe transfer from for an ERC20 fails
    uint256 internal constant SafeTransfer__TransferFromFailed = 71001;

    /// @notice thrown when safe transfer for an ERC20 fails
    uint256 internal constant SafeTransfer__TransferFailed = 71002;

    /***********************************|
    |           SafeApprove             | 
    |__________________________________*/

    /// @notice thrown when safe approve from for an ERC20 fails
    uint256 internal constant SafeApprove__ApproveFailed = 81001;
}

File 6 of 11 : liquidityCalcs.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { LibsErrorTypes as ErrorTypes } from "./errorTypes.sol";
import { LiquiditySlotsLink } from "./liquiditySlotsLink.sol";
import { BigMathMinified } from "./bigMathMinified.sol";

/// @notice implements calculation methods used for Fluid liquidity such as updated exchange prices,
/// borrow rate, withdrawal / borrow limits, revenue amount.
library LiquidityCalcs {
    error FluidLiquidityCalcsError(uint256 errorId_);

    /// @notice emitted if the calculated borrow rate surpassed max borrow rate (16 bits) and was capped at maximum value 65535
    event BorrowRateMaxCap();

    /// @dev constants as from Liquidity variables.sol
    uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;

    /// @dev Ignoring leap years
    uint256 internal constant SECONDS_PER_YEAR = 365 days;
    // constants used for BigMath conversion from and to storage
    uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
    uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;

    uint256 internal constant FOUR_DECIMALS = 1e4;
    uint256 internal constant TWELVE_DECIMALS = 1e12;
    uint256 internal constant X14 = 0x3fff;
    uint256 internal constant X15 = 0x7fff;
    uint256 internal constant X16 = 0xffff;
    uint256 internal constant X18 = 0x3ffff;
    uint256 internal constant X24 = 0xffffff;
    uint256 internal constant X33 = 0x1ffffffff;
    uint256 internal constant X64 = 0xffffffffffffffff;

    ///////////////////////////////////////////////////////////////////////////
    //////////                  CALC EXCHANGE PRICES                  /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @return supplyExchangePrice_ updated supplyExchangePrice
    /// @return borrowExchangePrice_ updated borrowExchangePrice
    function calcExchangePrices(
        uint256 exchangePricesAndConfig_
    ) internal view returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
        // Extracting exchange prices
        supplyExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
            X64;
        borrowExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
            X64;

        if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {
            revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);
        }

        uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate

        unchecked {
            // last timestamp can not be > current timestamp
            uint256 secondsSinceLastUpdate_ = block.timestamp -
                ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);

            uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &
                X15;
            if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {
                // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed
                // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // calculate new borrow exchange price.
            // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.
            // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.
            borrowExchangePrice_ +=
                (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS);

            // FOR SUPPLY EXCHANGE PRICE:
            // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.
            // formula: previous price * supply rate * secondsSinceLastUpdate_.
            // where supply rate = (borrow rate  - revenueFee%) * ratioSupplyYield. And
            // ratioSupplyYield = utilization * supplyRatio * borrowRatio
            //
            // Example:
            // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.
            // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.
            // yield is 10 (so half a year must have passed).
            // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.
            // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.
            // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).
            // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).
            // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):
            // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.
            // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%
            // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%
            // increase in supplyExchangePrice, assuming 100 as previous price.
            // 100 * 22,5% * 1/2 (half a year) = 0,1125.
            // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.

            // -------------- 1. calculate ratioSupplyYield --------------------------------
            // step1: utilization * supplyRatio (or actually part of lenders receiving yield)

            // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)
            // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
            // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
            temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;

            if (temp_ == 1) {
                // if no raw supply: no exchange price update needed
                // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest
            if (temp_ & 1 == 1) {
                // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
                temp_ = temp_ >> 1;

                // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return
                // in the if statement a little above.

                // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.
                // supplyRawInterest must become worth 30. totalSupply must become 110.
                // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.
                // so ratioSupplyYield must come out as 2.5 (250%).
                // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.
                temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)
                // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).
                temp_ =
                    // utilization * (100% + 100% / supplyRatio)
                    (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *
                        (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).
                    (FOUR_DECIMALS);
                // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31
            } else {
                // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
                temp_ = temp_ >> 1;
                // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0

                // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).
                temp_ =
                    // 1e27 * utilization * (100% + supplyRatio) / 100%
                    (1e27 *
                        ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).
                        (FOUR_DECIMALS + temp_)) /
                    (FOUR_DECIMALS * FOUR_DECIMALS);
                // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27
            }
            // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31

            // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)
            if (borrowRatio_ & 1 == 1) {
                // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)
                borrowRatio_ = borrowRatio_ >> 1;
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.

                // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered
                // at the beginning of the method by early return if `borrowRatio_ == 1`.

                // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.
                // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.
                // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);
                // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).
            } else {
                // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)
                borrowRatio_ = borrowRatio_ >> 1;

                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.
                borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));
                // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.
                // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.
                // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).
            }

            // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.
            // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8
            temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;

            // 2. calculate supply rate
            // temp_ => supply rate (borrow rate  - revenueFee%) * ratioSupplyYield.
            // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)
            // Note that all calculation divisions for supplyExchangePrice are rounded down.
            // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest
            // but more suppliers not earning interest.
            temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate
                temp_ * // ratioSupplyYield
                (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee
            // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.

            // 3. calculate increase in supply exchange price
            supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));
            // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                     CALC REVENUE                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage
    /// and the current balance of the Fluid liquidity contract for the token.
    /// @param totalAmounts_ total amounts packed uint256 read from storage
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param liquidityTokenBalance_   current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
    /// @return revenueAmount_ collectable revenue amount
    function calcRevenue(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 liquidityTokenBalance_
    ) internal view returns (uint256 revenueAmount_) {
        // @dev no need to super-optimize this method as it is only used by admin

        // calculate the new exchange prices based on earned interest
        (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(exchangePricesAndConfig_);

        // total supply = interest free + with interest converted from raw
        uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);

        if (totalSupply_ > 0) {
            // available revenue: balanceOf(token) + totalBorrowings - totalLendings.
            revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);
            // ensure there is no possible case because of rounding etc. where this would revert,
            // explicitly check if >
            revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;
            // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization
            // can only be revenue.
        } else {
            // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck
            revenueAmount_ = liquidityTokenBalance_;
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                      CALC LIMITS                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates withdrawal limit before an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and converted from BigMath
    /// @return currentWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction.
    ///         returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitBeforeOperate(
        uint256 userSupplyData_,
        uint256 userSupply_
    ) internal view returns (uint256 currentWithdrawalLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet).
        // first tx where timestamp is 0 will enter `if (lastWithdrawalLimit_ == 0)` because lastWithdrawalLimit_ is not set yet.
        // returning max withdrawal allowed, which is not exactly right but doesn't matter because the first interaction must be
        // a deposit anyway. Important is that it would not revert.

        // Note the first time a deposit brings the user supply amount to above the base withdrawal limit, the active limit
        // is the fully expanded limit immediately.

        // extract last set withdrawal limit
        uint256 lastWithdrawalLimit_ = (userSupplyData_ >>
            LiquiditySlotsLink.BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT) & X64;
        lastWithdrawalLimit_ =
            (lastWithdrawalLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (lastWithdrawalLimit_ & DEFAULT_EXPONENT_MASK);
        if (lastWithdrawalLimit_ == 0) {
            // withdrawal limit is not activated. Max withdrawal allowed
            return 0;
        }

        uint256 maxWithdrawableLimit_;
        uint256 temp_;
        unchecked {
            // extract max withdrawable percent of user supply and
            // calculate maximum withdrawable amount expandPercentage of user supply at full expansion duration elapsed
            // e.g.: if 10% expandPercentage, meaning 10% is withdrawable after full expandDuration has elapsed.

            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxWithdrawableLimit_ =
                (((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14) * userSupply_) /
                FOUR_DECIMALS;

            // time elapsed since last withdrawal limit was set (in seconds)
            // @dev last process timestamp is guaranteed to exist for withdrawal, as a supply must have happened before.
            // last timestamp can not be > current timestamp
            temp_ =
                block.timestamp -
                ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP) & X33);
        }
        // calculate withdrawable amount of expandPercent that is elapsed of expandDuration.
        // e.g. if 60% of expandDuration has elapsed, then user should be able to withdraw 6% of user supply, down to 94%.
        // Note: no explicit check for this needed, it is covered by setting minWithdrawalLimit_ if needed.
        temp_ =
            (maxWithdrawableLimit_ * temp_) /
            // extract expand duration: After this, decrement won't happen (user can withdraw 100% of withdraw limit)
            ((userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_DURATION) & X24); // expand duration can never be 0
        // calculate expanded withdrawal limit: last withdrawal limit - withdrawable amount.
        // Note: withdrawable amount here can grow bigger than userSupply if timeElapsed is a lot bigger than expandDuration,
        // which would cause the subtraction `lastWithdrawalLimit_ - withdrawableAmount_` to revert. In that case, set 0
        // which will cause minimum (fully expanded) withdrawal limit to be set in lines below.
        unchecked {
            // underflow explicitly checked & handled
            currentWithdrawalLimit_ = lastWithdrawalLimit_ > temp_ ? lastWithdrawalLimit_ - temp_ : 0;
            // calculate minimum withdrawal limit: minimum amount of user supply that must stay supplied at full expansion.
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - maxWithdrawableLimit_;
        }
        // if withdrawal limit is decreased below minimum then set minimum
        // (e.g. when more than expandDuration time has elapsed)
        if (temp_ > currentWithdrawalLimit_) {
            currentWithdrawalLimit_ = temp_;
        }
    }

