Overview
S Balance
S Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 2 internal transactions
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 50966857 | 101 days ago | Contract Creation | 0 S | |||
| 50966857 | 101 days ago | Contract Creation | 0 S |
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x2b58b3f13a1488d96f47a77ce510eb8c377d827e
Contract Name:
DynamicKinkModel
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {SafeCast} from "openzeppelin5/utils/math/SafeCast.sol";
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {SignedMath} from "openzeppelin5/utils/math/SignedMath.sol";
import {Initializable} from "openzeppelin5/proxy/utils/Initializable.sol";
import {Ownable1and2Steps} from "common/access/Ownable1and2Steps.sol";
import {PRBMathSD59x18} from "../../lib/PRBMathSD59x18.sol";
import {ISilo} from "../../interfaces/ISilo.sol";
import {IDynamicKinkModel} from "../../interfaces/IDynamicKinkModel.sol";
import {IDynamicKinkModelConfig} from "../../interfaces/IDynamicKinkModelConfig.sol";
import {DynamicKinkModelConfig} from "./DynamicKinkModelConfig.sol";
import {KinkMath} from "../../lib/KinkMath.sol";
/// @title DynamicKinkModel
/// @notice Refer to Silo DynamicKinkModel paper for more details.
/// @dev it follows `IInterestRateModel` interface except `initialize` method
/// @custom:security-contact [email protected]
contract DynamicKinkModel is IDynamicKinkModel, Ownable1and2Steps, Initializable {
using KinkMath for int256;
using KinkMath for int96;
using KinkMath for uint256;
/// @dev DP in 18 decimal points used for integer calculations
int256 internal constant _DP = int256(1e18);
/// @dev universal limit for several DynamicKinkModel config parameters. Follow the model whitepaper for more
/// information. Units of measure vary per variable type. Any config within these limits is considered
/// valid.
int256 public constant UNIVERSAL_LIMIT = 1e9 * _DP;
/// @dev maximum value of current interest rate the model will return. This is 1,000% APR in 18-decimals.
int256 public constant RCUR_CAP = 10 * _DP;
/// @dev seconds per year used in interest calculations.
int256 public constant ONE_YEAR = 365 days;
/// @dev maximum value of compound interest per second the model will return. This is per-second rate.
int256 public constant RCOMP_CAP_PER_SECOND = RCUR_CAP / ONE_YEAR;
/// @dev maximum exp() input to prevent an overflow.
int256 public constant X_MAX = 11 * _DP;
uint32 public constant MAX_TIMELOCK = 7 days;
ModelState public modelState;
/// @inheritdoc IDynamicKinkModel
uint256 public activateConfigAt;
/// @dev Map of all configs for the model, used for restoring to last state
mapping(IDynamicKinkModelConfig current => IDynamicKinkModelConfig prev) public configsHistory;
IDynamicKinkModelConfig internal _irmConfig;
constructor() Ownable1and2Steps(address(0xdead)) {
// lock the implementation
_transferOwnership(address(0));
_disableInitializers();
}
function initialize(
IDynamicKinkModel.Config calldata _config,
IDynamicKinkModel.ImmutableArgs calldata _immutableArgs,
address _initialOwner,
address _silo
)
external
virtual
initializer
{
require(_silo != address(0), EmptySilo());
require(_immutableArgs.timelock <= MAX_TIMELOCK, InvalidTimelock());
require(_immutableArgs.rcompCap > 0, InvalidRcompCap());
require(_immutableArgs.rcompCap <= RCUR_CAP, InvalidRcompCap());
IDynamicKinkModel.ImmutableConfig memory immutableConfig = IDynamicKinkModel.ImmutableConfig({
timelock: _immutableArgs.timelock,
rcompCapPerSecond: int96(_immutableArgs.rcompCap / ONE_YEAR) // forge-lint: disable-line(unsafe-typecast)
});
modelState.silo = _silo;
_updateConfiguration({_config: _config, _immutableConfig: immutableConfig, _init: true});
_transferOwnership(_initialOwner);
emit Initialized(_initialOwner, _silo);
}
/// @inheritdoc IDynamicKinkModel
