Overview
S Balance
0 S
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
NonfungibleTokenPositionDescriptor
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 2633 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; pragma abicoder v2; import '../core/interfaces/IRamsesV3Pool.sol'; import './libraries/SafeERC20Namer.sol'; import './libraries/ChainId.sol'; import './interfaces/INonfungiblePositionManager.sol'; import './interfaces/INonfungibleTokenPositionDescriptor.sol'; import './interfaces/IERC20Metadata.sol'; import './libraries/PoolAddress.sol'; import './libraries/NFTDescriptor.sol'; import './libraries/TokenRatioSortOrder.sol'; /// @title Describes NFT token positions /// @notice Produces a string containing the data URI for a JSON metadata string contract NonfungibleTokenPositionDescriptor is INonfungibleTokenPositionDescriptor { address public immutable WETH9; /// @dev A null-terminated string string public constant S = 'S'; constructor(address _WETH9) { WETH9 = _WETH9; } /// @notice Returns the native currency label as a string function nativeCurrencyLabel() public pure returns (string memory) { return S; } /// @inheritdoc INonfungibleTokenPositionDescriptor function tokenURI( INonfungiblePositionManager positionManager, uint256 tokenId ) external view override returns (string memory) { ( address token0, address token1, int24 tickSpacing, int24 tickLower, int24 tickUpper, , , , , ) = positionManager.positions(tokenId); IRamsesV3Pool pool = IRamsesV3Pool( PoolAddress.computeAddress( positionManager.deployer(), PoolAddress.PoolKey({token0: token0, token1: token1, tickSpacing: tickSpacing}) ) ); bool _flipRatio = flipRatio(token0, token1); address quoteTokenAddress = !_flipRatio ? token1 : token0; address baseTokenAddress = !_flipRatio ? token0 : token1; (, int24 tick, , , , , ) = pool.slot0(); return NFTDescriptor.constructTokenURI( NFTDescriptor.ConstructTokenURIParams({ tokenId: tokenId, quoteTokenAddress: quoteTokenAddress, baseTokenAddress: baseTokenAddress, quoteTokenSymbol: quoteTokenAddress == WETH9 ? nativeCurrencyLabel() : SafeERC20Namer.tokenSymbol(quoteTokenAddress), baseTokenSymbol: baseTokenAddress == WETH9 ? nativeCurrencyLabel() : SafeERC20Namer.tokenSymbol(baseTokenAddress), quoteTokenDecimals: IERC20Metadata(quoteTokenAddress).decimals(), baseTokenDecimals: IERC20Metadata(baseTokenAddress).decimals(), flipRatio: _flipRatio, tickLower: tickLower, tickUpper: tickUpper, tickCurrent: tick, tickSpacing: pool.tickSpacing(), fee: pool.fee(), poolAddress: address(pool) }) ); } function flipRatio(address token0, address token1 /*uint256 chainId*/) public view returns (bool) { return tokenRatioPriority(token0) > tokenRatioPriority(token1); } function tokenRatioPriority(address token /*, uint256 chainId*/) public view returns (int256) { if (token == WETH9) { return TokenRatioSortOrder.DENOMINATOR; } return 0; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import {IRamsesV3PoolImmutables} from './pool/IRamsesV3PoolImmutables.sol'; import {IRamsesV3PoolState} from './pool/IRamsesV3PoolState.sol'; import {IRamsesV3PoolDerivedState} from './pool/IRamsesV3PoolDerivedState.sol'; import {IRamsesV3PoolActions} from './pool/IRamsesV3PoolActions.sol'; import {IRamsesV3PoolOwnerActions} from './pool/IRamsesV3PoolOwnerActions.sol'; import {IRamsesV3PoolErrors} from './pool/IRamsesV3PoolErrors.sol'; import {IRamsesV3PoolEvents} from './pool/IRamsesV3PoolEvents.sol'; /// @title The interface for a Ramses V3 Pool /// @notice A Ramses pool facilitates swapping and automated market making between any two assets that strictly conform /// to the ERC20 specification /// @dev The pool interface is broken up into many smaller pieces interface IRamsesV3Pool is IRamsesV3PoolImmutables, IRamsesV3PoolState, IRamsesV3PoolDerivedState, IRamsesV3PoolActions, IRamsesV3PoolOwnerActions, IRamsesV3PoolErrors, IRamsesV3PoolEvents { /// @notice if a new period, advance on interaction function _advancePeriod() external; }
// SPDX-License-Identifier: GPL-3.0-or-later // from https://github.com/Uniswap/solidity-lib/blob/master/contracts/libraries/SafeERC20Namer.sol // modified for solidity 0.8 pragma solidity >=0.8.0; import './AddressStringUtil.sol'; // produces token descriptors from inconsistent or absent ERC20 symbol implementations that can return string or bytes32 // this library will always produce a string symbol to represent the token library SafeERC20Namer { function bytes32ToString(bytes32 x) private pure returns (string memory) { bytes memory bytesString = new bytes(32); uint256 charCount = 0; for (uint256 j = 0; j < 32; j++) { bytes1 char = x[j]; if (char != 0) { bytesString[charCount] = char; charCount++; } } bytes memory bytesStringTrimmed = new bytes(charCount); for (uint256 j = 0; j < charCount; j++) { bytesStringTrimmed[j] = bytesString[j]; } return string(bytesStringTrimmed); } // assumes the data is in position 2 function parseStringData(bytes memory b) private pure returns (string memory) { uint256 charCount = 0; // first parse the charCount out of the data for (uint256 i = 32; i < 64; i++) { charCount <<= 8; charCount += uint8(b[i]); } bytes memory bytesStringTrimmed = new bytes(charCount); for (uint256 i = 0; i < charCount; i++) { bytesStringTrimmed[i] = b[i + 64]; } return string(bytesStringTrimmed); } // uses a heuristic to produce a token name from the address // the heuristic returns the full hex of the address string in upper case function addressToName(address token) private pure returns (string memory) { return AddressStringUtil.toAsciiString(token, 40); } // uses a heuristic to produce a token symbol from the address // the heuristic returns the first 6 hex of the address string in upper case function addressToSymbol(address token) private pure returns (string memory) { return AddressStringUtil.toAsciiString(token, 6); } // calls an external view token contract method that returns a symbol or name, and parses the output into a string function callAndParseStringReturn(address token, bytes4 selector) private view returns (string memory) { (bool success, bytes memory data) = token.staticcall(abi.encodeWithSelector(selector)); // if not implemented, or returns empty data, return empty string if (!success || data.length == 0) { return ''; } // bytes32 data always has length 32 if (data.length == 32) { bytes32 decoded = abi.decode(data, (bytes32)); return bytes32ToString(decoded); } else if (data.length > 64) { return abi.decode(data, (string)); } return ''; } // attempts to extract the token symbol. if it does not implement symbol, returns a symbol derived from the address function tokenSymbol(address token) internal view returns (string memory) { // 0x95d89b41 = bytes4(keccak256("symbol()")) string memory symbol = callAndParseStringReturn(token, 0x95d89b41); if (bytes(symbol).length == 0) { // fallback to 6 uppercase hex of address return addressToSymbol(token); } return symbol; } // attempts to extract the token name. if it does not implement name, returns a name derived from the address function tokenName(address token) internal view returns (string memory) { // 0x06fdde03 = bytes4(keccak256("name()")) string memory name = callAndParseStringReturn(token, 0x06fdde03); if (bytes(name).length == 0) { // fallback to full hex of address return addressToName(token); } return name; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; /// @title Function for getting the current chain ID library ChainId { /// @dev Gets the current chain ID /// @return chainId The current chain ID function get() internal view returns (uint256 chainId) { assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; import {IPoolInitializer} from './IPoolInitializer.sol'; import {IPeripheryPayments} from './IPeripheryPayments.sol'; import {IPeripheryImmutableState} from './IPeripheryImmutableState.sol'; import {PoolAddress} from '../libraries/PoolAddress.sol'; import {IERC721} from '@openzeppelin/contracts/token/ERC721/IERC721.sol'; import {IERC721Metadata} from '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol'; import {IERC721Enumerable} from '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol'; import {IPeripheryErrors} from './IPeripheryErrors.sol'; /// @title Non-fungible token for positions /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred /// and authorized. interface INonfungiblePositionManager is IPeripheryErrors, IPoolInitializer, IPeripheryPayments, IPeripheryImmutableState, IERC721, IERC721Metadata, IERC721Enumerable { /// @notice Emitted when liquidity is increased for a position NFT /// @dev Also emitted when a token is minted /// @param tokenId The ID of the token for which liquidity was increased /// @param liquidity The amount by which liquidity for the NFT position was increased /// @param amount0 The amount of token0 that was paid for the increase in liquidity /// @param amount1 The amount of token1 that was paid for the increase in liquidity event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when liquidity is decreased for a position NFT /// @param tokenId The ID of the token for which liquidity was decreased /// @param liquidity The amount by which liquidity for the NFT position was decreased /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when tokens are collected for a position NFT /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior /// @param tokenId The ID of the token for which underlying tokens were collected /// @param recipient The address of the account that received the collected tokens /// @param amount0 The amount of token0 owed to the position that was collected /// @param amount1 The amount of token1 owed to the position that was collected event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1); /// @notice Returns the position information associated with a given token ID. /// @dev Throws if the token ID is not valid. /// @param tokenId The ID of the token that represents the position /// @return token0 The address of the token0 for a specific pool /// @return token1 The address of the token1 for a specific pool /// @return tickSpacing The tickSpacing the pool /// @return tickLower The lower end of the tick range for the position /// @return tickUpper The higher end of the tick range for the position /// @return liquidity The liquidity of the position /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation function positions( uint256 tokenId ) external view returns ( address token0, address token1, int24 tickSpacing, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); struct MintParams { address token0; address token1; int24 tickSpacing; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } /// @notice Creates a new position wrapped in a NFT /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized /// a method does not exist, i.e. the pool is assumed to be initialized. /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata /// @return tokenId The ID of the token that represents the minted position /// @return liquidity The amount of liquidity for this position /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function mint( MintParams