    /// @dev calculates withdrawal limit after an operate execution:
    /// amount of user supply that must stay supplied (not amount that can be withdrawn).
    /// i.e. if user has supplied 100m and can withdraw 5M, this method returns the 95M, not the withdrawable amount 5M
    /// @param userSupplyData_ user supply data packed uint256 from storage
    /// @param userSupply_ current user supply amount already extracted from `userSupplyData_` and added / subtracted with the executed operate amount
    /// @param newWithdrawalLimit_ current withdrawal limit updated for expansion since last interaction, result from `calcWithdrawalLimitBeforeOperate`
    /// @return withdrawalLimit_ updated withdrawal limit that should be written to storage. returned value is in
    ///                          raw for with interest mode, normal amount for interest free mode!
    function calcWithdrawalLimitAfterOperate(
        uint256 userSupplyData_,
        uint256 userSupply_,
        uint256 newWithdrawalLimit_
    ) internal pure returns (uint256) {
        // temp_ => base withdrawal limit. below this, maximum withdrawals are allowed
        uint256 temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // if user supply is below base limit then max withdrawals are allowed
        if (userSupply_ < temp_) {
            return 0;
        }
        // temp_ => withdrawal limit expandPercent (is in 1e2 decimals)
        temp_ = (userSupplyData_ >> LiquiditySlotsLink.BITS_USER_SUPPLY_EXPAND_PERCENT) & X14;
        unchecked {
            // temp_ => minimum withdrawal limit: userSupply - max withdrawable limit (userSupply * expandPercent))
            // userSupply_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            // subtraction can not underflow as maxWithdrawableLimit_ is a percentage amount (<=100%) of userSupply_
            temp_ = userSupply_ - ((userSupply_ * temp_) / FOUR_DECIMALS);
        }
        // if new (before operation) withdrawal limit is less than minimum limit then set minimum limit.
        // e.g. can happen on new deposits. withdrawal limit is instantly fully expanded in a scenario where
        // increased deposit amount outpaces withrawals.
        if (temp_ > newWithdrawalLimit_) {
            return temp_;
        }
        return newWithdrawalLimit_;
    }

    /// @dev calculates borrow limit before an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_`
    /// @return currentBorrowLimit_ current borrow limit updated for expansion since last interaction. returned value is in
    ///                             raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitBeforeOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_
    ) internal view returns (uint256 currentBorrowLimit_) {
        // @dev must support handling the case where timestamp is 0 (config is set but no interactions yet) -> base limit.
        // first tx where timestamp is 0 will enter `if (maxExpandedBorrowLimit_ < baseBorrowLimit_)` because `userBorrow_` and thus
        // `maxExpansionLimit_` and thus `maxExpandedBorrowLimit_` is 0 and `baseBorrowLimit_` can not be 0.

        // temp_ = extract borrow expand percent (is in 1e2 decimals)
        uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14;

        uint256 maxExpansionLimit_;
        uint256 maxExpandedBorrowLimit_;
        unchecked {
            // calculate max expansion limit: Max amount limit can expand to since last interaction
            // userBorrow_ needs to be atleast 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            maxExpansionLimit_ = ((userBorrow_ * temp_) / FOUR_DECIMALS);

            // calculate max borrow limit: Max point limit can increase to since last interaction
            maxExpandedBorrowLimit_ = userBorrow_ + maxExpansionLimit_;
        }

        // currentBorrowLimit_ = extract base borrow limit
        currentBorrowLimit_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        currentBorrowLimit_ =
            (currentBorrowLimit_ >> DEFAULT_EXPONENT_SIZE) <<
            (currentBorrowLimit_ & DEFAULT_EXPONENT_MASK);

        if (maxExpandedBorrowLimit_ < currentBorrowLimit_) {
            return currentBorrowLimit_;
        }
        // time elapsed since last borrow limit was set (in seconds)
        unchecked {
            // temp_ = timeElapsed_ (last timestamp can not be > current timestamp)
            temp_ =
                block.timestamp -
                ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP) & X33); // extract last update timestamp
        }

        // currentBorrowLimit_ = expandedBorrowableAmount + extract last set borrow limit
        currentBorrowLimit_ =
            // calculate borrow limit expansion since last interaction for `expandPercent` that is elapsed of `expandDuration`.
            // divisor is extract expand duration (after this, full expansion to expandPercentage happened).
            ((maxExpansionLimit_ * temp_) /
                ((userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_DURATION) & X24)) + // expand duration can never be 0
            //  extract last set borrow limit
            BigMathMinified.fromBigNumber(
                (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT) & X64,
                DEFAULT_EXPONENT_SIZE,
                DEFAULT_EXPONENT_MASK
            );

        // if timeElapsed is bigger than expandDuration, new borrow limit would be > max expansion,
        // so set to `maxExpandedBorrowLimit_` in that case.
        // also covers the case where last process timestamp = 0 (timeElapsed would simply be very big)
        if (currentBorrowLimit_ > maxExpandedBorrowLimit_) {
            currentBorrowLimit_ = maxExpandedBorrowLimit_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (currentBorrowLimit_ > temp_) {
            currentBorrowLimit_ = temp_;
        }
    }

    /// @dev calculates borrow limit after an operate execution:
    /// total amount user borrow can reach (not borrowable amount in current operation).
    /// i.e. if user has borrowed 50M and can still borrow 5M, this method returns the total 55M, not the borrowable amount 5M
    /// @param userBorrowData_ user borrow data packed uint256 from storage
    /// @param userBorrow_ current user borrow amount already extracted from `userBorrowData_` and added / subtracted with the executed operate amount
    /// @param newBorrowLimit_ current borrow limit updated for expansion since last interaction, result from `calcBorrowLimitBeforeOperate`
    /// @return borrowLimit_ updated borrow limit that should be written to storage.
    ///                      returned value is in raw for with interest mode, normal amount for interest free mode!
    function calcBorrowLimitAfterOperate(
        uint256 userBorrowData_,
        uint256 userBorrow_,
        uint256 newBorrowLimit_
    ) internal pure returns (uint256 borrowLimit_) {
        // temp_ = extract borrow expand percent
        uint256 temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_EXPAND_PERCENT) & X14; // (is in 1e2 decimals)

        unchecked {
            // borrowLimit_ = calculate maximum borrow limit at full expansion.
            // userBorrow_ needs to be at least 1e73 to overflow max limit of ~1e77 in uint256 (no token in existence where this is possible).
            borrowLimit_ = userBorrow_ + ((userBorrow_ * temp_) / FOUR_DECIMALS);
        }

        // temp_ = extract base borrow limit
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_BASE_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        if (borrowLimit_ < temp_) {
            // below base limit, borrow limit is always base limit
            return temp_;
        }
        // temp_ = extract hard max borrow limit. Above this user can never borrow (not expandable above)
        temp_ = (userBorrowData_ >> LiquiditySlotsLink.BITS_USER_BORROW_MAX_BORROW_LIMIT) & X18;
        temp_ = (temp_ >> DEFAULT_EXPONENT_SIZE) << (temp_ & DEFAULT_EXPONENT_MASK);

        // make sure fully expanded borrow limit is not above hard max borrow limit
        if (borrowLimit_ > temp_) {
            borrowLimit_ = temp_;
        }
        // if new borrow limit (from before operate) is > max borrow limit, set max borrow limit.
        // (e.g. on a repay shrinking instantly to fully expanded borrow limit from new borrow amount. shrinking is instant)
        if (newBorrowLimit_ > borrowLimit_) {
            return borrowLimit_;
        }
        return newBorrowLimit_;
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                      CALC RATES                        /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev Calculates new borrow rate from utilization for a token
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_ totalBorrow / totalSupply. 1e4 = 100% utilization
    /// @return rate_ rate for that particular token in 1e2 precision (e.g. 5% rate = 500)
    function calcBorrowRateFromUtilization(uint256 rateData_, uint256 utilization_) internal returns (uint256 rate_) {
        // extract rate version: 4 bits (0xF) starting from bit 0
        uint256 rateVersion_ = (rateData_ & 0xF);

        if (rateVersion_ == 1) {
            rate_ = calcRateV1(rateData_, utilization_);
        } else if (rateVersion_ == 2) {
            rate_ = calcRateV2(rateData_, utilization_);
        } else {
            revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__UnsupportedRateVersion);
        }

        if (rate_ > X16) {
            // hard cap for borrow rate at maximum value 16 bits (65535) to make sure it does not overflow storage space.
            // this is unlikely to ever happen if configs stay within expected levels.
            rate_ = X16;
            // emit event to more easily become aware
            emit BorrowRateMaxCap();
        }
    }

    /// @dev calculates the borrow rate based on utilization for rate data version 1 (with one kink) in 1e2 precision
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_  in 1e2 (100% = 1e4)
    /// @return rate_ rate in 1e2 precision
    function calcRateV1(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
        /// For rate v1 (one kink) ------------------------------------------------------
        /// Next 16  bits =>  4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  52- 67 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Last 188 bits =>  68-255 => blank, might come in use in future

        // y = mx + c.
        // y is borrow rate
        // x is utilization
        // m = slope (m can also be negative for declining rates)
        // c is constant (c can be negative)

        uint256 y1_;
        uint256 y2_;
        uint256 x1_;
        uint256 x2_;

        // extract kink1: 16 bits (0xFFFF) starting from bit 20
        // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
        uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_UTILIZATION_AT_KINK) & X16;
        if (utilization_ < kink1_) {
            // if utilization is less than kink
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
            x1_ = 0; // 0%
            x2_ = kink1_;
        } else {
            // else utilization is greater than kink
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX) & X16;
            x1_ = kink1_;
            x2_ = FOUR_DECIMALS; // 100%
        }

        int256 constant_;
        int256 slope_;
        unchecked {
            // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
            // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
            // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
            slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));

            // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
            // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
            // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
            // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
            // subtraction most extreme case would be  0 - max value slope_ * x1_ => can not underflow int256
            constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));

            // calculating new borrow rate
            // - slope_ max value is 65535 * 1e12,
            // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
            // - constant max value is 65535 * 1e12
            // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
            // divisor TWELVE_DECIMALS can not be 0
            slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
            if (slope_ < 0) {
                revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
            }
            rate_ = uint256(slope_) / TWELVE_DECIMALS;
        }
    }

    /// @dev calculates the borrow rate based on utilization for rate data version 2 (with two kinks) in 1e4 precision
    /// @param rateData_ rate data packed uint256 from storage for the token
    /// @param utilization_  in 1e2 (100% = 1e4)
    /// @return rate_ rate in 1e4 precision
    function calcRateV2(uint256 rateData_, uint256 utilization_) internal pure returns (uint256 rate_) {
        /// For rate v2 (two kinks) -----------------------------------------------------
        /// Next 16  bits =>  4 - 19 => Rate at utilization 0% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  20- 35 => Utilization at kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  36- 51 => Rate at utilization kink1 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  52- 67 => Utilization at kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  68- 83 => Rate at utilization kink2 (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Next 16  bits =>  84- 99 => Rate at utilization 100% (in 1e2: 100% = 10_000; 1% = 100 -> max value 65535)
        /// Last 156 bits => 100-255 => blank, might come in use in future

        // y = mx + c.
        // y is borrow rate
        // x is utilization
        // m = slope (m can also be negative for declining rates)
        // c is constant (c can be negative)

        uint256 y1_;
        uint256 y2_;
        uint256 x1_;
        uint256 x2_;