function updateConfig(IDynamicKinkModel.Config calldata _config) external virtual onlyOwner {
_updateConfiguration(_config);
}
/// @inheritdoc IDynamicKinkModel
function cancelPendingUpdateConfig() external virtual onlyOwner {
require(activateConfigAt > block.timestamp, NoPendingUpdateToCancel());
IDynamicKinkModelConfig pendingConfig = _irmConfig;
_irmConfig = configsHistory[pendingConfig];
configsHistory[pendingConfig] = IDynamicKinkModelConfig(address(0));
activateConfigAt = 0;
emit PendingUpdateConfigCanceled(pendingConfig);
}
/// @inheritdoc IDynamicKinkModel
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
virtual
returns (uint256 rcomp)
{
(rcomp, modelState.k) = _getCompoundInterestRate(CompoundInterestRateArgs({
silo: modelState.silo,
collateralAssets: _collateralAssets,
debtAssets: _debtAssets,
interestRateTimestamp: _interestRateTimestamp,
blockTimestamp: block.timestamp,
usePending: false
}));
}
/// @inheritdoc IDynamicKinkModel
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcomp)
{
(rcomp,) = _getCompoundInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: false});
}
function getPendingCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcomp)
{
(rcomp,) = _getCompoundInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: true});
}
/// @notice it reverts for invalid silo
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcur)
{
rcur = _getCurrentInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: false});
}
function getPendingCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
virtual
returns (uint256 rcur)
{
rcur = _getCurrentInterestRate({_silo: _silo, _blockTimestamp: _blockTimestamp, _usePending: true});
}
/// @inheritdoc IDynamicKinkModel
function irmConfig() public view returns (IDynamicKinkModelConfig config) {
config = activateConfigAt > block.timestamp ? configsHistory[_irmConfig] : _irmConfig;
}
/// @inheritdoc IDynamicKinkModel
function pendingIrmConfig() public view returns (address config) {
config = activateConfigAt > block.timestamp ? address(_irmConfig) : address(0);
}
/// @inheritdoc IDynamicKinkModel
function getModelStateAndConfig(bool _usePending)
public
view
virtual
returns (ModelState memory state, Config memory config, ImmutableConfig memory immutableConfig)
{
IDynamicKinkModelConfig irmConfigToUse = _usePending
? IDynamicKinkModelConfig(pendingIrmConfig())
: irmConfig();
require(address(irmConfigToUse) != address(0), NoPendingConfig());
state = modelState;
(config, immutableConfig) = irmConfigToUse.getConfig();
}
/// @inheritdoc IDynamicKinkModel
function verifyConfig(IDynamicKinkModel.Config memory _config) public view virtual {
require(_config.ulow.inClosedInterval(0, _DP), InvalidUlow());
require(_config.u1.inClosedInterval(0, _DP), InvalidU1());
require(_config.u2.inClosedInterval(_config.u1, _DP), InvalidU2());
require(_config.ucrit.inClosedInterval(_config.ulow, _DP), InvalidUcrit());
require(_config.rmin.inClosedInterval(0, _DP), InvalidRmin());
require(_config.kmin.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidKmin());
require(_config.kmax.inClosedInterval(_config.kmin, UNIVERSAL_LIMIT), InvalidKmax());
// we store k as int96, so we double check if it is in the range of int96
require(_config.kmin.inClosedInterval(0, type(int96).max), InvalidKmin());
require(_config.kmax.inClosedInterval(_config.kmin, type(int96).max), InvalidKmax());
require(_config.alpha.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidAlpha());
require(_config.cminus.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidCminus());
require(_config.cplus.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidCplus());
require(_config.c1.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidC1());
require(_config.c2.inClosedInterval(0, UNIVERSAL_LIMIT), InvalidC2());