calldata params ) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); struct IncreaseLiquidityParams { uint256 tokenId; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender` /// @param params tokenId The ID of the token for which liquidity is being increased, /// amount0Desired The desired amount of token0 to be spent, /// amount1Desired The desired amount of token1 to be spent, /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check, /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check, /// deadline The time by which the transaction must be included to effect the change /// @return liquidity The new liquidity amount as a result of the increase /// @return amount0 The amount of token0 to acheive resulting liquidity /// @return amount1 The amount of token1 to acheive resulting liquidity function increaseLiquidity( IncreaseLiquidityParams calldata params ) external payable returns (uint128 liquidity, uint256 amount0, uint256 amount1); struct DecreaseLiquidityParams { uint256 tokenId; uint128 liquidity; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Decreases the amount of liquidity in a position and accounts it to the position /// @param params tokenId The ID of the token for which liquidity is being decreased, /// amount The amount by which liquidity will be decreased, /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity, /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity, /// deadline The time by which the transaction must be included to effect the change /// @return amount0 The amount of token0 accounted to the position's tokens owed /// @return amount1 The amount of token1 accounted to the position's tokens owed function decreaseLiquidity( DecreaseLiquidityParams calldata params ) external payable returns (uint256 amount0, uint256 amount1); struct CollectParams { uint256 tokenId; address recipient; uint128 amount0Max; uint128 amount1Max; } /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient /// @param params tokenId The ID of the NFT for which tokens are being collected, /// recipient The account that should receive the tokens, /// amount0Max The maximum amount of token0 to collect, /// amount1Max The maximum amount of token1 to collect /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1); /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens /// must be collected first. /// @param tokenId The ID of the token that is being burned function burn(uint256 tokenId) external payable; /// @notice Claims gauge rewards from liquidity incentives for a specific tokenId /// @param tokenId The ID of the token to claim rewards from /// @param tokens an array of reward tokens to claim function getReward(uint256 tokenId, address[] calldata tokens) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; import './INonfungiblePositionManager.sol'; /// @title Describes position NFT tokens via URI interface INonfungibleTokenPositionDescriptor { /// @notice Produces the URI describing a particular token ID for a position manager /// @dev Note this URI may be a data: URI with the JSON contents directly inlined /// @param positionManager The position manager for which to describe the token /// @param tokenId The ID of the token for which to produce a description, which may not be valid /// @return The URI of the ERC721-compliant metadata function tokenURI(INonfungiblePositionManager positionManager, uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.0; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; /// @title IERC20Metadata /// @title Interface for ERC20 Metadata /// @notice Extension to IERC20 that includes token metadata interface IERC20Metadata is IERC20 { /// @return The name of the token function name() external view returns (string memory); /// @return The symbol of the token function symbol() external view returns (string memory); /// @return The number of decimal places the token has function decimals() external view returns (uint8); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Provides functions for deriving a pool address from the deployer, tokens, and the fee library PoolAddress { bytes32 internal constant POOL_INIT_CODE_HASH = 0x45abd56e0874f11d842a55bc9bba133f39d9d0489dc6d4577701e8f47faf7151; /// @notice The identifying key of the pool struct PoolKey { address token0; address token1; int24 tickSpacing; } /// @notice Returns PoolKey: the ordered tokens with the matched fee levels /// @param tokenA The first token of a pool, unsorted /// @param tokenB The second token of a pool, unsorted /// @param tickSpacing The tickSpacing of the pool /// @return Poolkey The pool details with ordered token0 and token1 assignments function getPoolKey(address tokenA, address tokenB, int24 tickSpacing) internal pure returns (PoolKey memory) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); return PoolKey({token0: tokenA, token1: tokenB, tickSpacing: tickSpacing}); } /// @notice Deterministically computes the pool address given the deployer and PoolKey /// @param deployer The Uniswap V3 deployer contract address /// @param key The PoolKey /// @return pool The contract address of the V3 pool function computeAddress(address deployer, PoolKey memory key) internal pure returns (address pool) { require(key.token0 < key.token1, "!TokenOrder"); pool = address( uint160( uint256( keccak256( abi.encodePacked( hex'ff', deployer, keccak256(abi.encode(key.token0, key.token1, key.tickSpacing)), POOL_INIT_CODE_HASH ) ) ) ) ); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.0; pragma abicoder v2; import '../../core/interfaces/IRamsesV3Pool.sol'; import '../../core/libraries/TickMath.sol'; import '../../core/libraries/BitMath.sol'; import '../../core/libraries/FullMath.sol'; import '@openzeppelin/contracts/utils/Strings.sol'; import "@openzeppelin/contracts/utils/Base64.sol"; import './HexStrings.sol'; import './NFTSVG.sol'; library NFTDescriptor { using TickMath for int24; using Strings for uint256; using HexStrings for uint256; uint256 constant sqrt10X128 = 1076067327063303206878105757264492625226; struct ConstructTokenURIParams { uint256 tokenId; address quoteTokenAddress; address baseTokenAddress; string quoteTokenSymbol; string baseTokenSymbol; uint8 quoteTokenDecimals; uint8 baseTokenDecimals; bool flipRatio; int24 tickLower; int24 tickUpper; int24 tickCurrent; int24 tickSpacing; uint24 fee; address poolAddress; } function constructTokenURI(ConstructTokenURIParams memory params) public pure returns (string memory) { string memory name = generateName(params, feeToPercentString(params.fee)); string memory descriptionPartOne = generateDescriptionPartOne( escapeQuotes(params.quoteTokenSymbol), escapeQuotes(params.baseTokenSymbol), addressToString(params.poolAddress) ); string memory descriptionPartTwo = generateDescriptionPartTwo( params.tokenId.toString(), escapeQuotes(params.baseTokenSymbol), addressToString(params.quoteTokenAddress), addressToString(params.baseTokenAddress), feeToPercentString(params.fee) ); string memory image = Base64.encode(bytes(generateSVGImage(params))); return string( abi.encodePacked( 'data:application/json;base64,', Base64.encode( bytes( abi.encodePacked( '{"name":"', name, '", "description":"', descriptionPartOne, descriptionPartTwo, '", "image": "', 'data:image/svg+xml;base64,', image, '"}' ) ) ) ) ); } function escapeQuotes(string memory symbol) internal pure returns (string memory) { bytes memory symbolBytes = bytes(symbol); uint8 quotesCount = 0; for (uint8 i = 0; i < symbolBytes.length; i++) { if (symbolBytes[i] == '"') { quotesCount++; } } if (quotesCount > 0) { bytes memory escapedBytes = new bytes(symbolBytes.length + (quotesCount)); uint256 index; for (uint8 i = 0; i < symbolBytes.length; i++) { if (symbolBytes[i] == '"') { escapedBytes[index++] = '\\'; } escapedBytes[index++] = symbolBytes[i]; } return string(escapedBytes); } return symbol; } function generateDescriptionPartOne( string memory quoteTokenSymbol, string memory baseTokenSymbol, string memory poolAddress ) private pure returns (string memory) { return string( abi.encodePacked( 'This NFT represents a liquidity position in a Shadow V3 ', quoteTokenSymbol, '-', baseTokenSymbol, ' pool. ', 'The owner of this NFT can modify or redeem the position.\\n', '\\nPool Address: ', poolAddress, '\\n', quoteTokenSymbol ) ); } function generateDescriptionPartTwo( string memory tokenId, string memory baseTokenSymbol, string memory quoteTokenAddress, string memory baseTokenAddress, string memory feeTier ) private pure returns (string memory) { return string( abi.encodePacked( ' Address: ', quoteTokenAddress, '\\n', baseTokenSymbol, ' Address: ', baseTokenAddress, '\\nFee Tier: ', feeTier, '\\nToken ID: ', tokenId, '\\n\\n', unicode'⚠️ DISCLAIMER: Due diligence is imperative when assessing this NFT. Make sure token addresses match the expected tokens, as token symbols may be imitated.' ) ); } function generateName(ConstructTokenURIParams memory params, string memory feeTier) private pure returns (string memory) { return string( abi.encodePacked( 'Ramses - ', feeTier, ' - ', escapeQuotes(params.quoteTokenSymbol), '/', escapeQuotes(params.baseTokenSymbol), ' - ', tickToDecimalString( !params.flipRatio ? params.tickLower : params.tickUpper, params.tickSpacing, params.baseTokenDecimals, params.quoteTokenDecimals, params.flipRatio ), '<>', tickToDecimalString( !params.flipRatio ? params.tickUpper : params.tickLower, params.tickSpacing, params.baseTokenDecimals, params.quoteTokenDecimals, params.flipRatio ) ) ); } struct DecimalStringParams { /// @dev significant figures of decimal uint256 sigfigs; /// @dev length of decimal string uint8 bufferLength; /// @dev ending index for significant figures (funtion works backwards when copying sigfigs) uint8 sigfigIndex; /// @dev index of decimal place (0 if no decimal) uint8 decimalIndex; /// @dev start index for trailing/leading 0's for very small/large numbers uint8 zerosStartIndex; /// @dev end index for trailing/leading 0's for very small/large numbers uint8 zerosEndIndex; /// @dev true if decimal number is less than one bool isLessThanOne; /// @dev true if string should include "%" bool isPercent; } function generateDecimalString(DecimalStringParams memory params) private pure returns (string memory) { bytes memory buffer = new bytes(params.bufferLength); if (params.isPercent) { buffer[buffer.length - 1] = '%'; } if (params.isLessThanOne) { buffer[0] = '0'; buffer[1] = '.'; } /// @dev add leading/trailing 0's for (uint256 zerosCursor = params.zerosStartIndex; zerosCursor < params.zerosEndIndex + 1; zerosCursor++) { buffer[zerosCursor] = bytes1(uint8(48)); } /// @dev add sigfigs unchecked { while (params.sigfigs > 0) { if (params.decimalIndex > 0 && params.sigfigIndex == params.decimalIndex) { buffer[params.sigfigIndex--] = '.'; } buffer[params.sigfigIndex--] = bytes1(uint8(uint256(48) + (params.sigfigs % 10))); params.sigfigs /= 10; } } return string(buffer); } function tickToDecimalString( int24 tick, int24 tickSpacing, uint8 baseTokenDecimals, uint8 quoteTokenDecimals, bool flipRatio ) internal pure returns (string memory) { if (tick == (TickMath.MIN_TICK / tickSpacing) * tickSpacing) { return !flipRatio ? 