        // extract kink1: 16 bits (0xFFFF) starting from bit 20
        // kink is in 1e2, same as utilization, so no conversion needed for direct comparison of the two
        uint256 kink1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1) & X16;
        if (utilization_ < kink1_) {
            // if utilization is less than kink1
            y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO) & X16;
            y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
            x1_ = 0; // 0%
            x2_ = kink1_;
        } else {
            // extract kink2: 16 bits (0xFFFF) starting from bit 52
            uint256 kink2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2) & X16;
            if (utilization_ < kink2_) {
                // if utilization is less than kink2
                y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1) & X16;
                y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
                x1_ = kink1_;
                x2_ = kink2_;
            } else {
                // else utilization is greater than kink2
                y1_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2) & X16;
                y2_ = (rateData_ >> LiquiditySlotsLink.BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX) & X16;
                x1_ = kink2_;
                x2_ = FOUR_DECIMALS;
            }
        }

        int256 constant_;
        int256 slope_;
        unchecked {
            // calculating slope with twelve decimal precision. m = (y2 - y1) / (x2 - x1).
            // utilization of x2 can not be <= utilization of x1 (so no underflow or 0 divisor)
            // y is in 1e2 so can not overflow when multiplied with TWELVE_DECIMALS
            slope_ = (int256(y2_ - y1_) * int256(TWELVE_DECIMALS)) / int256((x2_ - x1_));

            // calculating constant at 12 decimal precision. slope is already in 12 decimal hence only multiple with y1. c = y - mx.
            // maximum y1_ value is 65535. 65535 * 1e12 can not overflow int256
            // maximum slope is 65535 - 0 * TWELVE_DECIMALS / 1 = 65535 * 1e12;
            // maximum x1_ is 100% (9_999 actually) => slope_ * x1_ can not overflow int256
            // subtraction most extreme case would be  0 - max value slope_ * x1_ => can not underflow int256
            constant_ = int256(y1_ * TWELVE_DECIMALS) - (slope_ * int256(x1_));

            // calculating new borrow rate
            // - slope_ max value is 65535 * 1e12,
            // - utilization max value is let's say 500% (extreme case where borrow rate increases borrow amount without new supply)
            // - constant max value is 65535 * 1e12
            // so max values are 65535 * 1e12 * 50_000 + 65535 * 1e12 -> 3.2768*10^21, which easily fits int256
            // divisor TWELVE_DECIMALS can not be 0
            slope_ = (slope_ * int256(utilization_)) + constant_; // reusing `slope_` as variable for gas savings
            if (slope_ < 0) {
                revert FluidLiquidityCalcsError(ErrorTypes.LiquidityCalcs__BorrowRateNegative);
            }
            rate_ = uint256(slope_) / TWELVE_DECIMALS;
        }
    }

    /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`
    function getTotalSupply(
        uint256 totalAmounts_,
        uint256 supplyExchangePrice_
    ) internal pure returns (uint256 totalSupply_) {
        // totalSupply_ => supplyInterestFree
        totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
        totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);

        uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits
        totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);

        // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw
        totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }

    /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`
    function getTotalBorrow(
        uint256 totalAmounts_,
        uint256 borrowExchangePrice_
    ) internal pure returns (uint256 totalBorrow_) {
        // totalBorrow_ => borrowInterestFree
        // no & mask needed for borrow interest free as it occupies the last bits in the storage slot
        totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
        totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);

        uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
        totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);

        // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw
        totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }
}

File 7 of 11 : liquiditySlotsLink.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

/// @notice library that helps in reading / working with storage slot data of Fluid Liquidity.
/// @dev as all data for Fluid Liquidity is internal, any data must be fetched directly through manual
/// slot reading through this library or, if gas usage is less important, through the FluidLiquidityResolver.
library LiquiditySlotsLink {
    /// @dev storage slot for status at Liquidity
    uint256 internal constant LIQUIDITY_STATUS_SLOT = 1;
    /// @dev storage slot for auths mapping at Liquidity
    uint256 internal constant LIQUIDITY_AUTHS_MAPPING_SLOT = 2;
    /// @dev storage slot for guardians mapping at Liquidity
    uint256 internal constant LIQUIDITY_GUARDIANS_MAPPING_SLOT = 3;
    /// @dev storage slot for user class mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_CLASS_MAPPING_SLOT = 4;
    /// @dev storage slot for exchangePricesAndConfig mapping at Liquidity
    uint256 internal constant LIQUIDITY_EXCHANGE_PRICES_MAPPING_SLOT = 5;
    /// @dev storage slot for rateData mapping at Liquidity
    uint256 internal constant LIQUIDITY_RATE_DATA_MAPPING_SLOT = 6;
    /// @dev storage slot for totalAmounts mapping at Liquidity
    uint256 internal constant LIQUIDITY_TOTAL_AMOUNTS_MAPPING_SLOT = 7;
    /// @dev storage slot for user supply double mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_SUPPLY_DOUBLE_MAPPING_SLOT = 8;
    /// @dev storage slot for user borrow double mapping at Liquidity
    uint256 internal constant LIQUIDITY_USER_BORROW_DOUBLE_MAPPING_SLOT = 9;
    /// @dev storage slot for listed tokens array at Liquidity
    uint256 internal constant LIQUIDITY_LISTED_TOKENS_ARRAY_SLOT = 10;
    /// @dev storage slot for listed tokens array at Liquidity
    uint256 internal constant LIQUIDITY_CONFIGS2_MAPPING_SLOT = 11;

    // --------------------------------
    // @dev stacked uint256 storage slots bits position data for each:

    // ExchangePricesAndConfig
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATE = 0;
    uint256 internal constant BITS_EXCHANGE_PRICES_FEE = 16;
    uint256 internal constant BITS_EXCHANGE_PRICES_UTILIZATION = 30;
    uint256 internal constant BITS_EXCHANGE_PRICES_UPDATE_THRESHOLD = 44;
    uint256 internal constant BITS_EXCHANGE_PRICES_LAST_TIMESTAMP = 58;
    uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE = 91;
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE = 155;
    uint256 internal constant BITS_EXCHANGE_PRICES_SUPPLY_RATIO = 219;
    uint256 internal constant BITS_EXCHANGE_PRICES_BORROW_RATIO = 234;
    uint256 internal constant BITS_EXCHANGE_PRICES_USES_CONFIGS2 = 249;

    // RateData:
    uint256 internal constant BITS_RATE_DATA_VERSION = 0;
    // RateData: V1
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_ZERO = 4;
    uint256 internal constant BITS_RATE_DATA_V1_UTILIZATION_AT_KINK = 20;
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_KINK = 36;
    uint256 internal constant BITS_RATE_DATA_V1_RATE_AT_UTILIZATION_MAX = 52;
    // RateData: V2
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_ZERO = 4;
    uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK1 = 20;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK1 = 36;
    uint256 internal constant BITS_RATE_DATA_V2_UTILIZATION_AT_KINK2 = 52;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_KINK2 = 68;
    uint256 internal constant BITS_RATE_DATA_V2_RATE_AT_UTILIZATION_MAX = 84;

    // TotalAmounts
    uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_WITH_INTEREST = 0;
    uint256 internal constant BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE = 64;
    uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST = 128;
    uint256 internal constant BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE = 192;

    // UserSupplyData
    uint256 internal constant BITS_USER_SUPPLY_MODE = 0;
    uint256 internal constant BITS_USER_SUPPLY_AMOUNT = 1;
    uint256 internal constant BITS_USER_SUPPLY_PREVIOUS_WITHDRAWAL_LIMIT = 65;
    uint256 internal constant BITS_USER_SUPPLY_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_SUPPLY_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_SUPPLY_BASE_WITHDRAWAL_LIMIT = 200;
    uint256 internal constant BITS_USER_SUPPLY_IS_PAUSED = 255;

    // UserBorrowData
    uint256 internal constant BITS_USER_BORROW_MODE = 0;
    uint256 internal constant BITS_USER_BORROW_AMOUNT = 1;
    uint256 internal constant BITS_USER_BORROW_PREVIOUS_BORROW_LIMIT = 65;
    uint256 internal constant BITS_USER_BORROW_LAST_UPDATE_TIMESTAMP = 129;
    uint256 internal constant BITS_USER_BORROW_EXPAND_PERCENT = 162;
    uint256 internal constant BITS_USER_BORROW_EXPAND_DURATION = 176;
    uint256 internal constant BITS_USER_BORROW_BASE_BORROW_LIMIT = 200;
    uint256 internal constant BITS_USER_BORROW_MAX_BORROW_LIMIT = 218;
    uint256 internal constant BITS_USER_BORROW_IS_PAUSED = 255;

    // Configs2
    uint256 internal constant BITS_CONFIGS2_MAX_UTILIZATION = 0;

    // --------------------------------

    /// @notice Calculating the slot ID for Liquidity contract for single mapping at `slot_` for `key_`
    function calculateMappingStorageSlot(uint256 slot_, address key_) internal pure returns (bytes32) {
        return keccak256(abi.encode(key_, slot_));
    }

    /// @notice Calculating the slot ID for Liquidity contract for double mapping at `slot_` for `key1_` and `key2_`
    function calculateDoubleMappingStorageSlot(
        uint256 slot_,
        address key1_,
        address key2_
    ) internal pure returns (bytes32) {
        bytes32 intermediateSlot_ = keccak256(abi.encode(key1_, slot_));
        return keccak256(abi.encode(key2_, intermediateSlot_));
    }
}

File 8 of 11 : structs.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

abstract contract Structs {
    struct AddressBool {
        address addr;
        bool value;
    }

    struct AddressUint256 {
        address addr;
        uint256 value;
    }

    /// @notice struct to set borrow rate data for version 1
    struct RateDataV1Params {
        ///
        /// @param token for rate data
        address token;
        ///
        /// @param kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink usually means slow increase in rate, once utilization is above kink borrow rate increases fast
        uint256 kink;
        ///
        /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
        /// i.e. constant minimum borrow rate
        /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
        uint256 rateAtUtilizationZero;
        ///
        /// @param rateAtUtilizationKink borrow rate when utilization is at kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at kink then rateAtUtilizationKink would be 700
        uint256 rateAtUtilizationKink;
        ///
        /// @param rateAtUtilizationMax borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
        uint256 rateAtUtilizationMax;
    }