require(_config.dmax.inClosedInterval(_config.c2, UNIVERSAL_LIMIT), InvalidDmax());
}
/// @inheritdoc IDynamicKinkModel
function currentInterestRate( // solhint-disable-line function-max-lines, code-complexity
Config memory _cfg,
ModelState memory _state,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
public
pure
virtual
returns (int256 rcur)
{
if (_tba == 0) return 0; // no debt, no interest
int256 T = _t1 - _t0;
// k is stored capped, so we can use it as is
int256 k = _state.k;
if (_u < _cfg.u1) {
k = SignedMath.max(k - (_cfg.c1 + _cfg.cminus * (_cfg.u1 - _u) / _DP) * T, _cfg.kmin);
} else if (_u > _cfg.u2) {
k = SignedMath.min(
k + SignedMath.min(_cfg.c2 + _cfg.cplus * (_u - _cfg.u2) / _DP, _cfg.dmax) * T, _cfg.kmax
);
}
int256 excessU; // additional interest rate
if (_u >= _cfg.ulow) {
excessU = _u - _cfg.ulow;
if (_u >= _cfg.ucrit) {
excessU = excessU + _cfg.alpha * (_u - _cfg.ucrit) / _DP;
}
rcur = excessU * k * ONE_YEAR / _DP + _cfg.rmin * ONE_YEAR;
} else {
rcur = _cfg.rmin * ONE_YEAR;
}
require(rcur >= 0, NegativeRcur());
rcur = SignedMath.min(rcur, RCUR_CAP);
}
/// @inheritdoc IDynamicKinkModel
function compoundInterestRate( // solhint-disable-line code-complexity, function-max-lines
Config memory _cfg,
ModelState memory _state,
int256 _rcompCapPerSecond,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
public
pure
virtual
returns (int256 rcomp, int256 k)
{
// no debt, no interest, overriding min APR
if (_tba == 0) return (0, _state.k);
LocalVarsRCOMP memory _l;
require(_t0 <= _t1, InvalidTimestamp());
_l.T = _t1 - _t0;
// if there is no time change, then k should not change
if (_l.T == 0) return (0, _state.k);
// rate of change of k
if (_u < _cfg.u1) {
_l.roc = -_cfg.c1 - _cfg.cminus * (_cfg.u1 - _u) / _DP;
} else if (_u > _cfg.u2) {
_l.roc = SignedMath.min(_cfg.c2 + _cfg.cplus * (_u - _cfg.u2) / _DP, _cfg.dmax);
}
k = _state.k;
// slope of the kink at t1 ignoring lower and upper bounds
_l.k1 = k + _l.roc * _l.T;
// calculate the resulting slope state
if (_l.k1 > _cfg.kmax) {
_l.x = _cfg.kmax * _l.T - (_cfg.kmax - k) ** 2 / (2 * _l.roc);
k = _cfg.kmax;
} else if (_l.k1 < _cfg.kmin) {
_l.x = _cfg.kmin * _l.T - (k - _cfg.kmin) ** 2 / (2 * _l.roc);
k = _cfg.kmin;
} else {
_l.x = (k + _l.k1) * _l.T / 2;
k = _l.k1;
}
if (_u >= _cfg.ulow) {
_l.f = _u - _cfg.ulow;
if (_u >= _cfg.ucrit) {
_l.f = _l.f + _cfg.alpha * (_u - _cfg.ucrit) / _DP;
}
}
_l.x = _cfg.rmin * _l.T + _l.f * _l.x / _DP;
// Overflow Checks
// limit x, so the exp() function will not overflow, we have unchecked math there
require(_l.x <= X_MAX, XOverflow());
rcomp = PRBMathSD59x18.exp(_l.x) - _DP;
require(rcomp >= 0, NegativeRcomp());
// limit rcomp
if (rcomp > _rcompCapPerSecond * _l.T) {
rcomp = _rcompCapPerSecond * _l.T;
// k should be set to min only on overflow or cap
k = _cfg.kmin;
}
}
function _updateConfiguration(IDynamicKinkModel.Config memory _config) internal virtual {
// even if _irmConfig is pending timelock, immutable config can be pulled from it
(, IDynamicKinkModel.ImmutableConfig memory immutableConfig) = _irmConfig.getConfig();
_updateConfiguration({_config: _config, _immutableConfig: immutableConfig, _init: false});
}
function _updateConfiguration(
IDynamicKinkModel.Config memory _config,
IDynamicKinkModel.ImmutableConfig memory _immutableConfig,
bool _init
) internal virtual {
require(activateConfigAt <= block.timestamp, PendingUpdate());
activateConfigAt = _init ? block.timestamp : block.timestamp + _immutableConfig.timelock;
verifyConfig(_config);
IDynamicKinkModelConfig newCfg = IDynamicKinkModelConfig(new DynamicKinkModelConfig(_config, _immutableConfig));
configsHistory[newCfg] = _irmConfig;
modelState.k = _config.kmin;
_irmConfig = newCfg;
emit NewConfig(newCfg, activateConfigAt);
}
function _getCompoundInterestRate(
address _silo,
uint256 _blockTimestamp,
bool _usePending
)
internal
view