'MIN' : 'MAX'; } else if (tick == (TickMath.MAX_TICK / tickSpacing) * tickSpacing) { return !flipRatio ? 'MAX' : 'MIN'; } else { uint160 sqrtRatioX96 = TickMath.getSqrtRatioAtTick(tick); if (flipRatio) { sqrtRatioX96 = uint160(uint256(1 << 192) / sqrtRatioX96); } return fixedPointToDecimalString(sqrtRatioX96, baseTokenDecimals, quoteTokenDecimals); } } function sigfigsRounded(uint256 value, uint8 digits) private pure returns (uint256, bool) { bool extraDigit; if (digits > 5) { value = value / ((10**(digits - 5))); } bool roundUp = value % 10 > 4; value = value / 10; if (roundUp) { value = value + 1; } /// @dev 99999 -> 100000 gives an extra sigfig if (value == 100000) { value /= 10; extraDigit = true; } return (value, extraDigit); } function adjustForDecimalPrecision( uint160 sqrtRatioX96, uint8 baseTokenDecimals, uint8 quoteTokenDecimals ) private pure returns (uint256 adjustedSqrtRatioX96) { uint256 difference = abs(int256(uint256(baseTokenDecimals)) - int256(uint256(quoteTokenDecimals))); if (difference > 0 && difference <= 18) { if (baseTokenDecimals > quoteTokenDecimals) { adjustedSqrtRatioX96 = sqrtRatioX96 * (10**(difference / 2)); if (difference % 2 == 1) { adjustedSqrtRatioX96 = FullMath.mulDiv(adjustedSqrtRatioX96, sqrt10X128, 1 << 128); } } else { adjustedSqrtRatioX96 = sqrtRatioX96 / (10**(difference / 2)); if (difference % 2 == 1) { adjustedSqrtRatioX96 = FullMath.mulDiv(adjustedSqrtRatioX96, 1 << 128, sqrt10X128); } } } else { adjustedSqrtRatioX96 = uint256(sqrtRatioX96); } } function abs(int256 x) private pure returns (uint256) { return uint256(x >= 0 ? x : -x); } /// @notice Returns string that includes first 5 significant figures of a decimal number /// @param sqrtRatioX96 a sqrt price function fixedPointToDecimalString( uint160 sqrtRatioX96, uint8 baseTokenDecimals, uint8 quoteTokenDecimals ) internal pure returns (string memory) { uint256 adjustedSqrtRatioX96 = adjustForDecimalPrecision(sqrtRatioX96, baseTokenDecimals, quoteTokenDecimals); uint256 value = FullMath.mulDiv(adjustedSqrtRatioX96, adjustedSqrtRatioX96, 1 << 64); bool priceBelow1 = adjustedSqrtRatioX96 < 2**96; if (priceBelow1) { /// @dev 10 ** 43 is precision needed to retreive 5 sigfigs of smallest possible price + 1 for rounding value = FullMath.mulDiv(value, 10**44, 1 << 128); } else { /// @dev leave precision for 4 decimal places + 1 place for rounding value = FullMath.mulDiv(value, 10**5, 1 << 128); } /// @dev get digit count uint256 temp = value; uint8 digits; while (temp != 0) { digits++; temp /= 10; } /// @dev don't count extra digit kept for rounding digits = digits - 1; /// @dev address rounding (uint256 sigfigs, bool extraDigit) = sigfigsRounded(value, digits); if (extraDigit) { digits++; } DecimalStringParams memory params; if (priceBelow1) { /// @dev 7 bytes ( "0." and 5 sigfigs) + leading 0's bytes params.bufferLength = uint8(uint8(7) + (uint8(43) - digits)); params.zerosStartIndex = 2; params.zerosEndIndex = uint8(uint256(43) - digits + 1); params.sigfigIndex = uint8(params.bufferLength - 1); } else if (digits >= 9) { /// @dev no decimal in price string params.bufferLength = uint8(digits - 4); params.zerosStartIndex = 5; params.zerosEndIndex = uint8(params.bufferLength - 1); params.sigfigIndex = 4; } else { /// @dev 5 sigfigs surround decimal params.bufferLength = 6; params.sigfigIndex = 5; params.decimalIndex = uint8(digits - 4); } params.sigfigs = sigfigs; params.isLessThanOne = priceBelow1; params.isPercent = false; return generateDecimalString(params); } struct FeeDigits { uint24 temp; uint8 numSigfigs; uint256 digits; } /// @notice Returns string as decimal percentage of fee amount. /// @param fee fee amount function feeToPercentString(uint24 fee) internal pure returns (string memory) { if (fee == 0) { return '0%'; } FeeDigits memory feeDigits = FeeDigits(fee, 0, 0); while (feeDigits.temp != 0) { if (feeDigits.numSigfigs > 0) { /// @dev count all digits preceding least significant figure feeDigits.numSigfigs++; } else if (feeDigits.temp % 10 != 0) { feeDigits.numSigfigs++; } feeDigits.digits++; feeDigits.temp /= 10; } DecimalStringParams memory params; uint256 nZeros; if (feeDigits.digits >= 5) { /// @dev if decimal > 1 (5th digit is the ones place) uint256 decimalPlace = feeDigits.digits - feeDigits.numSigfigs >= 4 ? 0 : 1; nZeros = feeDigits.digits - 5 < (feeDigits.numSigfigs - 1) ? 0 : feeDigits.digits - 5 - (feeDigits.numSigfigs - 1); params.zerosStartIndex = feeDigits.numSigfigs; params.zerosEndIndex = uint8(params.zerosStartIndex + nZeros - 1); params.sigfigIndex = uint8(params.zerosStartIndex - 1 + decimalPlace); params.bufferLength = uint8(nZeros + (feeDigits.numSigfigs + 1) + decimalPlace); } else { /// @dev else if decimal < 1 nZeros = uint256(5) - feeDigits.digits; params.zerosStartIndex = 2; params.zerosEndIndex = uint8(nZeros + params.zerosStartIndex - 1); params.bufferLength = uint8(nZeros + (feeDigits.numSigfigs + 2)); params.sigfigIndex = uint8((params.bufferLength) - 2); params.isLessThanOne = true; } params.sigfigs = uint256(fee) / (10**(feeDigits.digits - feeDigits.numSigfigs)); params.isPercent = true; params.decimalIndex = feeDigits.digits > 4 ? uint8(feeDigits.digits - 4) : 0; return generateDecimalString(params); } function addressToString(address addr) internal pure returns (string memory) { return HexStrings.toHexString(uint256(uint160(addr)), 20); } function generateSVGImage(ConstructTokenURIParams memory params) internal pure returns (string memory svg) { string memory defs = NFTSVG.generateSVGDefs( NFTSVG.SVGDefsParams({ color0: tokenToColorHex(uint256(uint160(params.quoteTokenAddress)), 136), color1: tokenToColorHex(uint256(uint160(params.baseTokenAddress)), 136), color2: tokenToColorHex(uint256(uint160(params.quoteTokenAddress)), 0), color3: tokenToColorHex(uint256(uint160(params.baseTokenAddress)), 0), x1: scale( getCircleCoord(uint256(uint160(params.quoteTokenAddress)), 16, params.tokenId), 0, 255, 16, 274 ), y1: scale( getCircleCoord(uint256(uint160(params.baseTokenAddress)), 16, params.tokenId), 0, 255, 100, 484 ), x2: scale( getCircleCoord(uint256(uint160(params.quoteTokenAddress)), 32, params.tokenId), 0, 255, 16, 274 ), y2: scale( getCircleCoord(uint256(uint160(params.baseTokenAddress)), 32, params.tokenId), 0, 255, 100, 484 ), x3: scale( getCircleCoord(uint256(uint160(params.quoteTokenAddress)), 48, params.tokenId), 0, 255, 16, 274 ), y3: scale( getCircleCoord(uint256(uint160(params.baseTokenAddress)), 48, params.tokenId), 0, 255, 100, 484 ) }) ); string memory body = NFTSVG.generateSVGBody( NFTSVG.SVGBodyParams({ quoteToken: addressToString(params.quoteTokenAddress), baseToken: addressToString(params.baseTokenAddress), poolAddress: params.poolAddress, quoteTokenSymbol: params.quoteTokenSymbol, baseTokenSymbol: params.baseTokenSymbol, feeTier: feeToPercentString(params.fee), tickLower: params.tickLower, tickUpper: params.tickUpper, tickSpacing: params.tickSpacing, overRange: overRange(params.tickLower, params.tickUpper, params.tickCurrent), tokenId: params.tokenId }) ); return NFTSVG.generateSVG(defs, body); } function overRange( int24 tickLower, int24 tickUpper, int24 tickCurrent ) private pure returns (int8) { if (tickCurrent < tickLower) { return -1; } else if (tickCurrent > tickUpper) { return 1; } else { return 0; } } function scale( uint256 n, uint256 inMn, uint256 inMx, uint256 outMn, uint256 outMx ) private pure returns (string memory) { return (((n - inMn) * (outMx - outMn)) / (inMx - inMn) + outMn).toString(); } function tokenToColorHex(uint256 token, uint256 offset) internal pure returns (string memory str) { return string((token >> offset).toHexStringNoPrefix(3)); } function getCircleCoord( uint256 tokenAddress, uint256 offset, uint256 tokenId ) internal pure returns (uint256) { return (sliceTokenHex(tokenAddress, offset) * tokenId) % 255; } function sliceTokenHex(uint256 token, uint256 offset) internal pure returns (uint256) { return uint256(uint8(token >> offset)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library TokenRatioSortOrder { int256 constant NUMERATOR_MOST = 300; int256 constant NUMERATOR_MORE = 200; int256 constant NUMERATOR = 100; int256 constant DENOMINATOR_MOST = -300; int256 constant DENOMINATOR_MORE = -200; int256 constant DENOMINATOR = -100; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that never changes /// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values interface IRamsesV3PoolImmutables { /// @notice The contract that deployed the pool, which must adhere to the IRamsesV3Factory interface /// @return The contract address function factory() external view returns (address); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); /// @notice The pool tick spacing /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ... /// This value is an int24 to avoid casting even though it is always positive. /// @return The tick spacing function tickSpacing() external view returns (int24); /// @notice The maximum amount of position liquidity that can use any tick in the range /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool /// @return The max amount of liquidity per tick function maxLiquidityPerTick() external view returns (uint128); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that can change /// @notice These methods compose the pool's state, and can change with any frequency including multiple times /// per transaction interface IRamsesV3PoolState { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// @return observationIndex The index of the last oracle observation that was written, /// @return observationCardinality The current maximum number of observations stored in the pool, /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// @return feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The currently in range liquidity available to the pool /// @dev This value has no relationship to the total liquidity across all ticks /// @return The liquidity at the current price of the pool function liquidity() external view returns (uint128); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper /// @return liquidityNet how much liquidity changes when the pool price crosses the tick, /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// @return secondsOutside the seconds spent on the other side of the tick from the current tick, /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks( int24 tick ) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information function tickBitmap(int16 wordPosition) external view returns (uint256); /// @notice Returns the information about a position by the position's key /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper /// @return liquidity The amount of liquidity in the position, /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke, /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke, /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke, /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke function positions( bytes32 key ) external view returns ( uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// @return