    /// @notice struct to set borrow rate data for version 2
    struct RateDataV2Params {
        ///
        /// @param token for rate data
        address token;
        ///
        /// @param kink1 first kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink 1 usually means slow increase in rate, once utilization is above kink 1 borrow rate increases faster
        uint256 kink1;
        ///
        /// @param kink2 second kink in borrow rate. in 1e2: 100% = 10_000; 1% = 100
        /// utilization below kink 2 usually means slow / medium increase in rate, once utilization is above kink 2 borrow rate increases fast
        uint256 kink2;
        ///
        /// @param rateAtUtilizationZero desired borrow rate when utilization is zero. in 1e2: 100% = 10_000; 1% = 100
        /// i.e. constant minimum borrow rate
        /// e.g. at utilization = 0.01% rate could still be at least 4% (rateAtUtilizationZero would be 400 then)
        uint256 rateAtUtilizationZero;
        ///
        /// @param rateAtUtilizationKink1 desired borrow rate when utilization is at first kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at first kink then rateAtUtilizationKink would be 700
        uint256 rateAtUtilizationKink1;
        ///
        /// @param rateAtUtilizationKink2 desired borrow rate when utilization is at second kink. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 7% at second kink then rateAtUtilizationKink would be 1_200
        uint256 rateAtUtilizationKink2;
        ///
        /// @param rateAtUtilizationMax desired borrow rate when utilization is maximum at 100%. in 1e2: 100% = 10_000; 1% = 100
        /// e.g. when rate should be 125% at 100% then rateAtUtilizationMax would be 12_500
        uint256 rateAtUtilizationMax;
    }

    /// @notice struct to set token config
    struct TokenConfig {
        ///
        /// @param token address
        address token;
        ///
        /// @param fee charges on borrower's interest. in 1e2: 100% = 10_000; 1% = 100
        uint256 fee;
        ///
        /// @param threshold on when to update the storage slot. in 1e2: 100% = 10_000; 1% = 100
        uint256 threshold;
        ///
        /// @param maxUtilization maximum allowed utilization. in 1e2: 100% = 10_000; 1% = 100
        ///                       set to 100% to disable and have default limit of 100% (avoiding SLOAD).
        uint256 maxUtilization;
    }

    /// @notice struct to set user supply & withdrawal config
    struct UserSupplyConfig {
        ///
        /// @param user address
        address user;
        ///
        /// @param token address
        address token;
        ///
        /// @param mode: 0 = without interest. 1 = with interest
        uint8 mode;
        ///
        /// @param expandPercent withdrawal limit expand percent. in 1e2: 100% = 10_000; 1% = 100
        /// Also used to calculate rate at which withdrawal limit should decrease (instant).
        uint256 expandPercent;
        ///
        /// @param expandDuration withdrawal limit expand duration in seconds.
        /// used to calculate rate together with expandPercent
        uint256 expandDuration;
        ///
        /// @param baseWithdrawalLimit base limit, below this, user can withdraw the entire amount.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 baseWithdrawalLimit;
    }

    /// @notice struct to set user borrow & payback config
    struct UserBorrowConfig {
        ///
        /// @param user address
        address user;
        ///
        /// @param token address
        address token;
        ///
        /// @param mode: 0 = without interest. 1 = with interest
        uint8 mode;
        ///
        /// @param expandPercent debt limit expand percent. in 1e2: 100% = 10_000; 1% = 100
        /// Also used to calculate rate at which debt limit should decrease (instant).
        uint256 expandPercent;
        ///
        /// @param expandDuration debt limit expand duration in seconds.
        /// used to calculate rate together with expandPercent
        uint256 expandDuration;
        ///
        /// @param baseDebtCeiling base borrow limit. until here, borrow limit remains as baseDebtCeiling
        /// (user can borrow until this point at once without stepped expansion). Above this, automated limit comes in place.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 baseDebtCeiling;
        ///
        /// @param maxDebtCeiling max borrow ceiling, maximum amount the user can borrow.
        /// amount in raw (to be multiplied with exchange price) or normal depends on configured mode in user config for the token:
        /// with interest -> raw, without interest -> normal
        uint256 maxDebtCeiling;
    }
}

File 9 of 11 : iLiquidity.sol
//SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import { IProxy } from "../../infiniteProxy/interfaces/iProxy.sol";
import { Structs as AdminModuleStructs } from "../adminModule/structs.sol";

interface IFluidLiquidityAdmin {
    /// @notice adds/removes auths. Auths generally could be contracts which can have restricted actions defined on contract.
    ///         auths can be helpful in reducing governance overhead where it's not needed.
    /// @param authsStatus_ array of structs setting allowed status for an address.
    ///                     status true => add auth, false => remove auth
    function updateAuths(AdminModuleStructs.AddressBool[] calldata authsStatus_) external;

    /// @notice adds/removes guardians. Only callable by Governance.
    /// @param guardiansStatus_ array of structs setting allowed status for an address.
    ///                         status true => add guardian, false => remove guardian
    function updateGuardians(AdminModuleStructs.AddressBool[] calldata guardiansStatus_) external;

    /// @notice changes the revenue collector address (contract that is sent revenue). Only callable by Governance.
    /// @param revenueCollector_  new revenue collector address
    function updateRevenueCollector(address revenueCollector_) external;

    /// @notice changes current status, e.g. for pausing or unpausing all user operations. Only callable by Auths.
    /// @param newStatus_ new status
    ///        status = 2 -> pause, status = 1 -> resume.
    function changeStatus(uint256 newStatus_) external;

    /// @notice                  update tokens rate data version 1. Only callable by Auths.
    /// @param tokensRateData_   array of RateDataV1Params with rate data to set for each token
    function updateRateDataV1s(AdminModuleStructs.RateDataV1Params[] calldata tokensRateData_) external;

    /// @notice                  update tokens rate data version 2. Only callable by Auths.
    /// @param tokensRateData_   array of RateDataV2Params with rate data to set for each token
    function updateRateDataV2s(AdminModuleStructs.RateDataV2Params[] calldata tokensRateData_) external;

    /// @notice updates token configs: fee charge on borrowers interest & storage update utilization threshold.
    ///         Only callable by Auths.
    /// @param tokenConfigs_ contains token address, fee & utilization threshold
    function updateTokenConfigs(AdminModuleStructs.TokenConfig[] calldata tokenConfigs_) external;

    /// @notice updates user classes: 0 is for new protocols, 1 is for established protocols.
    ///         Only callable by Auths.
    /// @param userClasses_ struct array of uint256 value to assign for each user address
    function updateUserClasses(AdminModuleStructs.AddressUint256[] calldata userClasses_) external;

    /// @notice sets user supply configs per token basis. Eg: with interest or interest-free and automated limits.
    ///         Only callable by Auths.
    /// @param userSupplyConfigs_ struct array containing user supply config, see `UserSupplyConfig` struct for more info
    function updateUserSupplyConfigs(AdminModuleStructs.UserSupplyConfig[] memory userSupplyConfigs_) external;

    /// @notice sets a new withdrawal limit as the current limit for a certain user
    /// @param user_ user address for which to update the withdrawal limit
    /// @param token_ token address for which to update the withdrawal limit
    /// @param newLimit_ new limit until which user supply can decrease to.
    ///                  Important: input in raw. Must account for exchange price in input param calculation.
    ///                  Note any limit that is < max expansion or > current user supply will set max expansion limit or
    ///                  current user supply as limit respectively.
    ///                  - set 0 to make maximum possible withdrawable: instant full expansion, and if that goes
    ///                  below base limit then fully down to 0.
    ///                  - set type(uint256).max to make current withdrawable 0 (sets current user supply as limit).
    function updateUserWithdrawalLimit(address user_, address token_, uint256 newLimit_) external;

    /// @notice setting user borrow configs per token basis. Eg: with interest or interest-free and automated limits.
    ///         Only callable by Auths.
    /// @param userBorrowConfigs_ struct array containing user borrow config, see `UserBorrowConfig` struct for more info
    function updateUserBorrowConfigs(AdminModuleStructs.UserBorrowConfig[] memory userBorrowConfigs_) external;

    /// @notice pause operations for a particular user in class 0 (class 1 users can't be paused by guardians).
    /// Only callable by Guardians.
    /// @param user_          address of user to pause operations for
    /// @param supplyTokens_  token addresses to pause withdrawals for
    /// @param borrowTokens_  token addresses to pause borrowings for
    function pauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;

    /// @notice unpause operations for a particular user in class 0 (class 1 users can't be paused by guardians).
    /// Only callable by Guardians.
    /// @param user_          address of user to unpause operations for
    /// @param supplyTokens_  token addresses to unpause withdrawals for
    /// @param borrowTokens_  token addresses to unpause borrowings for
    function unpauseUser(address user_, address[] calldata supplyTokens_, address[] calldata borrowTokens_) external;

    /// @notice         collects revenue for tokens to configured revenueCollector address.
    /// @param tokens_  array of tokens to collect revenue for
    /// @dev            Note that this can revert if token balance is < revenueAmount (utilization > 100%)
    function collectRevenue(address[] calldata tokens_) external;

    /// @notice gets the current updated exchange prices for n tokens and updates all prices, rates related data in storage.
    /// @param tokens_ tokens to update exchange prices for
    /// @return supplyExchangePrices_ new supply rates of overall system for each token
    /// @return borrowExchangePrices_ new borrow rates of overall system for each token
    function updateExchangePrices(
        address[] calldata tokens_
    ) external returns (uint256[] memory supplyExchangePrices_, uint256[] memory borrowExchangePrices_);
}

interface IFluidLiquidityLogic is IFluidLiquidityAdmin {
    /// @notice Single function which handles supply, withdraw, borrow & payback
    /// @param token_ address of token (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE for native)
    /// @param supplyAmount_ if +ve then supply, if -ve then withdraw, if 0 then nothing
    /// @param borrowAmount_ if +ve then borrow, if -ve then payback, if 0 then nothing
    /// @param withdrawTo_ if withdrawal then to which address
    /// @param borrowTo_ if borrow then to which address
    /// @param callbackData_ callback data passed to `liquidityCallback` method of protocol
    /// @return memVar3_ updated supplyExchangePrice
    /// @return memVar4_ updated borrowExchangePrice
    /// @dev to trigger skipping in / out transfers (gas optimization):
    /// -  ` callbackData_` MUST be encoded so that "from" address is the last 20 bytes in the last 32 bytes slot,
    ///     also for native token operations where liquidityCallback is not triggered!
    ///     from address must come at last position if there is more data. I.e. encode like:
    ///     abi.encode(otherVar1, otherVar2, FROM_ADDRESS). Note dynamic types used with abi.encode come at the end
    ///     so if dynamic types are needed, you must use abi.encodePacked to ensure the from address is at the end.
    /// -   this "from" address must match withdrawTo_ or borrowTo_ and must be == `msg.sender`
    /// -   `callbackData_` must in addition to the from address as described above include bytes32 SKIP_TRANSFERS
    ///     in the slot before (bytes 32 to 63)
    /// -   `msg.value` must be 0.
    /// -   Amounts must be either:
    ///     -  supply(+) == borrow(+), withdraw(-) == payback(-).
    ///     -  Liquidity must be on the winning side (deposit < borrow OR payback < withdraw).
    function operate(
        address token_,
        int256 supplyAmount_,
        int256 borrowAmount_,
        address withdrawTo_,
        address borrowTo_,
        bytes calldata callbackData_
    ) external payable returns (uint256 memVar3_, uint256 memVar4_);
}

interface IFluidLiquidity is IProxy, IFluidLiquidityLogic {}

File 10 of 11 : calcsSimulatedTime.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { LibsErrorTypes as ErrorTypes } from "../../../libraries/errorTypes.sol";
import { LiquiditySlotsLink } from "../../../libraries/liquiditySlotsLink.sol";
import { BigMathMinified } from "../../../libraries/bigMathMinified.sol";