virtual
returns (uint256 rcomp, int96 k)
{
ISilo.UtilizationData memory data = ISilo(_silo).utilizationData();
(rcomp, k) = _getCompoundInterestRate(CompoundInterestRateArgs({
silo: _silo,
collateralAssets: data.collateralAssets,
debtAssets: data.debtAssets,
interestRateTimestamp: data.interestRateTimestamp,
blockTimestamp: _blockTimestamp,
usePending: _usePending
}));
}
function _getCompoundInterestRate(CompoundInterestRateArgs memory _args)
internal
view
virtual
returns (uint256 rcomp, int96 k)
{
(ModelState memory state, Config memory cfg, ImmutableConfig memory immutableCfg) =
getModelStateAndConfig(_args.usePending);
require(_args.silo == state.silo, InvalidSilo());
if (_args.interestRateTimestamp.wouldOverflowOnCastToInt256()) return (0, 0);
if (_args.blockTimestamp.wouldOverflowOnCastToInt256()) return (0, 0);
if (_args.collateralAssets.wouldOverflowOnCastToInt256()) return (0, 0);
if (_args.debtAssets.wouldOverflowOnCastToInt256()) return (0, 0);
try this.compoundInterestRate({
_cfg: cfg,
_state: state,
_rcompCapPerSecond: immutableCfg.rcompCapPerSecond,
_t0: int256(uint256(_args.interestRateTimestamp)),
_t1: int256(_args.blockTimestamp),
_u: _calculateUtiliation(_args.collateralAssets, _args.debtAssets),
_tba: int256(_args.debtAssets)
}) returns (int256 rcompInt, int256 newK) {
rcomp = SafeCast.toUint256(rcompInt);
k = _capK(newK, cfg.kmin, cfg.kmax);
} catch {
rcomp = 0;
k = cfg.kmin; // k should be set to min on overflow
}
}
function _getCurrentInterestRate(address _silo, uint256 _blockTimestamp, bool _usePending)
internal
view
virtual
returns (uint256 rcur)
{
(ModelState memory state, Config memory cfg,) = getModelStateAndConfig(_usePending);
require(_silo == state.silo, InvalidSilo());
ISilo.UtilizationData memory data = ISilo(state.silo).utilizationData();
if (data.debtAssets.wouldOverflowOnCastToInt256()) return 0;
if (_blockTimestamp.wouldOverflowOnCastToInt256()) return 0;
try this.currentInterestRate({
_cfg: cfg,
_state: state,
_t0: SafeCast.toInt256(data.interestRateTimestamp),
_t1: int256(_blockTimestamp), // forge-lint: disable-line(unsafe-typecast)
_u: _calculateUtiliation(data.collateralAssets, data.debtAssets),
_tba: int256(data.debtAssets) // forge-lint: disable-line(unsafe-typecast)
}) returns (int256 rcurInt) {
rcur = SafeCast.toUint256(rcurInt);
} catch {
rcur = 0;
}
}
// hard rule: utilization in the model should never be above 100%.
function _calculateUtiliation(uint256 _collateralAssets, uint256 _debtAssets)
internal
pure
virtual
returns (int256)
{
if (_debtAssets == 0) return 0;
if (_collateralAssets == 0 || _debtAssets >= _collateralAssets) return _DP;
// forge-lint: disable-next-line(unsafe-typecast)
return int256(Math.mulDiv(_debtAssets, uint256(_DP), _collateralAssets, Math.Rounding.Floor));
}
/// @dev we expect _kmin and _kmax to be in the range of int96
function _capK(int256 _k, int256 _kmin, int256 _kmax) internal pure virtual returns (int96 cappedK) {
require(_kmin <= _kmax, InvalidKRange());
// safe to cast to int96, because we know, that _kmin and _kmax are in the range of int96
cappedK = int96(SignedMath.max(_kmin, SignedMath.min(_kmax, _k)));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.20;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Storage of the initializable contract.
*
* It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
* when using with upgradeable contracts.
*
* @custom:storage-location erc7201:openzeppelin.storage.Initializable
*/
struct InitializableStorage {
/**
* @dev Indicates that the contract has been initialized.
*/
uint64 _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool _initializing;
}
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;
/**
* @dev The contract is already initialized.
*/
error InvalidInitialization();
/**
* @dev The contract is not initializing.