initialized whether the observation has been initialized and the values are safe to use function observations( uint256 index ) external view returns ( uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized ); /// @notice get the period seconds in range of a specific position /// @param period the period number /// @param owner owner address /// @param index position index /// @param tickLower lower bound of range /// @param tickUpper upper bound of range /// @return periodSecondsInsideX96 seconds the position was not in range for the period function positionPeriodSecondsInRange( uint256 period, address owner, uint256 index, int24 tickLower, int24 tickUpper ) external view returns (uint256 periodSecondsInsideX96); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Pool state that is not stored /// @notice Contains view functions to provide information about the pool that is computed rather than stored on the /// blockchain. The functions here may have variable gas costs. interface IRamsesV3PoolDerivedState { /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick, /// you must call it with secondsAgos = [3600, 0]. /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio. /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block /// timestamp function observe( uint32[] calldata secondsAgos ) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed. /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first /// snapshot is taken and the second snapshot is taken. /// @param tickLower The lower tick of the range /// @param tickUpper The upper tick of the range /// @return tickCumulativeInside The snapshot of the tick accumulator for the range /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range /// @return secondsInside The snapshot of seconds per liquidity for the range function snapshotCumulativesInside( int24 tickLower, int24 tickUpper ) external view returns (int56 tickCumulativeInside, uint160 secondsPerLiquidityInsideX128, uint32 secondsInside); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissionless pool actions /// @notice Contains pool methods that can be called by anyone interface IRamsesV3PoolActions { /// @notice Sets the initial price for the pool /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96 function initialize(uint160 sqrtPriceX96) external; /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends /// on tickLower, tickUpper, the amount of liquidity, and the current price. /// @param recipient The address for which the liquidity will be created /// @param index The index for which the liquidity will be created /// @param tickLower The lower tick of the position in which to add liquidity /// @param tickUpper The upper tick of the position in which to add liquidity /// @param amount The amount of liquidity to mint /// @param data Any data that should be passed through to the callback /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback function mint( address recipient, uint256 index, int24 tickLower, int24 tickUpper, uint128 amount, bytes calldata data ) external returns (uint256 amount0, uint256 amount1); /// @notice Collects tokens owed to a position /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity. /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity. /// @param recipient The address which should receive the fees collected /// @param index The index of the position to be collected /// @param tickLower The lower tick of the position for which to collect fees /// @param tickUpper The upper tick of the position for which to collect fees /// @param amount0Requested How much token0 should be withdrawn from the fees owed /// @param amount1Requested How much token1 should be withdrawn from the fees owed /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect( address recipient, uint256 index, int24 tickLower, int24 tickUpper, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0 /// @dev Fees must be collected separately via a call to #collect /// @param index The index for which the liquidity will be burned /// @param tickLower The lower tick of the position for which to burn liquidity /// @param tickUpper The upper tick of the position for which to burn liquidity /// @param amount How much liquidity to burn /// @return amount0 The amount of token0 sent to the recipient /// @return amount1 The amount of token1 sent to the recipient function burn( uint256 index, int24 tickLower, int24 tickUpper, uint128 amount ) external returns (uint256 amount0, uint256 amount1); /// @notice Swap token0 for token1, or token1 for token0 /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback /// @param recipient The address to receive the output of the swap /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0 /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative) /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this /// value after the swap. If one for zero, the price cannot be greater than this value after the swap /// @param data Any data to be passed through to the callback /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive function swap( address recipient, bool zeroForOne, int256 amountSpecified, uint160 sqrtPriceLimitX96, bytes calldata data ) external returns (int256 amount0, int256 amount1); /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling /// with 0 amount{0,1} and sending the donation amount(s) from the callback /// @param recipient The address which will receive the token0 and token1 amounts /// @param amount0 The amount of token0 to send /// @param amount1 The amount of token1 to send /// @param data Any data to be passed through to the callback function flash( address recipient, uint256 amount0, uint256 amount1, bytes calldata data ) external; /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Permissioned pool actions /// @notice Contains pool methods that may only be called by the factory owner interface IRamsesV3PoolOwnerActions { /// @notice Set the denominator of the protocol's % share of the fees function setFeeProtocol() external; /// @notice Collect the protocol fee accrued to the pool /// @param recipient The address to which collected protocol fees should be sent /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1 /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0 /// @return amount0 The protocol fee collected in token0 /// @return amount1 The protocol fee collected in token1 function collectProtocol( address recipient, uint128 amount0Requested, uint128 amount1Requested ) external returns (uint128 amount0, uint128 amount1); function setFee(uint24 _fee) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Errors emitted by a pool /// @notice Contains all events emitted by the pool interface IRamsesV3PoolErrors { error LOK(); error TLU(); error TLM(); error TUM(); error AI(); error M0(); error M1(); error AS(); error IIA(); error L(); error F0(); error F1(); error SPL(); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Events emitted by a pool /// @notice Contains all events emitted by the pool interface IRamsesV3PoolEvents { /// @notice Emitted exactly once by a pool when #initialize is first called on the pool /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96 /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool event Initialize(uint160 sqrtPriceX96, int24 tick); /// @notice Emitted when liquidity is minted for a given position /// @param sender The address that minted the liquidity /// @param owner The owner of the position and recipient of any minted liquidity /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity minted to the position range /// @param amount0 How much token0 was required for the minted liquidity /// @param amount1 How much token1 was required for the minted liquidity event Mint( address sender, address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted when fees are collected by the owner of a position /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees /// @param owner The owner of the position for which fees are collected /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount0 The amount of token0 fees collected /// @param amount1 The amount of token1 fees collected event Collect( address indexed owner, address recipient, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount0, uint128 amount1 ); /// @notice Emitted when a position's liquidity is removed /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect /// @param owner The owner of the position for which liquidity is removed /// @param tickLower The lower tick of the position /// @param tickUpper The upper tick of the position /// @param amount The amount of liquidity to remove /// @param amount0 The amount of token0 withdrawn /// @param amount1 The amount of token1 withdrawn event Burn( address indexed owner, int24 indexed tickLower, int24 indexed tickUpper, uint128 amount, uint256 amount0, uint256 amount1 ); /// @notice Emitted by the pool for any swaps between token0 and token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the output of the swap /// @param amount0 The delta of the token0 balance of the pool /// @param amount1 The delta of the token1 balance of the pool /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96 /// @param liquidity The liquidity of the pool after the swap /// @param tick The log base 1.0001 of price of the pool after the swap event Swap( address indexed sender, address indexed recipient, int256 amount0, int256 amount1, uint160 sqrtPriceX96, uint128 liquidity, int24 tick ); /// @notice Emitted by the pool for any flashes of token0/token1 /// @param sender The address that initiated the swap call, and that received the callback /// @param recipient The address that received the tokens from flash /// @param amount0 The amount of token0 that was flashed /// @param amount1 The amount of token1 that was flashed /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee event Flash( address indexed sender, address indexed recipient, uint256 amount0, uint256 amount1, uint256 paid0, uint256 paid1 ); /// @notice Emitted by the pool for increases to the number of observations that can be stored /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index /// just before a mint/swap/burn. /// @param observationCardinalityNextOld The previous value of the next observation cardinality /// @param observationCardinalityNextNew The updated value of the next observation cardinality event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); /// @notice Emitted when the protocol fee is changed by the pool /// @param feeProtocol0Old The previous value of the token0 protocol fee /// @param feeProtocol1Old The previous value of the token1 protocol fee /// @param feeProtocol0New The updated value of the token0 protocol fee /// @param feeProtocol1New The updated value of the token1 protocol fee event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New); /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner /// @param sender The address that collects the protocol fees /// @param recipient The address that receives the collected protocol fees /// @param amount0 The amount of token0 protocol fees that is withdrawn /// @param amount0 The amount of token1 protocol fees that is withdrawn event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1); }