/// @dev this is the exact same code as `LiquidityCalcs` library, just that it supports a simulated
/// block.timestamp to expose historical calculations.
library CalcsSimulatedTime {
    error FluidCalcsSimulatedTimeError(uint256 errorId_);
    error FluidCalcsSimulatedTimeInvalidTimestamp();

    /// @dev constants as from Liquidity variables.sol
    uint256 internal constant EXCHANGE_PRICES_PRECISION = 1e12;

    /// @dev Ignoring leap years
    uint256 internal constant SECONDS_PER_YEAR = 365 days;
    // constants used for BigMath conversion from and to storage
    uint256 internal constant DEFAULT_EXPONENT_SIZE = 8;
    uint256 internal constant DEFAULT_EXPONENT_MASK = 0xFF;

    uint256 internal constant FOUR_DECIMALS = 1e4;
    uint256 internal constant TWELVE_DECIMALS = 1e12;
    uint256 internal constant X14 = 0x3fff;
    uint256 internal constant X15 = 0x7fff;
    uint256 internal constant X16 = 0xffff;
    uint256 internal constant X18 = 0x3ffff;
    uint256 internal constant X24 = 0xffffff;
    uint256 internal constant X33 = 0x1ffffffff;
    uint256 internal constant X64 = 0xffffffffffffffff;

    ///////////////////////////////////////////////////////////////////////////
    //////////                  CALC EXCHANGE PRICES                  /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev calculates interest (exchange prices) for a token given its' exchangePricesAndConfig from storage.
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param blockTimestamp_ simulated block.timestamp
    /// @return supplyExchangePrice_ updated supplyExchangePrice
    /// @return borrowExchangePrice_ updated borrowExchangePrice
    function calcExchangePrices(
        uint256 exchangePricesAndConfig_,
        uint256 blockTimestamp_
    ) internal pure returns (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) {
        // Extracting exchange prices
        supplyExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_EXCHANGE_PRICE) &
            X64;
        borrowExchangePrice_ =
            (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_EXCHANGE_PRICE) &
            X64;

        if (supplyExchangePrice_ == 0 || borrowExchangePrice_ == 0) {
            revert FluidCalcsSimulatedTimeError(ErrorTypes.LiquidityCalcs__ExchangePriceZero);
        }

        uint256 temp_ = exchangePricesAndConfig_ & X16; // temp_ = borrowRate

        // @dev HERE CUSTOM: added check for simulated timestamp
        if (
            blockTimestamp_ <
            ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33)
        ) {
            revert FluidCalcsSimulatedTimeInvalidTimestamp();
        }

        unchecked {
            // last timestamp can not be > current timestamp
            uint256 secondsSinceLastUpdate_ = blockTimestamp_ -
                ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_LAST_TIMESTAMP) & X33);

            uint256 borrowRatio_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_BORROW_RATIO) &
                X15;
            if (secondsSinceLastUpdate_ == 0 || temp_ == 0 || borrowRatio_ == 1) {
                // if no time passed, borrow rate is 0, or no raw borrowings: no exchange price update needed
                // (if borrowRatio_ == 1 means there is only borrowInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // calculate new borrow exchange price.
            // formula borrowExchangePriceIncrease: previous price * borrow rate * secondsSinceLastUpdate_.
            // nominator is max uint112 (uint64 * uint16 * uint32). Divisor can not be 0.
            borrowExchangePrice_ +=
                (borrowExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS);

            // FOR SUPPLY EXCHANGE PRICE:
            // all yield paid by borrowers (in mode with interest) goes to suppliers in mode with interest.
            // formula: previous price * supply rate * secondsSinceLastUpdate_.
            // where supply rate = (borrow rate  - revenueFee%) * ratioSupplyYield. And
            // ratioSupplyYield = utilization * supplyRatio * borrowRatio
            //
            // Example:
            // supplyRawInterest is 80, supplyInterestFree is 20. totalSupply is 100. BorrowedRawInterest is 50.
            // BorrowInterestFree is 10. TotalBorrow is 60. borrow rate 40%, revenueFee 10%.
            // yield is 10 (so half a year must have passed).
            // supplyRawInterest must become worth 89. totalSupply must become 109. BorrowedRawInterest must become 60.
            // borrowInterestFree must still be 10. supplyInterestFree still 20. totalBorrow 70.
            // supplyExchangePrice would have to go from 1 to 1,125 (+ 0.125). borrowExchangePrice from 1 to 1,2 (+0.2).
            // utilization is 60%. supplyRatio = 20 / 80 = 25% (only 80% of lenders receiving yield).
            // borrowRatio = 10 / 50 = 20% (only 83,333% of borrowers paying yield):
            // x of borrowers paying yield = 100% - (20 / (100 + 20)) = 100% - 16.6666666% = 83,333%.
            // ratioSupplyYield = 60% * 83,33333% * (100% + 20%) = 62,5%
            // supplyRate = (40% * (100% - 10%)) * = 36% * 62,5% = 22.5%
            // increase in supplyExchangePrice, assuming 100 as previous price.
            // 100 * 22,5% * 1/2 (half a year) = 0,1125.
            // cross-check supplyRawInterest worth = 80 * 1.1125 = 89. totalSupply worth = 89 + 20.

            // -------------- 1. calculate ratioSupplyYield --------------------------------
            // step1: utilization * supplyRatio (or actually part of lenders receiving yield)

            // temp_ => supplyRatio (in 1e2: 100% = 10_000; 1% = 100 -> max value 16_383)
            // if first bit 0 then ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
            // else ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
            temp_ = (exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_SUPPLY_RATIO) & X15;

            if (temp_ == 1) {
                // if no raw supply: no exchange price update needed
                // (if supplyRatio_ == 1 means there is only supplyInterestFree, as first bit is 1 and rest is 0)
                return (supplyExchangePrice_, borrowExchangePrice_);
            }

            // ratioSupplyYield precision is 1e27 as 100% for increased precision when supplyInterestFree > supplyWithInterest
            if (temp_ & 1 == 1) {
                // ratio is supplyWithInterest / supplyInterestFree (supplyInterestFree is bigger)
                temp_ = temp_ >> 1;

                // Note: case where temp_ == 0 (only supplyInterestFree, no yield) already covered by early return
                // in the if statement a little above.

                // based on above example but supplyRawInterest is 20, supplyInterestFree is 80. no fee.
                // supplyRawInterest must become worth 30. totalSupply must become 110.
                // supplyExchangePrice would have to go from 1 to 1,5. borrowExchangePrice from 1 to 1,2.
                // so ratioSupplyYield must come out as 2.5 (250%).
                // supplyRatio would be (20 * 10_000 / 80) = 2500. but must be inverted.
                temp_ = (1e27 * FOUR_DECIMALS) / temp_; // e.g. 1e31 / 2500 = 4e27. (* 1e27 for precision)
                // e.g. 5_000 * (1e27 + 4e27) / 1e27 = 25_000 (=250%).
                temp_ =
                    // utilization * (100% + 100% / supplyRatio)
                    (((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) *
                        (1e27 + temp_)) / // extract utilization (max 16_383 so there is no way this can overflow).
                    (FOUR_DECIMALS);
                // max possible value of temp_ here is 16383 * (1e27 + 1e31) / 1e4 = ~1.64e31
            } else {
                // ratio is supplyInterestFree / supplyWithInterest (supplyWithInterest is bigger)
                temp_ = temp_ >> 1;
                // if temp_ == 0 then only supplyWithInterest => full yield. temp_ is already 0

                // e.g. 5_000 * 10_000 + (20 * 10_000 / 80) / 10_000 = 5000 * 12500 / 10000 = 6250 (=62.5%).
                temp_ =
                    // 1e27 * utilization * (100% + supplyRatio) / 100%
                    (1e27 *
                        ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_UTILIZATION) & X14) * // extract utilization (max 16_383 so there is no way this can overflow).
                        (FOUR_DECIMALS + temp_)) /
                    (FOUR_DECIMALS * FOUR_DECIMALS);
                // max possible temp_ value: 1e27 * 16383 * 2e4 / 1e8 = 3.2766e27
            }
            // from here temp_ => ratioSupplyYield (utilization * supplyRatio part) scaled by 1e27. max possible value ~1.64e31

            // step2 of ratioSupplyYield: add borrowRatio (only x% of borrowers paying yield)
            if (borrowRatio_ & 1 == 1) {
                // ratio is borrowWithInterest / borrowInterestFree (borrowInterestFree is bigger)
                borrowRatio_ = borrowRatio_ >> 1;
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.

                // Note: case where borrowRatio_ == 0 (only borrowInterestFree, no yield) already covered
                // at the beginning of the method by early return if `borrowRatio_ == 1`.