*/
error NotInitializing();
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint64 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
* number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
* production.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
// Cache values to avoid duplicated sloads
bool isTopLevelCall = !$._initializing;
uint64 initialized = $._initialized;
// Allowed calls:
// - initialSetup: the contract is not in the initializing state and no previous version was
// initialized
// - construction: the contract is initialized at version 1 (no reininitialization) and the
// current contract is just being deployed
bool initialSetup = initialized == 0 && isTopLevelCall;
bool construction = initialized == 1 && address(this).code.length == 0;
if (!initialSetup && !construction) {
revert InvalidInitialization();
}
$._initialized = 1;
if (isTopLevelCall) {
$._initializing = true;
}
_;
if (isTopLevelCall) {
$._initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint64 version) {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing || $._initialized >= version) {
revert InvalidInitialization();
}
$._initialized = version;
$._initializing = true;
_;
$._initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
_checkInitializing();
_;
}
/**
* @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
*/
function _checkInitializing() internal view virtual {
if (!_isInitializing()) {
revert NotInitializing();
}
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
// solhint-disable-next-line var-name-mixedcase
InitializableStorage storage $ = _getInitializableStorage();
if ($._initializing) {
revert InvalidInitialization();
}
if ($._initialized != type(uint64).max) {
$._initialized = type(uint64).max;
emit Initialized(type(uint64).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint64) {
return _getInitializableStorage()._initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _getInitializableStorage()._initializing;
}
/**
* @dev Returns a pointer to the storage namespace.
*/
// solhint-disable-next-line var-name-mixedcase
function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
assembly {
$.slot := INITIALIZABLE_STORAGE
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.28;
import {Ownable2Step, Ownable} from "openzeppelin5/access/Ownable2Step.sol";
/// @dev This contract is a wrapper around Ownable2Step that allows for 1-step ownership transfer
abstract contract Ownable1and2Steps is Ownable2Step {
constructor(address _initialOwner) Ownable(_initialOwner) {}
/// @notice Transfer ownership to a new address. Pending ownership transfer will be canceled.
/// @param newOwner The new owner of the contract
function transferOwnership1Step(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
Ownable2Step._transferOwnership(newOwner);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {PRBMathCommon} from "./PRBMathCommon.sol";
/* solhint-disable */
/// @title PRBMathSD59x18
/// @author Paul Razvan Berg
/// @notice Smart contract library for advanced fixed-point math. It works with int256 numbers considered to have 18
/// trailing decimals. We call this number representation signed 59.18-decimal fixed-point, since the numbers can have
/// a sign and there can be up to 59 digits in the integer part and up to 18 decimals in the fractional part. The numbers
/// are bound by the minimum and the maximum values permitted by the Solidity type int256.
library PRBMathSD59x18 {
/// @dev log2(e) as a signed 59.18-decimal fixed-point number.
int256 internal constant _LOG2_E = 1442695040888963407;
/// @dev Half the SCALE number.
int256 internal constant _HALF_SCALE = 5e17;
/// @dev The maximum value a signed 59.18-decimal fixed-point number can have.
int256 internal constant _MAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728792003956564819967;
/// @dev How many trailing decimals can be represented.
int256 internal constant _SCALE = 1e18;
/// INTERNAL FUNCTIONS ///
/// @notice Calculates the natural exponent of x.
///
/// @dev Based on the insight that e^x = 2^(x * log2(e)).
///
/// Requirements:
/// - All from "log2".
/// - x must be less than 88722839111672999628.
///
/// @param x The exponent as a signed 59.18-decimal fixed-point number.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function exp(int256 x) internal pure returns (int256 result) {
// Without this check, the value passed to "exp2" would be less than -59794705707972522261.
if (x < -41446531673892822322) {
return 0;
}
// Without this check, the value passed to "exp2" would be greater than 128e18.
require(x < 88722839111672999628);
// Do the fixed-point multiplication inline to save gas.
unchecked {
int256 doubleScaleProduct = x * _LOG2_E;
result = exp2((doubleScaleProduct + _HALF_SCALE) / _SCALE);
}
}
/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Requirements:
/// - x must be 128e18 or less.
/// - The result must fit within MAX_SD59x18.
///
/// Caveats:
/// - For any x less than -59794705707972522261, the result is zero.
///
/// @param x The exponent as a signed 59.18-decimal fixed-point number.