// SPDX-License-Identifier: GPL-3.0-or-later // from https://github.com/Uniswap/solidity-lib/blob/master/contracts/libraries/AddressStringUtil.sol // modified for solidity 0.8 pragma solidity >=0.8.0; library AddressStringUtil { error InvalidLen(); // converts an address to the uppercase hex string, extracting only len bytes (up to 20, multiple of 2) function toAsciiString(address addr, uint256 len) internal pure returns (string memory) { if (len % 2 != 0 || len == 0 || len > 40) revert InvalidLen(); bytes memory s = new bytes(len); uint256 addrNum = uint256(uint160(addr)); for (uint256 i = 0; i < len / 2; i++) { // shift right and truncate all but the least significant byte to extract the byte at position 19-i uint8 b = uint8(addrNum >> (8 * (19 - i))); // first hex character is the most significant 4 bits uint8 hi = b >> 4; // second hex character is the least significant 4 bits uint8 lo = b - (hi << 4); s[2 * i] = char(hi); s[2 * i + 1] = char(lo); } return string(s); } // hi and lo are only 4 bits and between 0 and 16 // this method converts those values to the unicode/ascii code point for the hex representation // uses upper case for the characters function char(uint8 b) private pure returns (bytes1 c) { if (b < 10) { return bytes1(b + 0x30); } else { return bytes1(b + 0x37); } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; pragma abicoder v2; /// @title Creates and initializes V3 Pools /// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that /// require the pool to exist. interface IPoolInitializer { /// @notice Creates a new pool if it does not exist, then initializes if not initialized /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool /// @param token0 The contract address of token0 of the pool /// @param token1 The contract address of token1 of the pool /// @param tickSpacing The tickSpacing of the v3 pool for the specified token pair /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary function createAndInitializePoolIfNecessary( address token0, address token1, int24 tickSpacing, uint160 sqrtPriceX96 ) external payable returns (address pool); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.5; /// @title Periphery Payments /// @notice Functions to ease deposits and withdrawals of ETH interface IPeripheryPayments { /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH. /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users. /// @param amountMinimum The minimum amount of WETH9 to unwrap /// @param recipient The address receiving ETH function unwrapWETH9(uint256 amountMinimum, address recipient) external payable; /// @notice Refunds any ETH balance held by this contract to the `msg.sender` /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps /// that use ether for the input amount function refundETH() external payable; /// @notice Transfers the full amount of a token held by this contract to recipient /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users /// @param token The contract address of the token which will be transferred to `recipient` /// @param amountMinimum The minimum amount of token required for a transfer /// @param recipient The destination address of the token function sweepToken( address token, uint256 amountMinimum, address recipient ) external payable; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Immutable state /// @notice Functions that return immutable state of the router interface IPeripheryImmutableState { /// @return Returns the address of the Uniswap V3 deployer function deployer() external view returns (address); /// @return Returns the address of WETH9 function WETH9() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; /// @title Errors emitted by the NonFungiblePositionManager /// @notice Contains all events emitted by the NfpManager interface IPeripheryErrors { error InvalidTokenId(uint256 tokenId); error CheckSlippage(); error NotCleared(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { error T(); error R(); /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0) /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { unchecked { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); if (absTick > uint256(int256(MAX_TICK))) revert T(); uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; /// @dev this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. /// @dev we then downcast because we know the result always fits within 160 bits due to our tick input constraint /// @dev we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { unchecked { /// @dev second inequality must be < because the price can never reach the price at the max tick if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R(); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; /// @dev 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow; } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity ^0.8.26; /// @title BitMath /// @dev This library provides functionality for computing bit properties of an unsigned integer library BitMath { /// @notice Returns the index of the most significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// x >= 2**mostSignificantBit(x) and x < 2**(mostSignificantBit(x)+1) /// @param x the value for which to compute the most significant bit, must be greater than 0 /// @return r the index of the most significant bit function mostSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); unchecked { if (x >= 0x100000000000000000000000000000000) { x >>= 128; r += 128; } if (x >= 0x10000000000000000) { x >>= 64; r += 64; } if (x >= 0x100000000) { x >>= 32; r += 32; } if (x >= 0x10000) { x >>= 16; r += 16; } if (x >= 0x100) { x >>= 8; r += 8; } if (x >= 0x10) { x >>= 4; r += 4; } if (x >= 0x4) { x >>= 2; r += 2; } if (x >= 0x2) r += 1; } } /// @notice Returns the index of the least significant bit of the number, /// where the least significant bit is at index 0 and the most significant bit is at index 255 /// @dev The function satisfies the property: /// (x & 2**leastSignificantBit(x)) != 0 and (x & (2**(leastSignificantBit(x)) - 1)) == 0) /// @param x the value for which to compute the least significant bit, must be greater than 0 /// @return r the index of the least significant bit function leastSignificantBit(uint256 x) internal pure returns (uint8 r) { require(x > 0); unchecked { r = 255; if (x & type(uint128).max > 0) { r -= 128; } else { x >>= 128; } if (x & type(uint64).max > 0) { r -= 64; } else { x >>= 64; } if (x & type(uint32).max > 0) { r -= 32; } else { x >>= 32; } if (x & type(uint16).max > 0) { r -= 16; } else { x >>= 16; } if (x & type(uint8).max > 0) { r -= 8; } else { x >>= 8; } if (x & 0xf > 0) { r -= 4; } else { x >>= 4; } if (x & 0x3 > 0) { r -= 2; } else { x >>= 2; } if (x & 0x1 > 0) r -= 1; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; /// @title Contains 512-bit math functions /// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision /// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits library FullMath { /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv function mulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(a, b, not(0)) prod0 := mul(a, b) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division if (prod1 == 0) { require(denominator > 0); assembly { result := div(prod0, denominator) } return result; } // Make sure the result is less than 2**256. // Also prevents denominator == 0 require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0] // Compute remainder using mulmod uint256 remainder; assembly { remainder := mulmod(a, b, denominator) } // Subtract 256 bit number from 512 bit number assembly { prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator // Compute largest power of two divisor of denominator. // Always >= 1. uint256 twos = (0 - denominator) & denominator; // Divide denominator by power of two assembly { denominator := div(denominator, twos) } // Divide [prod1 prod0] by the factors of two assembly { prod0 := div(prod0, twos) } // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If twos is zero, then it becomes one assembly { twos := add(div(sub(0, twos), twos), 1) } prod0 |= prod1 * twos; // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 uint256 inv = (3 * denominator) ^ 2; // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv *= 2 - denominator * inv; // inverse mod 2**8 inv *= 2 - denominator * inv; // inverse mod 2**16 inv *= 2 - denominator * inv; // inverse mod 2**32 inv *= 2 - denominator * inv; // inverse mod 2**64 inv *= 2 - denominator * inv; // inverse mod 2**128 inv *= 2 - denominator * inv; // inverse mod 2**256 // Because the division is now exact we can divide by multiplying // with the modular inverse of denominator. This will give us the // correct result modulo 2**256. Since the precoditions guarantee // that the outcome is less than 2**256, this is the final result. // We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inv; return result; } } /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 /// @param a The multiplicand /// @param b The multiplier /// @param denominator The divisor /// @return result The 256-bit result function mulDivRoundingUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) { unchecked { result = mulDiv(a, b, denominator); if (mulmod(a, b, denominator) > 0) { require(result < type(uint256).max); result++; } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to operate with Base64 strings. */ library Base64 { /** * @dev Base64 Encoding/Decoding Table * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648 */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE, true); } /** * @dev Converts a `bytes` to its Bytes64Url `string` representation. * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648]. */ function encodeURL(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE_URL, false); } /** * @dev Internal table-agnostic conversion */ function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then // multiplied by 4 so that it leaves room for padding the last chunk // - `data.length + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // - `4 *` -> 4 characters for each chunk // This is equivalent to: 4 * Math.ceil(data.length / 3) // // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as // opposed to when padding is required to fill the last chunk. // - `4 * data.length` -> 4 characters for each chunk // - ` + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // This is equivalent to: Math.ceil((4 * data.length) / 3) uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3; string memory result = new string(resultLength); assembly ("memory-safe") { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 0x20) let dataPtr := data let endPtr := add(data, mload(data)) // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and // set it to zero to make sure no dirty bytes are read in that section. let afterPtr := add(endPtr, 0x20) let afterCache := mload(afterPtr) mstore(afterPtr, 0x00) // Run over the input, 3 bytes at a time for { } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 byte (24 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F to bitmask the least significant 6 bits. // Use this as an index into the lookup table, mload an entire word // so the desired character is in the least significant byte, and // mstore8 this least significant byte into the result and continue. mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // Reset the value that was cached mstore(afterPtr, afterCache) if withPadding { // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } } return result; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library HexStrings { error HexLengthInsufficient(); bytes16 internal constant ALPHABET = '0123456789abcdef'; /// @notice Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. /// @dev Credit to Open Zeppelin under MIT license https://github.com/OpenZeppelin/openzeppelin-contracts/blob/243adff49ce1700e0ecb99fe522fb16cff1d1ddc/contracts/utils/Strings.sol#L55 function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = '0'; buffer[1] = 'x'; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = ALPHABET[value & 0xf]; value >>= 4; } if (value > 0) revert HexLengthInsufficient(); return string(buffer); } function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length); for (uint256 i = buffer.length; i > 0; i--) { buffer[i - 1] = ALPHABET[value & 0xf]; value >>= 4; } return string(buffer); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.7.6; pragma abicoder v2; import '@openzeppelin/contracts/utils/Strings.sol'; import '../../core/libraries/BitMath.sol'; import "@openzeppelin/contracts/utils/Base64.sol"; /// @title NFTSVG /// @notice Provides a function for generating an SVG associated with a Uniswap NFT library NFTSVG { using Strings for uint256; string constant curve1 = 'M1 1C41 41 105 105 145 145'; string constant curve2 = 'M1 1C33 49 97 113 145 145'; string constant curve3 = 'M1 1C33 57 89 113 145 145'; string constant curve4 = 'M1 1C25 65 81 121 145 145'; string constant curve5 = 'M1 1C17 73 73 129 145 145'; string constant curve6 = 'M1 1C9 81 65 137 145 145'; string constant curve7 = 'M1 1C1 89 57.5 145 145 145'; string constant curve8 = 'M1 1C1 97 49 145 145 145'; struct SVGBodyParams { string quoteToken; string baseToken; address poolAddress; string quoteTokenSymbol; string baseTokenSymbol; string feeTier; int24 tickLower; int24 tickUpper; int24 tickSpacing; int8 overRange; uint256 tokenId; } struct SVGDefsParams { string color0; string color1; string color2; string color3; string x1; string y1; string x2; string y2; string x3; string y3; } function generateSVG(string memory defs, string memory body) internal pure returns (string memory svg) { /* address: "0xe8ab59d3bcde16a29912de83a90eb39628cfc163", msg: "Forged in SVG for Uniswap in 2021 by 0xe8ab59d3bcde16a29912de83a90eb39628cfc163", sig: "0x2df0e99d9cbfec33a705d83f75666d98b22dea7c1af412c584f7d626d83f02875993df740dc87563b9c73378f8462426da572d7989de88079a382ad96c57b68d1b", version: "2" */ return string(abi.encodePacked(defs, body, '</svg>')); } function generateSVGBody(SVGBodyParams memory params) internal pure returns (string memory body) { return string( abi.encodePacked( generateSVGBorderText( params.quoteToken, params.baseToken, params.quoteTokenSymbol, params.baseTokenSymbol ), generateSVGCardMantle(params.quoteTokenSymbol, params.baseTokenSymbol, params.feeTier), generageSvgCurve(params.tickLower, params.tickUpper, params.tickSpacing, params.overRange), generateSVGPositionDataAndLocationCurve( params.tokenId.toString(), params.tickLower, params.tickUpper ), generateSVGRareSparkle(params.tokenId, params.poolAddress) ) ); } function generateSVGDefs(SVGDefsParams memory params) internal pure returns (string memory svg) { svg = string( abi.encodePacked( '<svg width="290" height="500" viewBox="0 0 290 500" xmlns="http://www.w3.org/2000/svg"', " xmlns:xlink='http://www.w3.org/1999/xlink'>", '<defs>', '<filter id="f1"><feImage result="p0" xlink:href="data:image/svg+xml;base64,', Base64.encode( bytes( abi.encodePacked( "<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><rect width='290px' height='500px' fill='#", params.color0, "'/></svg>" ) ) ), '"/><feImage result="p1" xlink:href="data:image/svg+xml;base64,', Base64.encode( bytes( abi.encodePacked( "<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='", params.x1, "' cy='", params.y1, "' r='120px' fill='#", params.color1, "'/></svg>" ) ) ), '"/><feImage result="p2" xlink:href="data:image/svg+xml;base64,', Base64.encode( bytes( abi.encodePacked( "<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='", params.x2, "' cy='", params.y2, "' r='120px' fill='#", params.color2, "'/></svg>" ) ) ), '" />', '<feImage result="p3" xlink:href="data:image/svg+xml;base64,', Base64.encode( bytes( abi.encodePacked( "<svg width='290' height='500' viewBox='0 0 290 500' xmlns='http://www.w3.org/2000/svg'><circle cx='", params.x3, "' cy='", params.y3, "' r='100px' fill='#", params.color3, "'/></svg>" ) ) ), '" /><feBlend mode="overlay" in="p0" in2="p1" /><feBlend mode="exclusion" in2="p2" /><feBlend mode="overlay" in2="p3" result="blendOut" /><feGaussianBlur ', 'in="blendOut" stdDeviation="42" /></filter> <clipPath id="corners"><rect width="290" height="500" rx="42" ry="42" /></clipPath>', '<path id="text-path-a" d="M40 12 H250 A28 28 0 0 1 278 40 V460 A28 28 0 0 1 250 488 H40 A28 28 0 0 1 12 460 V40 A28 28 0 0 1 40 12 z" />', '<path id="minimap" d="M234 444C234 457.949 242.21 463 253 463" />', '<filter id="top-region-blur"><feGaussianBlur in="SourceGraphic" stdDeviation="24" /></filter>', '<linearGradient id="grad-up" x1="1" x2="0" y1="1" y2="0"><stop offset="0.0" stop-color="white" stop-opacity="1" />', '<stop offset=".9" stop-color="white" stop-opacity="0" /></linearGradient>', '<linearGradient id="grad-down" x1="0" x2="1" y1="0" y2="1"><stop offset="0.0" stop-color="white" stop-opacity="1" /><stop offset="0.9" stop-color="white" stop-opacity="0" /></linearGradient>', '<mask id="fade-up" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="url(#grad-up)" /></mask>', '<mask id="fade-down" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="url(#grad-down)" /></mask>', '<mask id="none" maskContentUnits="objectBoundingBox"><rect width="1" height="1" fill="white" /></mask>', '<linearGradient id="grad-symbol"><stop offset="0.7" stop-color="white" stop-opacity="1" /><stop offset=".95" stop-color="white" stop-opacity="0" /></linearGradient>', '<mask id="fade-symbol" maskContentUnits="userSpaceOnUse"><rect width="290px" height="200px" fill="url(#grad-symbol)" /></mask></defs>', '<g clip-path="url(#corners)">', '<rect fill="', params.color0, '" x="0px" y="0px" width="290px" height="500px" />', '<rect style="filter: url(#f1)" x="0px" y="0px" width="290px" height="500px" />', ' <g style="filter:url(#top-region-blur); transform:scale(1.5); transform-origin:center top;">', '<rect fill="none" x="0px" y="0px" width="290px" height="500px" />', '<ellipse cx="50%" cy="0px" rx="180px" ry="120px" fill="#000" opacity="0.85" /></g>', '<rect x="0" y="0" width="290" height="500" rx="42" ry="42" fill="rgba(0,0,0,0)" stroke="rgba(255,255,255,0.2)" /></g>' ) ); } function generateSVGBorderText( string memory quoteToken, string memory baseToken, string memory quoteTokenSymbol, string memory baseTokenSymbol ) private pure returns (string memory svg) { svg = string( abi.encodePacked( '<text text-rendering="optimizeSpeed">', '<textPath startOffset="-100%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">', baseToken, unicode' • ', baseTokenSymbol, ' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" />', '</textPath> <textPath startOffset="0%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">', baseToken, unicode' • ', baseTokenSymbol, ' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" /> </textPath>', '<textPath startOffset="50%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">', quoteToken, unicode' • ', quoteTokenSymbol, ' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s"', ' repeatCount="indefinite" /></textPath><textPath startOffset="-50%" fill="white" font-family="\'Courier New\', monospace" font-size="10px" xlink:href="#text-path-a">', quoteToken, unicode' • ', quoteTokenSymbol, ' <animate additive="sum" attributeName="startOffset" from="0%" to="100%" begin="0s" dur="30s" repeatCount="indefinite" /></textPath></text>' ) ); } function generateSVGCardMantle( string memory quoteTokenSymbol, string memory baseTokenSymbol, string memory feeTier ) private pure returns (string memory svg) { svg = string( abi.encodePacked( '<g mask="url(#fade-symbol)"><rect fill="none" x="0px" y="0px" width="290px" height="200px" /> <text y="70px" x="32px" fill="white" font-family="\'Courier New\', monospace" font-weight="200" font-size="36px">', quoteTokenSymbol, '/', baseTokenSymbol, '</text><text y="115px" x="32px" fill="white" font-family="\'Courier New\', monospace" font-weight="200" font-size="36px">', feeTier, '</text></g>', '<rect x="16" y="16" width="258" height="468" rx="26" ry="26" fill="rgba(0,0,0,0)" stroke="rgba(255,255,255,0.2)" />' ) ); } function generageSvgCurve( int24 tickLower, int24 tickUpper, int24 tickSpacing, int8 overRange ) private pure returns (string memory svg) { string memory fade = overRange == 1 ? '#fade-up' : overRange == -1 ? '#fade-down' : '#none'; string memory curve = getCurve(tickLower, tickUpper, tickSpacing); svg = string( abi.encodePacked( '<g mask="url(', fade, ')"', ' style="transform:translate(72px,189px)">' '<rect x="-16px" y="-16px" width="180px" height="180px" fill="none" />' '<path d="', curve, '" stroke="rgba(0,0,0,0.3)" stroke-width="32px" fill="none" stroke-linecap="round" />', '</g><g mask="url(', fade, ')"', ' style="transform:translate(72px,189px)">', '<rect x="-16px" y="-16px" width="180px" height="180px" fill="none" />', '<path d="', curve, '" stroke="rgba(255,255,255,1)" fill="none" stroke-linecap="round" /></g>', generateSVGCurveCircle(overRange) ) ); } function getCurve( int24 tickLower, int24 tickUpper, int24 tickSpacing ) internal pure returns (string memory curve) { int24 tickRange = (tickUpper - tickLower) / tickSpacing; if (tickRange <= 4) { curve = curve1; } else if (tickRange <= 8) { curve = curve2; } else if (tickRange <= 16) { curve = curve3; } else if (tickRange <= 32) { curve = curve4; } else if (tickRange <= 64) { curve = curve5; } else if (tickRange <= 128) { curve = curve6; } else if (tickRange <= 256) { curve = curve7; } else { curve = curve8; } } function generateSVGCurveCircle(int8 overRange) internal pure returns (string memory svg) { string memory curvex1 = '73'; string memory curvey1 = '190'; string memory curvex2 = '217'; string memory curvey2 = '334'; if (overRange == 1 || overRange == -1) { svg = string( abi.encodePacked( '<circle cx="', overRange == -1 ? curvex1 : curvex2, 'px" cy="', overRange == -1 ? curvey1 : curvey2, 'px" r="4px" fill="white" /><circle cx="', overRange == -1 ? curvex1 : curvex2, 'px" cy="', overRange == -1 ? curvey1 : curvey2, 