                // based on above example but borrowRawInterest is 10, borrowInterestFree is 50. no fee. borrowRatio = 20%.
                // so only 16.66% of borrowers are paying yield. so the 100% - part of the formula is not needed.
                // x of borrowers paying yield = (borrowRatio / (100 + borrowRatio)) = 16.6666666%
                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                borrowRatio_ = (borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_);
                // max value here for borrowRatio_ is (1e31 / (1e4 + 1e4))= 5e26 (= 50% of borrowers paying yield).
            } else {
                // ratio is borrowInterestFree / borrowWithInterest (borrowWithInterest is bigger)
                borrowRatio_ = borrowRatio_ >> 1;

                // borrowRatio_ => x of total bororwers paying yield. scale to 1e27.
                // x of borrowers paying yield = 100% - (borrowRatio / (100 + borrowRatio)) = 100% - 16.6666666% = 83,333%.
                borrowRatio_ = (1e27 - ((borrowRatio_ * 1e27) / (FOUR_DECIMALS + borrowRatio_)));
                // borrowRatio can never be > 100%. so max subtraction can be 100% - 100% / 200%.
                // or if borrowRatio_ is 0 -> 100% - 0. or if borrowRatio_ is 1 -> 100% - 1 / 101.
                // max value here for borrowRatio_ is 1e27 - 0 = 1e27 (= 100% of borrowers paying yield).
            }

            // temp_ => ratioSupplyYield. scaled down from 1e25 = 1% each to normal percent precision 1e2 = 1%.
            // max nominator value is ~1.64e31 * 1e27 = 1.64e58. max result = 1.64e8
            temp_ = (FOUR_DECIMALS * temp_ * borrowRatio_) / 1e54;

            // 2. calculate supply rate
            // temp_ => supply rate (borrow rate  - revenueFee%) * ratioSupplyYield.
            // division part is done in next step to increase precision. (divided by 2x FOUR_DECIMALS, fee + borrowRate)
            // Note that all calculation divisions for supplyExchangePrice are rounded down.
            // Note supply rate can be bigger than the borrowRate, e.g. if there are only few lenders with interest
            // but more suppliers not earning interest.
            temp_ = ((exchangePricesAndConfig_ & X16) * // borrow rate
                temp_ * // ratioSupplyYield
                (FOUR_DECIMALS - ((exchangePricesAndConfig_ >> LiquiditySlotsLink.BITS_EXCHANGE_PRICES_FEE) & X14))); // revenueFee
            // fee can not be > 100%. max possible = 65535 * ~1.64e8 * 1e4 =~1.074774e17.

            // 3. calculate increase in supply exchange price
            supplyExchangePrice_ += ((supplyExchangePrice_ * temp_ * secondsSinceLastUpdate_) /
                (SECONDS_PER_YEAR * FOUR_DECIMALS * FOUR_DECIMALS * FOUR_DECIMALS));
            // max possible nominator = max uint 64 * 1.074774e17 * max uint32 = ~8.52e45. Denominator can not be 0.
        }
    }

    ///////////////////////////////////////////////////////////////////////////
    //////////                     CALC REVENUE                       /////////
    ///////////////////////////////////////////////////////////////////////////

    /// @dev gets the `revenueAmount_` for a token given its' totalAmounts and exchangePricesAndConfig from storage
    /// and the current balance of the Fluid liquidity contract for the token.
    /// @param totalAmounts_ total amounts packed uint256 read from storage
    /// @param exchangePricesAndConfig_ exchange prices and config packed uint256 read from storage
    /// @param liquidityTokenBalance_   current balance of Liquidity contract (IERC20(token_).balanceOf(address(this)))
    /// @param blockTimestamp_ simulated block.timestamp
    /// @return revenueAmount_ collectable revenue amount
    function calcRevenue(
        uint256 totalAmounts_,
        uint256 exchangePricesAndConfig_,
        uint256 liquidityTokenBalance_,
        uint256 blockTimestamp_
    ) internal pure returns (uint256 revenueAmount_) {
        // @dev no need to super-optimize this method as it is only used by admin

        // calculate the new exchange prices based on earned interest
        (uint256 supplyExchangePrice_, uint256 borrowExchangePrice_) = calcExchangePrices(
            exchangePricesAndConfig_,
            blockTimestamp_
        );

        // total supply = interest free + with interest converted from raw
        uint256 totalSupply_ = getTotalSupply(totalAmounts_, supplyExchangePrice_);

        if (totalSupply_ > 0) {
            // available revenue: balanceOf(token) + totalBorrowings - totalLendings.
            revenueAmount_ = liquidityTokenBalance_ + getTotalBorrow(totalAmounts_, borrowExchangePrice_);
            // ensure there is no possible case because of rounding etc. where this would revert,
            // explicitly check if >
            revenueAmount_ = revenueAmount_ > totalSupply_ ? revenueAmount_ - totalSupply_ : 0;
            // Note: if utilization > 100% (totalSupply < totalBorrow), then all the amount above 100% utilization
            // can only be revenue.
        } else {
            // if supply is 0, then rest of balance can be withdrawn as revenue so that no amounts get stuck
            revenueAmount_ = liquidityTokenBalance_;
        }
    }

    /// @dev reads the total supply out of Liquidity packed storage `totalAmounts_` for `supplyExchangePrice_`
    function getTotalSupply(
        uint256 totalAmounts_,
        uint256 supplyExchangePrice_
    ) internal pure returns (uint256 totalSupply_) {
        // totalSupply_ => supplyInterestFree
        totalSupply_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_SUPPLY_INTEREST_FREE) & X64;
        totalSupply_ = (totalSupply_ >> DEFAULT_EXPONENT_SIZE) << (totalSupply_ & DEFAULT_EXPONENT_MASK);

        uint256 totalSupplyRaw_ = totalAmounts_ & X64; // no shifting as supplyRaw is first 64 bits
        totalSupplyRaw_ = (totalSupplyRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalSupplyRaw_ & DEFAULT_EXPONENT_MASK);

        // totalSupply = supplyInterestFree + supplyRawInterest normalized from raw
        totalSupply_ += ((totalSupplyRaw_ * supplyExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }

    /// @dev reads the total borrow out of Liquidity packed storage `totalAmounts_` for `borrowExchangePrice_`
    function getTotalBorrow(
        uint256 totalAmounts_,
        uint256 borrowExchangePrice_
    ) internal pure returns (uint256 totalBorrow_) {
        // totalBorrow_ => borrowInterestFree
        // no & mask needed for borrow interest free as it occupies the last bits in the storage slot
        totalBorrow_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_INTEREST_FREE);
        totalBorrow_ = (totalBorrow_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrow_ & DEFAULT_EXPONENT_MASK);

        uint256 totalBorrowRaw_ = (totalAmounts_ >> LiquiditySlotsLink.BITS_TOTAL_AMOUNTS_BORROW_WITH_INTEREST) & X64;
        totalBorrowRaw_ = (totalBorrowRaw_ >> DEFAULT_EXPONENT_SIZE) << (totalBorrowRaw_ & DEFAULT_EXPONENT_MASK);

        // totalBorrow = borrowInterestFree + borrowRawInterest normalized from raw
        totalBorrow_ += ((totalBorrowRaw_ * borrowExchangePrice_) / EXCHANGE_PRICES_PRECISION);
    }
}

File 11 of 11 : calcsVaultSimulatedTime.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.21;

import { CalcsSimulatedTime } from "./calcsSimulatedTime.sol";

/// @dev this is the exact same code as in vault protocol codebase, just that it supports a simulated
/// block.timestamp to expose historical calculations.
library CalcsVaultSimulatedTime {
    error FluidCalcsVaultSimulatedTimeError();

    uint256 internal constant X16 = 0xffff;
    uint256 internal constant X64 = 0xffffffffffffffff;

    // @dev copied from vault protocol helper.sol and adjusted to have liquidity storage data and vault rates
    // storage data passed in instead of read

    /// @dev Calculates new vault exchange prices.
    /// @param vaultVariables2_ vaultVariables2 read from storage for the vault (VaultResolver.getRateRaw)
    /// @param vaultRates_ rates read from storage for the vault (VaultResolver.getVaultVariables2Raw)
    /// @param liquiditySupplyExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for supply token
    /// @param liquidityBorrowExchangePricesAndConfig_ exchange prices and config packed uint256 read from storage for borrow token
    /// @param blockTimestamp_ simulated block.timestamp
    /// @return liqSupplyExPrice_ latest liquidity's supply token supply exchange price
    /// @return liqBorrowExPrice_ latest liquidity's borrow token borrow exchange price
    /// @return vaultSupplyExPrice_ latest vault's supply token exchange price
    /// @return vaultBorrowExPrice_ latest vault's borrow token exchange price
    function updateExchangePrices(
        uint256 vaultVariables2_,
        uint256 vaultRates_,
        uint256 liquiditySupplyExchangePricesAndConfig_,
        uint256 liquidityBorrowExchangePricesAndConfig_,
        uint256 blockTimestamp_
    )
        internal
        pure
        returns (
            uint256 liqSupplyExPrice_,
            uint256 liqBorrowExPrice_,
            uint256 vaultSupplyExPrice_,
            uint256 vaultBorrowExPrice_
        )
    {
        (liqSupplyExPrice_, ) = CalcsSimulatedTime.calcExchangePrices(
            liquiditySupplyExchangePricesAndConfig_,
            blockTimestamp_
        );
        (, liqBorrowExPrice_) = CalcsSimulatedTime.calcExchangePrices(
            liquidityBorrowExchangePricesAndConfig_,
            blockTimestamp_
        );

        uint256 oldLiqSupplyExPrice_ = (vaultRates_ & X64);
        uint256 oldLiqBorrowExPrice_ = ((vaultRates_ >> 64) & X64);
        if (liqSupplyExPrice_ < oldLiqSupplyExPrice_ || liqBorrowExPrice_ < oldLiqBorrowExPrice_) {
            // new liquidity exchange price is < than the old one. liquidity exchange price should only ever increase.
            // If not, something went wrong and avoid proceeding with unknown outcome.
            revert FluidCalcsVaultSimulatedTimeError();
        }

        // liquidity Exchange Prices always increases in next block. Hence substraction with old will never be negative
        // uint64 * 1e18 is the max the number that could be
        unchecked {
            // Calculating increase in supply exchange price w.r.t last stored liquidity's exchange price
            // vaultSupplyExPrice_ => supplyIncreaseInPercent_
            vaultSupplyExPrice_ =
                ((((liqSupplyExPrice_ * 1e18) / oldLiqSupplyExPrice_) - 1e18) * (vaultVariables2_ & X16)) /
                10000; // supply rate magnifier

            // Calculating increase in borrow exchange price w.r.t last stored liquidity's exchange price
            // vaultBorrowExPrice_ => borrowIncreaseInPercent_
            vaultBorrowExPrice_ =
                ((((liqBorrowExPrice_ * 1e18) / oldLiqBorrowExPrice_) - 1e18) * ((vaultVariables2_ >> 16) & X16)) /
                10000; // borrow rate magnifier