/// @return result The result as a signed 59.18-decimal fixed-point number.
function exp2(int256 x) internal pure returns (int256 result) {
// This works because 2^-x = 1/2^x.
if (x < 0) {
// 2**59.794705707972522262 is the maximum number whose inverse does not equal zero.
if (x < -59794705707972522261) {
return 0;
}
// Do the fixed-point inversion inline to save gas. The numerator is SCALE * SCALE.
unchecked { result = 1e36 / exp2(-x); }
return result;
} else {
// 2**128 doesn't fit within the 128.128-bit fixed-point representation.
require(x < 128e18);
unchecked {
// Convert x to the 128.128-bit fixed-point format.
uint256 x128x128 = (uint256(x) << 128) / uint256(_SCALE);
// Safe to convert the result to int256 directly because the maximum input allowed is 128e18.
result = int256(PRBMathCommon.exp2(x128x128));
}
}
}
}
/* solhint-enable */// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";
import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
/// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
/// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
/// to make a decision inside functions if interest should be accrued in memory to work on updated values.
enum AccrueInterestInMemory {
No,
Yes
}
/// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
/// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
/// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
/// because it's used as denominator for ETH and it's "price" can be assume as 1.
enum OracleType {
Solvency,
MaxLtv
}
/// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
/// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum AssetType {
Protected, // default
Collateral,
Debt
}
/// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
/// for borrowable collateral deposit called "collateral". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum CollateralType {
Protected, // default
Collateral
}
/// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
enum CallType {
Call, // default
Delegatecall
}
/// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
/// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
/// @param _receiver Address receiving the withdrawn assets
/// @param _owner Address of the owner of the shares being burned
/// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
/// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
struct WithdrawArgs {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
ISilo.CollateralType collateralType;
}
/// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
/// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
/// assets are provided.
/// @param receiver Address that will receive the borrowed assets
/// @param borrower The user who is borrowing the assets
struct BorrowArgs {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
}
/// @param shares Amount of shares the user wishes to transit.
/// @param owner owner of the shares after transition.
/// @param transitionFrom type of collateral that will be transitioned.
struct TransitionCollateralArgs {
uint256 shares;
address owner;
ISilo.CollateralType transitionFrom;
}
struct UtilizationData {
/// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
uint256 collateralAssets;
/// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
uint256 debtAssets;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
}
/// @dev Interest and revenue may be rounded down to zero if the underlying token's decimal is low.
/// Because of that, we need to store fractions for further calculation to minimize losses.
struct Fractions {
/// @dev interest value that we could not convert to full token in 36 decimals, max value for it is 1e18.
/// this value was not yet apply as interest for borrowers
uint64 interest;
/// @dev revenue value that we could not convert to full token in 36 decimals, max value for it is 1e18.
uint64 revenue;
}
struct SiloStorage {
/// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
/// but not yet withdrawn
uint192 daoAndDeployerRevenue;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
/// @dev Interest and revenue fractions for more precise calculations
Fractions fractions;
/// @dev silo is just for one asset,
/// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
/// Assets based on type:
/// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
/// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
/// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
/// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
/// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
/// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
mapping(AssetType assetType => uint256 assets) totalAssets;
}
/// @notice Emitted on protected deposit
/// @param sender wallet address that deposited asset
/// @param owner wallet address that received shares in Silo
/// @param assets amount of asset that was deposited
/// @param shares amount of shares that was minted
event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice Emitted on protected withdraw
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owned asset
/// @param assets amount of asset that was withdrew
/// @param shares amount of shares that was burn
event WithdrawProtected(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on borrow
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owes assets
/// @param assets amount of asset that was borrowed
/// @param shares amount of shares that was minted
event Borrow(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on repayment
/// @param sender wallet address that repaid asset
/// @param owner wallet address that owed asset
/// @param assets amount of asset that was repaid
/// @param shares amount of shares that was burn
event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice emitted only when collateral has been switched to other one