'px" r="24px" fill="none" stroke="white" />' ) ); } else { svg = string( abi.encodePacked( '<circle cx="', curvex1, 'px" cy="', curvey1, 'px" r="4px" fill="white" />', '<circle cx="', curvex2, 'px" cy="', curvey2, 'px" r="4px" fill="white" />' ) ); } } function generateSVGPositionDataAndLocationCurve( string memory tokenId, int24 tickLower, int24 tickUpper ) private pure returns (string memory svg) { string memory tickLowerStr = tickToString(tickLower); string memory tickUpperStr = tickToString(tickUpper); uint256 str1length = bytes(tokenId).length + 4; uint256 str2length = bytes(tickLowerStr).length + 10; uint256 str3length = bytes(tickUpperStr).length + 10; (string memory xCoord, string memory yCoord) = rangeLocation(tickLower, tickUpper); svg = string( abi.encodePacked( ' <g style="transform:translate(29px, 384px)">', '<rect width="', uint256(7 * (str1length + 4)).toString(), 'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />', '<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">ID: </tspan>', tokenId, '</text></g>', ' <g style="transform:translate(29px, 414px)">', '<rect width="', uint256(7 * (str2length + 4)).toString(), 'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />', '<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">Min Tick: </tspan>', tickLowerStr, '</text></g>', ' <g style="transform:translate(29px, 444px)">', '<rect width="', uint256(7 * (str3length + 4)).toString(), 'px" height="26px" rx="8px" ry="8px" fill="rgba(0,0,0,0.6)" />', '<text x="12px" y="17px" font-family="\'Courier New\', monospace" font-size="12px" fill="white"><tspan fill="rgba(255,255,255,0.6)">Max Tick: </tspan>', tickUpperStr, '</text></g>' '<g style="transform:translate(226px, 433px)">', '<rect width="36px" height="36px" rx="8px" ry="8px" fill="none" stroke="rgba(255,255,255,0.2)" />', '<path stroke-linecap="round" d="M8 9C8.00004 22.9494 16.2099 28 27 28" fill="none" stroke="white" />', '<circle style="transform:translate3d(', xCoord, 'px, ', yCoord, 'px, 0px)" cx="0px" cy="0px" r="4px" fill="white"/></g>' ) ); } function tickToString(int24 tick) private pure returns (string memory) { string memory sign = ''; if (tick < 0) { tick = tick * -1; sign = '-'; } return string(abi.encodePacked(sign, uint256(uint24(tick)).toString())); } function rangeLocation(int24 tickLower, int24 tickUpper) internal pure returns (string memory, string memory) { int24 midPoint = (tickLower + tickUpper) / 2; if (midPoint < -125_000) { return ('8', '7'); } else if (midPoint < -75_000) { return ('8', '10.5'); } else if (midPoint < -25_000) { return ('8', '14.25'); } else if (midPoint < -5_000) { return ('10', '18'); } else if (midPoint < 0) { return ('11', '21'); } else if (midPoint < 5_000) { return ('13', '23'); } else if (midPoint < 25_000) { return ('15', '25'); } else if (midPoint < 75_000) { return ('18', '26'); } else if (midPoint < 125_000) { return ('21', '27'); } else { return ('24', '27'); } } function generateSVGRareSparkle(uint256 tokenId, address poolAddress) private pure returns (string memory svg) { if (isRare(tokenId, poolAddress)) { svg = string( abi.encodePacked( '<g style="transform:translate(226px, 392px)"><rect width="36px" height="36px" rx="8px" ry="8px" fill="none" stroke="rgba(255,255,255,0.2)" />', '<g><path style="transform:translate(6px,6px)" d="M12 0L12.6522 9.56587L18 1.6077L13.7819 10.2181L22.3923 6L14.4341 ', '11.3478L24 12L14.4341 12.6522L22.3923 18L13.7819 13.7819L18 22.3923L12.6522 14.4341L12 24L11.3478 14.4341L6 22.39', '23L10.2181 13.7819L1.6077 18L9.56587 12.6522L0 12L9.56587 11.3478L1.6077 6L10.2181 10.2181L6 1.6077L11.3478 9.56587L12 0Z" fill="white" />', '<animateTransform attributeName="transform" type="rotate" from="0 18 18" to="360 18 18" dur="10s" repeatCount="indefinite"/></g></g>' ) ); } else { svg = ''; } } function isRare(uint256 tokenId, address poolAddress) internal pure returns (bool) { bytes32 h = keccak256(abi.encodePacked(tokenId, poolAddress)); return uint256(h) < type(uint256).max / (1 + BitMath.mostSignificantBit(tokenId) * 2); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
{ "remappings": [ "@openzeppelin-contracts-upgradeable-5.1.0/=dependencies/@openzeppelin-contracts-upgradeable-5.1.0/", "@openzeppelin/contracts/=dependencies/@openzeppelin-contracts-5.1.0/", "forge-std/=dependencies/forge-std-1.9.4/src/", "permit2/=lib/permit2/", "@openzeppelin-3.4.2/=node_modules/@openzeppelin-3.4.2/", "@openzeppelin-contracts-5.1.0/=dependencies/@openzeppelin-contracts-5.1.0/", "@uniswap/=node_modules/@uniswap/", "base64-sol/=node_modules/base64-sol/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std-1.9.4/=dependencies/forge-std-1.9.4/src/", "hardhat/=node_modules/hardhat/", "solmate/=node_modules/solmate/" ], "optimizer": { "enabled": true, "runs": 2633 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": true, "libraries": { "contracts/CL/periphery/libraries/NFTDescriptor.sol": { "NFTDescriptor": "0x0cBaAdb25b45A1999E770c98Db817f3Ea8100042" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_WETH9","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidLen","type":"error"},{"inputs":[],"name":"S","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH9","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"}],"name":"flipRatio","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nativeCurrencyLabel","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"tokenRatioPriority","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract INonfungiblePositionManager","name":"positionManager","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60a034607457601f6110b138819003918201601f19168301916001600160401b03831184841017607857808492602094604052833981010312607457516001600160a01b0381168103607457608052604051611024908161008d82396080518181816102a8015281816109f10152610ad50152f35b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe6080806040526004361015610012575f80fd5b5f3560e01c9081634aa4a4fc146109d4575080634be1c7961461097a5780637d4a8689146109a9578063b7af3cdc1461097a578063dee91a2c146109315763e9dc63751461005e575f80fd5b34610674576040600319360112610674576004356001600160a01b038116809103610674576024356040517f99fbab8800000000000000000000000000000000000000000000000000000000815281600482015261014081602481865afa908115610604575f905f945f905f925f9561088a575b506020600491604051928380927fd5f394880000000000000000000000000000000000000000000000000000000082525afa908115610604575f91610850575b50604051916060830183811067ffffffffffffffff82111761060f576040526001600160a01b0385169081845260208401916001600160a01b038a1690818452604086019260020b835210156107f2576001600160a01b038080955116925116905160020b6040519160208301938452604083015260608201526060815261019b608082610a15565b519020604051907fffffffffffffffffffffffffffffffffffffffff00000000000000000000000060208301937fff00000000000000000000000000000000000000000000000000000000000000855260601b16602183015260358201527f45abd56e0874f11d842a55bc9bba133f39d9d0489dc6d4577701e8f47faf715160558201526055815261022e607582610a15565b519020169161023c81610aca565b61024587610aca565b1290811596875f146107eb5780975b156107e35750915b604051947f3850c7bd00000000000000000000000000000000000000000000000000000000865260e086600481885afa918215610604575f92610751575b600496506001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016936001600160a01b038a1699858b145f1461074257506102e6610a54565b955b6001600160a01b0381169586036107345750610302610a54565b60208b6040519a8b80927f313ce5670000000000000000000000000000000000000000000000000000000082525afa988915610604575f996106f8575b50604051907f313ce5670000000000000000000000000000000000000000000000000000000082526020826004818a5afa918215610604575f926106bc575b50604051977fd0c93a7c0000000000000000000000000000000000000000000000000000000089526020896004818d5afa978815610604575f98610680575b6040517fddca3f43000000000000000000000000000000000000000000000000000000008152995060208a6004818e5afa998a15610604575f9a61063c575b506040519c6101c08e0167ffffffffffffffff81118f82101761060f576040528d5260208d019d8e5260408d0190815260608d0191825260808d0192835260a08d019b60ff168c5260c08d019360ff16845260e08d019485526101008d019560020b86526101208d019660020b87526101408d019760020b88526101608d019860020b89526101808d019962ffffff168a526101a08d019a8b52604051809e819e7fc49917d70000000000000000000000000000000000000000000000000000000083526004830160209052516024830152516001600160a01b03169060440152516001600160a01b031660648d01525160848c016101c090526101e48c0161050491610a8f565b9051908b81037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc0160a48d015261053a91610a8f565b985160ff1660c48b01525160ff1660e48a01525115156101048901525160020b6101248801525160020b6101448701525160020b6101648601525160020b6101848501525162ffffff166101a4840152516001600160a01b03166101c48301520381730cbaadb25b45a1999e770c98db817f3ea810004291815a935f94f48015610604576105de915f916105e2575b50604051918291602083526020830190610a8f565b0390f35b6105fe91503d805f833e6105f68183610a15565b810190610b80565b5f6105c9565b6040513d5f823e3d90fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b9099506020813d602011610678575b8161065860209383610a15565b81010312610674575162ffffff8116810361067457985f6103fc565b5f80fd5b3d915061064b565b97506020893d6020116106b4575b8161069b60209383610a15565b81010312610674576106ae600499610b38565b976103bd565b3d915061068e565b9091506020813d6020116106f0575b816106d860209383610a15565b81010312610674576106e990610b72565b905f61037e565b3d91506106cb565b9098506020813d60201161072c575b8161071460209383610a15565b810103126106745761072590610b72565b975f61033f565b3d9150610707565b61073d90610be3565b610302565b61074b90610be3565b956102e8565b915060e0863d60e0116107db575b8161076c60e09383610a15565b810103126106745785516001600160a01b038116036106745760c061079360208801610b38565b966107a060408201610b63565b506107ad60608201610b63565b506107ba60808201610b63565b506107c760a08201610b72565b50015180151503610674576004959161029a565b3d915061075f565b90509161025c565b8197610254565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600b60248201527f21546f6b656e4f726465720000000000000000000000000000000000000000006044820152fd5b90506020813d602011610882575b8161086b60209383610a15565b810103126106745761087c90610b24565b5f610112565b3d915061085e565b96509350505050610140833d8211610929575b816108ab6101409383610a15565b81010312610674576108bc83610b24565b926108c960208201610b24565b906108d660408201610b38565b94600460206108e760608501610b38565b9261091c6101206108fa60808801610b38565b9661090760a08201610b46565b506109156101008201610b46565b5001610b46565b50949792939591506100d2565b3d915061089d565b346106745760406003193601126106745761094a610ab4565b6024356001600160a01b03811681036106745761097161096b602093610aca565b91610aca565b12604051908152f35b34610674575f600319360112610674576105de610995610a54565b604051918291602083526020830190610a8f565b346106745760206003193601126106745760206109cc6109c7610ab4565b610aca565b604051908152f35b34610674575f600319360112610674576020906001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b90601f601f19910116810190811067ffffffffffffffff82111761060f57604052565b67ffffffffffffffff811161060f57601f01601f191660200190565b60405190610a63604083610a15565b600182527f53000000000000000000000000000000000000000000000000000000000000006020830152565