            // It's extremely hard the exchange prices to overflow even in 100 years but if it does it's not an
            // issue here as we are not updating on storage
            // (vaultRates_ >> 128) & X64) -> last stored vault's supply token exchange price
            vaultSupplyExPrice_ = (((vaultRates_ >> 128) & X64) * (1e18 + vaultSupplyExPrice_)) / 1e18;
            // (vaultRates_ >> 192) -> last stored vault's borrow token exchange price (no need to mask with & X64 as it is anyway max 64 bits)
            vaultBorrowExPrice_ = ((vaultRates_ >> 192) * (1e18 + vaultBorrowExPrice_)) / 1e18;
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 10000000
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IFluidLiquidity","name":"liquidity_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"errorId_","type":"uint256"}],"name":"FluidCalcsSimulatedTimeError","type":"error"},{"inputs":[],"name":"FluidCalcsSimulatedTimeInvalidTimestamp","type":"error"},{"inputs":[],"name":"FluidCalcsVaultSimulatedTimeError","type":"error"},{"inputs":[{"internalType":"uint256","name":"errorId_","type":"uint256"}],"name":"FluidLiquidityCalcsError","type":"error"},{"inputs":[],"name":"LIQUIDITY","outputs":[{"internalType":"contract IFluidLiquidity","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityExchangePricesSimulatedTime","outputs":[{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityTotalAmountsSimulatedTime","outputs":[{"internalType":"uint256","name":"totalSupply_","type":"uint256"},{"internalType":"uint256","name":"totalBorrow_","type":"uint256"},{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"userSupplyData_","type":"uint256"},{"internalType":"uint256","name":"userBorrowData_","type":"uint256"},{"internalType":"uint256","name":"liquiditySupplyExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityBorrowExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcLiquidityUserAmountsSimulatedTime","outputs":[{"internalType":"uint256","name":"supply_","type":"uint256"},{"internalType":"uint256","name":"borrow_","type":"uint256"},{"internalType":"uint256","name":"supplyExchangePrice_","type":"uint256"},{"internalType":"uint256","name":"borrowExchangePrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityTokenBalance_","type":"uint256"}],"name":"calcRevenue","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalAmounts_","type":"uint256"},{"internalType":"uint256","name":"exchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityTokenBalance_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcRevenueSimulatedTime","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"vaultVariables2_","type":"uint256"},{"internalType":"uint256","name":"vaultRates_","type":"uint256"},{"internalType":"uint256","name":"liquiditySupplyExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"liquidityBorrowExchangePricesAndConfig_","type":"uint256"},{"internalType":"uint256","name":"simulatedTimestamp_","type":"uint256"}],"name":"calcVaultExchangePricesSimulatedTime","outputs":[{"internalType":"uint256","name":"liqSupplyExPrice_","type":"uint256"},{"internalType":"uint256","name":"liqBorrowExPrice_","type":"uint256"},{"internalType":"uint256","name":"vaultSupplyExPrice_","type":"uint256"},{"internalType":"uint256","name":"vaultBorrowExPrice_","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"token_","type":"address"}],"name":"getRevenue","outputs":[{"internalType":"uint256","name":"revenueAmount_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRevenueCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRevenues","outputs":[{"components":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"revenueAmount","type":"uint256"}],"internalType":"struct FluidRevenueResolver.TokenRevenue[]","name":"tokenRevenues_","type":"tuple[]"}],"stateMutability":"view","type":"function"}]