event CollateralTypeChanged(address indexed borrower);
event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);
event AccruedInterest(uint256 hooksBefore);
event FlashLoan(uint256 amount);
event WithdrawnFees(uint256 daoFees, uint256 deployerFees, bool redirectedDeployerFees);
event DeployerFeesRedirected(uint256 deployerFees);
error UnsupportedFlashloanToken();
error FlashloanAmountTooBig();
error NothingToWithdraw();
error ProtectedProtection();
error NotEnoughLiquidity();
error NotSolvent();
error BorrowNotPossible();
error EarnedZero();
error FlashloanFailed();
error AboveMaxLtv();
error SiloInitialized();
error OnlyHookReceiver();
error NoLiquidity();
error InputCanBeAssetsOrShares();
error CollateralSiloAlreadySet();
error RepayTooHigh();
error ZeroAmount();
error InputZeroShares();
error ReturnZeroAssets();
error ReturnZeroShares();
/// @return siloFactory The associated factory of the silo
function factory() external view returns (ISiloFactory siloFactory);
/// @notice Method for HookReceiver only to call on behalf of Silo
/// @param _target address of the contract to call
/// @param _value amount of ETH to send
/// @param _callType type of the call (Call or Delegatecall)
/// @param _input calldata for the call
function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
external
payable
returns (bool success, bytes memory result);
/// @notice Initialize Silo
/// @param _siloConfig address of ISiloConfig with full config for this Silo
function initialize(ISiloConfig _siloConfig) external;
/// @notice Update hooks configuration for Silo
/// @dev This function must be called after the hooks configuration is changed in the hook receiver
function updateHooks() external;
/// @notice Fetches the silo configuration contract
/// @return siloConfig Address of the configuration contract associated with the silo
function config() external view returns (ISiloConfig siloConfig);
/// @notice Fetches the utilization data of the silo used by IRM
function utilizationData() external view returns (UtilizationData memory utilizationData);
/// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
/// @return liquidity The amount of liquidity
function getLiquidity() external view returns (uint256 liquidity);
/// @notice Determines if a borrower is solvent
/// @param _borrower Address of the borrower to check for solvency
/// @return True if the borrower is solvent, otherwise false
function isSolvent(address _borrower) external view returns (bool);
/// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);
/// @notice Direct storage access to silo storage
/// @dev See struct `SiloStorage` for more details
function getSiloStorage()
external
view
returns (
uint192 daoAndDeployerRevenue,
uint64 interestRateTimestamp,
uint256 protectedAssets,
uint256 collateralAssets,
uint256 debtAssets
);
/// @notice Direct access to silo storage fractions variables
function getFractionsStorage() external view returns (Fractions memory fractions);
/// @notice Retrieves the total amount of collateral (borrowable) assets with interest
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
function getCollateralAssets() external view returns (uint256 totalCollateralAssets);
/// @notice Retrieves the total amount of debt assets with interest
/// @return totalDebtAssets The total amount of assets of type 'Debt'
function getDebtAssets() external view returns (uint256 totalDebtAssets);
/// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
function getCollateralAndProtectedTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);
/// @notice Retrieves the total amounts of collateral and debt assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalDebtAssets The total amount of debt assets of type 'Debt'
function getCollateralAndDebtTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);
/// @notice Implements IERC4626.convertToShares for each asset type
function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);
/// @notice Implements IERC4626.convertToAssets for each asset type
function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);
/// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);
/// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);
/// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);
/// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrow(address _borrower) external view returns (uint256 maxAssets);
/// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
/// @param _assets Amount of assets to preview the equivalent shares for
/// @return shares Amount of shares equivalent to the provided asset amount
function previewBorrow(uint256 _assets) external view returns (uint256 shares);
/// @notice Allows an address to borrow a specified amount of assets
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrow(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Calculates the maximum amount of shares that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxShares Maximum number of shares that the borrower can borrow
function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);
/// @notice Previews the amount of assets equivalent to the given share amount for borrowing
/// @param _shares Amount of shares to preview the equivalent assets for
/// @return assets Amount of assets equivalent to the provided share amount
function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);
/// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the
/// same asset
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Allows a user to borrow assets based on the provided share amount
/// @param _shares Amount of shares to borrow against
/// @param _receiver Address to receive the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return assets Amount of assets borrowed
function borrowShares(uint256 _shares, address _receiver, address _borrower)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount an address can repay based on their debt shares