b90601f19601f602080948051918291828752018686015e5f8582860101520116010190565b600435906001600160a01b038216820361067457565b6001600160a01b03807f000000000000000000000000000000000000000000000000000000000000000016911614610b00575f90565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9c90565b51906001600160a01b038216820361067457565b51908160020b820361067457565b51906fffffffffffffffffffffffffffffffff8216820361067457565b519061ffff8216820361067457565b519060ff8216820361067457565b6020818303126106745780519067ffffffffffffffff8211610674570181601f8201121561067457805190610bb482610a38565b92610bc26040519485610a15565b8284526020838301011161067457815f9260208093018386015e8301015290565b610bec81610d56565b90815115610bf8575090565b90506001600160a01b03610c0c6006610a38565b91610c1a6040519384610a15565b60068352601f19610c2b6006610a38565b01366020850137165f5b60038110610c4257505090565b8060130360138111610d29577f1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81168103610d2957829060031b1c9060f0807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff08416161660ff8316039160ff8311610d2957600f610cc39160041c16610f7c565b8160011b927f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83168303610d2957610d07915f1a610d018588610f3e565b53610f7c565b9160018101809111610d2957610d226001935f1a9186610f3e565b5301610c35565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8060609260405160208101907f95d89b4100000000000000000000000000000000000000000000000000000000825260048152610d95602482610a15565b51915afa903d15610f3857503d90610dac82610a38565b91610dba6040519384610a15565b82523d5f602084013e5b158015610f2f575b610f2057805160208103610eed575060208180518101031261067457602001519060405191610dfc604084610a15565b602080845236848201375f905f5b60208110610e94575050610e1d81610a38565b90610e2b6040519283610a15565b808252601f19610e3a82610a38565b013660208401375f5b818110610e51575090925050565b807fff00000000000000000000000000000000000000000000000000000000000000610e7f60019388610f3e565b51165f1a610e8d8286610f3e565b5301610e43565b81811a7fff000000000000000000000000000000000000000000000000000000000000008160f81b16610ecb575b50600101610e0a565b610ed88487959395610f3e565b535f198114610d295760018091019290610ec2565b9060408211610f0c575050604051610f06602082610a15565b5f815290565b602080610f1d938301019101610b80565b90565b50604051610f06602082610a15565b50805115610dcc565b90610dc4565b908151811015610f4f570160200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b60ff16600a811015610fbb5760300160ff8111610d295760f81b7fff000000000000000000000000000000000000000000000000000000000000001690565b60370160ff8111610d295760f81b7fff00000000000000000000000000000000000000000000000000000000000000169056fea26469706673582212208bddcfe916242515be91bf26e62f2c9b43d5f1a4d466a664f4f2657e4c254db664736f6c634300081c0033000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38
Deployed Bytecode
0x6080806040526004361015610012575f80fd5b5f3560e01c9081634aa4a4fc146109d4575080634be1c7961461097a5780637d4a8689146109a9578063b7af3cdc1461097a578063dee91a2c146109315763e9dc63751461005e575f80fd5b34610674576040600319360112610674576004356001600160a01b038116809103610674576024356040517f99fbab8800000000000000000000000000000000000000000000000000000000815281600482015261014081602481865afa908115610604575f905f945f905f925f9561088a575b506020600491604051928380927fd5f394880000000000000000000000000000000000000000000000000000000082525afa908115610604575f91610850575b50604051916060830183811067ffffffffffffffff82111761060f576040526001600160a01b0385169081845260208401916001600160a01b038a1690818452604086019260020b835210156107f2576001600160a01b038080955116925116905160020b6040519160208301938452604083015260608201526060815261019b608082610a15565b519020604051907fffffffffffffffffffffffffffffffffffffffff00000000000000000000000060208301937fff00000000000000000000000000000000000000000000000000000000000000855260601b16602183015260358201527f45abd56e0874f11d842a55bc9bba133f39d9d0489dc6d4577701e8f47faf715160558201526055815261022e607582610a15565b519020169161023c81610aca565b61024587610aca565b1290811596875f146107eb5780975b156107e35750915b604051947f3850c7bd00000000000000000000000000000000000000000000000000000000865260e086600481885afa918215610604575f92610751575b600496506001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad3816936001600160a01b038a1699858b145f1461074257506102e6610a54565b955b6001600160a01b0381169586036107345750610302610a54565b60208b6040519a8b80927f313ce5670000000000000000000000000000000000000000000000000000000082525afa988915610604575f996106f8575b50604051907f313ce5670000000000000000000000000000000000000000000000000000000082526020826004818a5afa918215610604575f926106bc575b50604051977fd0c93a7c0000000000000000000000000000000000000000000000000000000089526020896004818d5afa978815610604575f98610680575b6040517fddca3f43000000000000000000000000000000000000000000000000000000008152995060208a6004818e5afa998a15610604575f9a61063c575b506040519c6101c08e0167ffffffffffffffff81118f82101761060f576040528d5260208d019d8e5260408d0190815260608d0191825260808d0192835260a08d019b60ff168c5260c08d019360ff16845260e08d019485526101008d019560020b86526101208d019660020b87526101408d019760020b88526101608d019860020b89526101808d019962ffffff168a526101a08d019a8b52604051809e819e7fc49917d70000000000000000000000000000000000000000000000000000000083526004830160209052516024830152516001600160a01b03169060440152516001600160a01b031660648d01525160848c016101c090526101e48c0161050491610a8f565b9051908b81037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc0160a48d015261053a91610a8f565b985160ff1660c48b01525160ff1660e48a01525115156101048901525160020b6101248801525160020b6101448701525160020b6101648601525160020b6101848501525162ffffff166101a4840152516001600160a01b03166101c48301520381730cbaadb25b45a1999e770c98db817f3ea810004291815a935f94f48015610604576105de915f916105e2575b50604051918291602083526020830190610a8f565b0390f35b6105fe91503d805f833e6105f68183610a15565b810190610b80565b5f6105c9565b6040513d5f823e3d90fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b9099506020813d602011610678575b8161065860209383610a15565b81010312610674575162ffffff8116810361067457985f6103fc565b5f80fd5b3d915061064b565b97506020893d6020116106b4575b8161069b60209383610a15565b81010312610674576106ae600499610b38565b976103bd565b3d915061068e565b9091506020813d6020116106f0575b816106d860209383610a15565b81010312610674576106e990610b72565b905f61037e565b3d91506106cb565b9098506020813d60201161072c575b8161071460209383610a15565b810103126106745761072590610b72565b975f61033f565b3d9150610707565b61073d90610be3565b610302565b61074b90610be3565b956102e8565b915060e0863d60e0116107db575b8161076c60e09383610a15565b810103126106745785516001600160a01b038116036106745760c061079360208801610b38565b966107a060408201610b63565b506107ad60608201610b63565b506107ba60808201610b63565b506107c760a08201610b72565b50015180151503610674576004959161029a565b3d915061075f565b90509161025c565b8197610254565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600b60248201527f21546f6b656e4f726465720000000000000000000000000000000000000000006044820152fd5b90506020813d602011610882575b8161086b60209383610a15565b810103126106745761087c90610b24565b5f610112565b3d915061085e565b96509350505050610140833d8211610929575b816108ab6101409383610a15565b81010312610674576108bc83610b24565b926108c960208201610b24565b906108d660408201610b38565b94600460206108e760608501610b38565b9261091c6101206108fa60808801610b38565b9661090760a08201610b46565b506109156101008201610b46565b5001610b46565b50949792939591506100d2565b3d915061089d565b346106745760406003193601126106745761094a610ab4565b6024356001600160a01b03811681036106745761097161096b602093610aca565b91610aca565b12604051908152f35b34610674575f600319360112610674576105de610995610a54565b604051918291602083526020830190610a8f565b346106745760206003193601126106745760206109cc6109c7610ab4565b610aca565b604051908152f35b34610674575f600319360112610674576020906001600160a01b037f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38168152f35b90601f601f19910116810190811067ffffffffffffffff82111761060f57604052565b67ffffffffffffffff811161060f57601f01601f191660200190565b60405190610a63604083610a15565b600182527f53000000000000000000000000000000000000000000000000000000000000006020830152565b90601f19601f602080948051918291828752018686015e5f8582860101520116010190565b600435906001600160a01b038216820361067457565b6001600160a01b03807f000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad3816911614610b00575f90565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff9c90565b51906001600160a01b038216820361067457565b51908160020b820361067457565b51906fffffffffffffffffffffffffffffffff8216820361067457565b519061ffff8216820361067457565b519060ff8216820361067457565b6020818303126106745780519067ffffffffffffffff8211610674570181601f8201121561067457805190610bb482610a38565b92610bc26040519485610a15565b8284526020838301011161067457815f9260208093018386015e8301015290565b610bec81610d56565b90815115610bf8575090565b90506001600160a01b03610c0c6006610a38565b91610c1a6040519384610a15565b60068352601f19610c2b6006610a38565b01366020850137165f5b60038110610c4257505090565b8060130360138111610d29577f1fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81168103610d2957829060031b1c9060f0807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff08416161660ff8316039160ff8311610d2957600f610cc39160041c16610f7c565b8160011b927f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83168303610d2957610d07915f1a610d018588610f3e565b53610f7c565b9160018101809111610d2957610d226001935f1a9186610f3e565b5301610c35565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8060609260405160208101907f95d89b4100000000000000000000000000000000000000000000000000000000825260048152610d95602482610a15565b51915afa903d15610f3857503d90610dac82610a38565b91610dba6040519384610a15565b82523d5f602084013e5b158015610f2f575b610f2057805160208103610eed575060208180518101031261067457602001519060405191610dfc604084610a15565b602080845236848201375f905f5b60208110610e94575050610e1d81610a38565b90610e2b6040519283610a15565b808252601f19610e3a82610a38565b013660208401375f5b818110610e51575090925050565b807fff00000000000000000000000000000000000000000000000000000000000000610e7f60019388610f3e565b51165f1a610e8d8286610f3e565b5301610e43565b81811a7fff000000000000000000000000000000000000000000000000000000000000008160f81b16610ecb575b50600101610e0a565b610ed88487959395610f3e565b535f198114610d295760018091019290610ec2565b9060408211610f0c575050604051610f06602082610a15565b5f815290565b602080610f1d938301019101610b80565b90565b50604051610f06602082610a15565b50805115610dcc565b90610dc4565b908151811015610f4f570160200190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b60ff16600a811015610fbb5760300160ff8111610d295760f81b7fff000000000000000000000000000000000000000000000000000000000000001690565b60370160ff8111610d295760f81b7fff00000000000000000000000000000000000000000000000000000000000000169056fea26469706673582212208bddcfe916242515be91bf26e62f2c9b43d5f1a4d466a664f4f2657e4c254db664736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38
-----Decoded View---------------
Arg [0] : _WETH9 (address): 0x039e2fB66102314Ce7b64Ce5Ce3E5183bc94aD38
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000039e2fb66102314ce7b64ce5ce3e5183bc94ad38
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.