60a060405234801561001057600080fd5b5060405161152238038061152283398101604081905261002f91610040565b6001600160a01b0316608052610070565b60006020828403121561005257600080fd5b81516001600160a01b038116811461006957600080fd5b9392505050565b6080516114676100bb6000396000818160ee015281816102a20152818161044c01528181610573015281816105ed0152818161062a01528181610719015261084f01526114676000f3fe608060405234801561001057600080fd5b50600436106100be5760003560e01c806380f971cc11610076578063ab8921751161005b578063ab892175146101be578063f3bd3c89146101d3578063f7fdd139146101e657600080fd5b806380f971cc1461018357806385b67095146101ab57600080fd5b8063318a5b80116100a7578063318a5b801461013557806334a2e659146101685780636bc6f5801461017057600080fd5b80631170e219146100c35780632861c7d1146100e9575b600080fd5b6100d66100d1366004611156565b6101f9565b6040519081526020015b60405180910390f35b6101107f000000000000000000000000000000000000000000000000000000000000000081565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100e0565b610148610143366004611156565b610220565b6040805194855260208501939093529183015260608201526080016100e0565b610110610270565b61014861017e366004611182565b610327565b6101966101913660046111bd565b61041b565b604080519283526020830191909152016100e0565b6100d66101b93660046111df565b610447565b6101c66106e4565b6040516100e09190611215565b6101486101e1366004611182565b6109a4565b6100d66101f436600461127a565b6109ea565b60008260000361020b57506000610219565b610216848484610a13565b90505b9392505050565b6000806000808560000361023f57506000925082915081905080610267565b6102498686610a7c565b90925090506102588783610cd6565b93506102648782610d21565b92505b93509350935093565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600060048201819052907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa1580156102fe573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061032291906112ac565b905090565b6000808080861580610337575085155b1561034d5750600092508291508190508061040f565b6103578786610a7c565b5091506103648686610a7c565b91505088156103bb576001808a16811490610394908b901c67ffffffffffffffff16600860ff9082901c91161b90565b945080156103b95764e8d4a510006103ac84876112f4565b6103b6919061133a565b94505b505b871561040f5760018089168114906103e8908a901c67ffffffffffffffff16600860ff9082901c91161b90565b9350801561040d5764e8d4a5100061040083866112f4565b61040a919061133a565b93505b505b95509550955095915050565b6000808360000361043157506000905080610440565b61043b8484610a7c565b915091505b9250929050565b6000807f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663b5c736e4610491600586610d5b565b6040518263ffffffff1660e01b81526004016104af91815260200190565b602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f091906112ac565b9050806000036105035750600092915050565b600073ffffffffffffffffffffffffffffffffffffffff841673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146105eb576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000811660048301528516906370a0823190602401602060405180830381865afa1580156105c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105e691906112ac565b610624565b7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16315b905060007f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663b5c736e461066f600788610d5b565b6040518263ffffffff1660e01b815260040161068d91815260200190565b602060405180830381865afa1580156106aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ce91906112ac565b90506106db818484610a13565b95945050505050565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600a60048201526060906000907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa158015610775573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061079991906112ac565b90508067ffffffffffffffff8111156107b4576107b4611375565b6040519080825280602002602001820160405280156107f957816020015b60408051808201909152600080825260208201528152602001906001900390816107d25790505b5091506000600a60405160200161081291815260200190565b6040516020818303038152906040528051906020012060001c905060005b8281101561099e5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001663b5c736e461087e83856113a4565b60405160e083901b7fffffffff000000000000000000000000000000000000000000000000000000001681526004810191909152602401602060405180830381865afa1580156108d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f691906112ac565b848281518110610908576109086113b7565b60200260200101516000019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505061096c84828151811061095b5761095b6113b7565b602002602001015160000151610447565b84828151811061097e5761097e6113b7565b602090810291909101810151015280610996816113e6565b915050610830565b50505090565b60008080808615806109b4575085155b156109ca5750600092508291508190508061040f565b6109d78989898989610da6565b929c919b50995090975095505050505050565b6000836000036109fc57506000610a0b565b610a0885858585610edd565b90505b949350505050565b6000806000610a2185610f48565b915091506000610a318784610cd6565b90508015610a6e57610a438783610d21565b610a4d90866113a4565b9350808411610a5d576000610a67565b610a67818561141e565b9350610a72565b8493505b5050509392505050565b67ffffffffffffffff605b83901c811690609b84901c16811580610a9e575080155b15610adf576040517fb838681e0000000000000000000000000000000000000000000000000000000081526201117160048201526024015b60405180910390fd5b61ffff8416603a85901c6401ffffffff16841015610b29576040517faba77fab00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b603a85901c6401ffffffff168085039060ea87901c617fff1690861480610b4e575082155b80610b595750806001145b15610b6657505050610440565b64496cebb80084840283020484019350617fff60db88901c16925082600103610b9157505050610440565b82600116600103610be65760019290921c91826c7e37be2022c0914b268000000081610bbf57610bbf61130b565b049250612710601e88901c613fff166b033b2e3c9fd0803ce8000000850102049250610c13565b60019290921c916305f5e100601e88901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b80600116600103610c4a5760011c61271081016b033b2e3c9fd0803ce8000000820281610c4257610c4261130b565b049050610c80565b60011c61271081016b033b2e3c9fd0803ce8000000820281610c6e57610c6e61130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff891691900402601088901c613fff16612710030292506801b5a660ea44b80000858402830204850194505050509250929050565b66ffffffffffffff604883901c811660ff604085901c81169190911b91600885901c169084161b64e8d4a51000610d0d84836112f4565b610d17919061133a565b610a0b90836113a4565b60c882901c60ff60c084901c81169190911b9066ffffffffffffff608885901c16608085901c9091161b64e8d4a51000610d0d84836112f4565b6040805173ffffffffffffffffffffffffffffffffffffffff831660208201529081018390526000906060016040516020818303038152906040528051906020012090505b92915050565b600080600080610db68786610a7c565b509350610dc38686610a7c565b93505067ffffffffffffffff8881169060408a901c1681861080610de657508085105b15610e1d576040517fea77fd6f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61271061ffff8c16670de0b6b3a76400008489670de0b6b3a76400000281610e4757610e4761130b565b04030281610e5757610e5761130b565b04935061271061ffff60108d901c16670de0b6b3a76400008388670de0b6b3a76400000281610e8857610e8861130b565b04030281610e9857610e9861130b565b049250670de0b6b3a764000060808b901c67ffffffffffffffff1685820102049350670de0b6b3a764000060c08b901c84820102049250505095509550955095915050565b6000806000610eec8685610a7c565b915091506000610efc8884610cd6565b90508015610f3957610f0e8883610d21565b610f1890876113a4565b9350808411610f28576000610f32565b610f32818561141e565b9350610f3d565b8593505b505050949350505050565b67ffffffffffffffff605b82901c811690609b83901c16811580610f6a575080155b15610fa6576040517fd50d7512000000000000000000000000000000000000000000000000000000008152620111716004820152602401610ad6565b61ffff8316603a84901c6401ffffffff16428181039160ea87901c617fff16911480610fd0575082155b80610fdb5750806001145b15610fe857505050915091565b64496cebb80084840283020484019350617fff60db87901c1692508260010361101357505050915091565b826001166001036110685760019290921c91826c7e37be2022c0914b2680000000816110415761104161130b565b049250612710601e87901c613fff166b033b2e3c9fd0803ce8000000850102049250611095565b60019290921c916305f5e100601e87901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b806001166001036110cc5760011c61271081016b033b2e3c9fd0803ce80000008202816110c4576110c461130b565b049050611102565b60011c61271081016b033b2e3c9fd0803ce80000008202816110f0576110f061130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff881691900402601087901c613fff16612710030292506801b5a660ea44b8000085840283020485019450505050915091565b60008060006060848603121561116b57600080fd5b505081359360208301359350604090920135919050565b600080600080600060a0868803121561119a57600080fd5b505083359560208501359550604085013594606081013594506080013592509050565b600080604083850312156111d057600080fd5b50508035926020909101359150565b6000602082840312156111f157600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461021957600080fd5b602080825282518282018190526000919060409081850190868401855b8281101561126d578151805173ffffffffffffffffffffffffffffffffffffffff168552860151868501529284019290850190600101611232565b5091979650505050505050565b6000806000806080858703121561129057600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156112be57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082611370577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b80820180821115610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611417576114176112c5565b5060010190565b81810381811115610da057610da06112c556fea2646970667358221220f486c9f3a28c5a39ac91440cb8ec1ef2efd9e1c54a0c26d7eb6925de987e620264736f6c6343000815003300000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100be5760003560e01c806380f971cc11610076578063ab8921751161005b578063ab892175146101be578063f3bd3c89146101d3578063f7fdd139146101e657600080fd5b806380f971cc1461018357806385b67095146101ab57600080fd5b8063318a5b80116100a7578063318a5b801461013557806334a2e659146101685780636bc6f5801461017057600080fd5b80631170e219146100c35780632861c7d1146100e9575b600080fd5b6100d66100d1366004611156565b6101f9565b6040519081526020015b60405180910390f35b6101107f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49781565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016100e0565b610148610143366004611156565b610220565b6040805194855260208501939093529183015260608201526080016100e0565b610110610270565b61014861017e366004611182565b610327565b6101966101913660046111bd565b61041b565b604080519283526020830191909152016100e0565b6100d66101b93660046111df565b610447565b6101c66106e4565b6040516100e09190611215565b6101486101e1366004611182565b6109a4565b6100d66101f436600461127a565b6109ea565b60008260000361020b57506000610219565b610216848484610a13565b90505b9392505050565b6000806000808560000361023f57506000925082915081905080610267565b6102498686610a7c565b90925090506102588783610cd6565b93506102648782610d21565b92505b93509350935093565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600060048201819052907f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa1580156102fe573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061032291906112ac565b905090565b6000808080861580610337575085155b1561034d5750600092508291508190508061040f565b6103578786610a7c565b5091506103648686610a7c565b91505088156103bb576001808a16811490610394908b901c67ffffffffffffffff16600860ff9082901c91161b90565b945080156103b95764e8d4a510006103ac84876112f4565b6103b6919061133a565b94505b505b871561040f5760018089168114906103e8908a901c67ffffffffffffffff16600860ff9082901c91161b90565b9350801561040d5764e8d4a5100061040083866112f4565b61040a919061133a565b93505b505b95509550955095915050565b6000808360000361043157506000905080610440565b61043b8484610a7c565b915091505b9250929050565b6000807f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff1663b5c736e4610491600586610d5b565b6040518263ffffffff1660e01b81526004016104af91815260200190565b602060405180830381865afa1580156104cc573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f091906112ac565b9050806000036105035750600092915050565b600073ffffffffffffffffffffffffffffffffffffffff841673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146105eb576040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497811660048301528516906370a0823190602401602060405180830381865afa1580156105c2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105e691906112ac565b610624565b7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff16315b905060007f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff1663b5c736e461066f600788610d5b565b6040518263ffffffff1660e01b815260040161068d91815260200190565b602060405180830381865afa1580156106aa573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106ce91906112ac565b90506106db818484610a13565b95945050505050565b6040517fb5c736e4000000000000000000000000000000000000000000000000000000008152600a60048201526060906000907f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e49773ffffffffffffffffffffffffffffffffffffffff169063b5c736e490602401602060405180830381865afa158015610775573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061079991906112ac565b90508067ffffffffffffffff8111156107b4576107b4611375565b6040519080825280602002602001820160405280156107f957816020015b60408051808201909152600080825260208201528152602001906001900390816107d25790505b5091506000600a60405160200161081291815260200190565b6040516020818303038152906040528051906020012060001c905060005b8281101561099e5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e4971663b5c736e461087e83856113a4565b60405160e083901b7fffffffff000000000000000000000000000000000000000000000000000000001681526004810191909152602401602060405180830381865afa1580156108d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108f691906112ac565b848281518110610908576109086113b7565b60200260200101516000019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505061096c84828151811061095b5761095b6113b7565b602002602001015160000151610447565b84828151811061097e5761097e6113b7565b602090810291909101810151015280610996816113e6565b915050610830565b50505090565b60008080808615806109b4575085155b156109ca5750600092508291508190508061040f565b6109d78989898989610da6565b929c919b50995090975095505050505050565b6000836000036109fc57506000610a0b565b610a0885858585610edd565b90505b949350505050565b6000806000610a2185610f48565b915091506000610a318784610cd6565b90508015610a6e57610a438783610d21565b610a4d90866113a4565b9350808411610a5d576000610a67565b610a67818561141e565b9350610a72565b8493505b5050509392505050565b67ffffffffffffffff605b83901c811690609b84901c16811580610a9e575080155b15610adf576040517fb838681e0000000000000000000000000000000000000000000000000000000081526201117160048201526024015b60405180910390fd5b61ffff8416603a85901c6401ffffffff16841015610b29576040517faba77fab00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b603a85901c6401ffffffff168085039060ea87901c617fff1690861480610b4e575082155b80610b595750806001145b15610b6657505050610440565b64496cebb80084840283020484019350617fff60db88901c16925082600103610b9157505050610440565b82600116600103610be65760019290921c91826c7e37be2022c0914b268000000081610bbf57610bbf61130b565b049250612710601e88901c613fff166b033b2e3c9fd0803ce8000000850102049250610c13565b60019290921c916305f5e100601e88901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b80600116600103610c4a5760011c61271081016b033b2e3c9fd0803ce8000000820281610c4257610c4261130b565b049050610c80565b60011c61271081016b033b2e3c9fd0803ce8000000820281610c6e57610c6e61130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff891691900402601088901c613fff16612710030292506801b5a660ea44b80000858402830204850194505050509250929050565b66ffffffffffffff604883901c811660ff604085901c81169190911b91600885901c169084161b64e8d4a51000610d0d84836112f4565b610d17919061133a565b610a0b90836113a4565b60c882901c60ff60c084901c81169190911b9066ffffffffffffff608885901c16608085901c9091161b64e8d4a51000610d0d84836112f4565b6040805173ffffffffffffffffffffffffffffffffffffffff831660208201529081018390526000906060016040516020818303038152906040528051906020012090505b92915050565b600080600080610db68786610a7c565b509350610dc38686610a7c565b93505067ffffffffffffffff8881169060408a901c1681861080610de657508085105b15610e1d576040517fea77fd6f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61271061ffff8c16670de0b6b3a76400008489670de0b6b3a76400000281610e4757610e4761130b565b04030281610e5757610e5761130b565b04935061271061ffff60108d901c16670de0b6b3a76400008388670de0b6b3a76400000281610e8857610e8861130b565b04030281610e9857610e9861130b565b049250670de0b6b3a764000060808b901c67ffffffffffffffff1685820102049350670de0b6b3a764000060c08b901c84820102049250505095509550955095915050565b6000806000610eec8685610a7c565b915091506000610efc8884610cd6565b90508015610f3957610f0e8883610d21565b610f1890876113a4565b9350808411610f28576000610f32565b610f32818561141e565b9350610f3d565b8593505b505050949350505050565b67ffffffffffffffff605b82901c811690609b83901c16811580610f6a575080155b15610fa6576040517fd50d7512000000000000000000000000000000000000000000000000000000008152620111716004820152602401610ad6565b61ffff8316603a84901c6401ffffffff16428181039160ea87901c617fff16911480610fd0575082155b80610fdb5750806001145b15610fe857505050915091565b64496cebb80084840283020484019350617fff60db87901c1692508260010361101357505050915091565b826001166001036110685760019290921c91826c7e37be2022c0914b2680000000816110415761104161130b565b049250612710601e87901c613fff166b033b2e3c9fd0803ce8000000850102049250611095565b60019290921c916305f5e100601e87901c613fff166127108501026b033b2e3c9fd0803ce8000000020492505b806001166001036110cc5760011c61271081016b033b2e3c9fd0803ce80000008202816110c4576110c461130b565b049050611102565b60011c61271081016b033b2e3c9fd0803ce80000008202816110f0576110f061130b565b046b033b2e3c9fd0803ce80000000390505b760a70c3c40a64e6c51999090b65f67d92400000000000008382026127100261ffff881691900402601087901c613fff16612710030292506801b5a660ea44b8000085840283020485019450505050915091565b60008060006060848603121561116b57600080fd5b505081359360208301359350604090920135919050565b600080600080600060a0868803121561119a57600080fd5b505083359560208501359550604085013594606081013594506080013592509050565b600080604083850312156111d057600080fd5b50508035926020909101359150565b6000602082840312156111f157600080fd5b813573ffffffffffffffffffffffffffffffffffffffff8116811461021957600080fd5b602080825282518282018190526000919060409081850190868401855b8281101561126d578151805173ffffffffffffffffffffffffffffffffffffffff168552860151868501529284019290850190600101611232565b5091979650505050505050565b6000806000806080858703121561129057600080fd5b5050823594602084013594506040840135936060013592509050565b6000602082840312156112be57600080fd5b5051919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b8082028115828204841417610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082611370577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b80820180821115610da057610da06112c5565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611417576114176112c5565b5060010190565b81810381811115610da057610da06112c556fea2646970667358221220f486c9f3a28c5a39ac91440cb8ec1ef2efd9e1c54a0c26d7eb6925de987e620264736f6c63430008150033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497

-----Decoded View---------------
Arg [0] : liquidity_ (address): 0x52Aa899454998Be5b000Ad077a46Bbe360F4e497

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000052aa899454998be5b000ad077a46bbe360f4e497


Block Transaction Gas Used Reward
view all blocks produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.