/// @param _borrower Address of the borrower
/// @return assets Maximum amount of assets the borrower can repay
function maxRepay(address _borrower) external view returns (uint256 assets);
/// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
/// @param _assets Amount of assets to be repaid
/// @return shares Estimated number of shares equivalent to the provided asset amount
function previewRepay(uint256 _assets) external view returns (uint256 shares);
/// @notice Repays a given asset amount and returns the equivalent number of shares
/// @param _assets Amount of assets to be repaid
/// @param _borrower Address of the borrower whose debt is being repaid
/// @return shares The equivalent number of shares for the provided asset amount
function repay(uint256 _assets, address _borrower) external returns (uint256 shares);
/// @notice Calculates the maximum number of shares that can be repaid for a given borrower
/// @param _borrower Address of the borrower
/// @return shares The maximum number of shares that can be repaid for the borrower
function maxRepayShares(address _borrower) external view returns (uint256 shares);
/// @notice Provides a preview of the equivalent assets for a given number of shares to repay
/// @param _shares Number of shares to preview repayment for
/// @return assets Equivalent assets for the provided shares
function previewRepayShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Allows a user to repay a loan using shares instead of assets
/// @param _shares The number of shares the borrower wants to repay with
/// @param _borrower The address of the borrower for whom to repay the loan
/// @return assets The equivalent assets amount for the provided shares
function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);
/// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
/// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
/// leaving the protocol
/// @param _shares Amount of shares to be transitioned
/// @param _owner Owner of the assets being transitioned
/// @param _transitionFrom Specifies if the transition is from collateral or protected assets
/// @return assets Amount of assets transitioned
function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
external
returns (uint256 assets);
/// @notice Switches the collateral silo to this silo
/// @dev Revert if the collateral silo is already set
function switchCollateralToThisSilo() external;
/// @notice Accrues interest for the asset and returns the accrued interest amount
/// @return accruedInterest The total interest accrued during this operation
function accrueInterest() external returns (uint256 accruedInterest);
/// @notice only for SiloConfig
function accrueInterestForConfig(
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) external;
/// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
function withdrawFees() external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IDynamicKinkModelConfig} from "./IDynamicKinkModelConfig.sol";
/// @title IDynamicKinkModel
/// @notice Interface for the Dynamic Kink Interest Rate Model
/// @dev This interface defines an adaptive interest rate model that dynamically adjusts rates based on market
/// utilization.
/// The model uses a "kink" mechanism where interest rates change more aggressively as utilization increases.
/// Unlike static models, this implementation adapts over time to market conditions.
///
/// Key Features:
/// - Dynamic rate adjustment based on utilization thresholds
/// - Time-based rate evolution to prevent sudden spikes
/// - Configurable parameters for different market conditions
/// - Compound interest calculation for accurate accrual
///
/// The model operates with several utilization zones:
/// - Low utilization (0 to ulow): Minimal rates to encourage borrowing
/// - Optimal range (u1 to u2): Stable rates for normal operations
/// - High utilization (u2 to ucrit): Increasing rates to manage risk
/// - Critical utilization (ucrit to 1e18): Maximum rates
interface IDynamicKinkModel {
/// @notice User-friendly configuration structure for setting up the Dynamic Kink Model
/// @dev This structure provides intuitive parameters that are converted to internal model parameters.
/// All utilization values are in 18 decimals (e.g., 0.5e18 = 50% utilization).
/// All time values are in seconds.
///
/// @param ulow Utilization threshold below which rates are minimal
/// @param ucrit Critical utilization threshold where rates become very high
/// @param u1 lower bound of optimal utilization range (the model is static when utilization is in this interval).
/// @param u2 upper bound of optimal utilization range (the model is static when utilization is in this interval).
/// @param rmin Minimal per-second interest rate (minimal APR), active below ulow.
/// @param rcritMin Minimal APR that the model can output at the critical utilization ucrit
/// @param rcritMax Maximal APR that the model can output at the critical utilization ucrit
/// @param r100 Maximum possible per-second rate at 100% utilization
/// @param t1 Time in seconds for rate to decrease from max to min at u1 utilization
/// @param t2 Time in seconds for rate to increase from min to max at u2 utilization
/// @param tlow Time in seconds to reset rates when utilization drops to ulow
/// @param tcrit Time in seconds for rate to increase from min to max at critical utilization
/// @param tMin minimal time it takes to grow from the minimal to the maximal APR at any utilization
struct UserFriendlyConfig {
uint64 ulow;
uint64 ucrit;
uint64 u1;
uint64 u2;
uint72 rmin;
uint72 rcritMin;
uint72 rcritMax;
uint72 r100;
uint32 t1;
uint32 t2;
uint32 tlow;
uint32 tcrit;
uint32 tMin;
}
/// @dev same as UserFriendlyConfig but with int256 values to help with calculations
struct UserFriendlyConfigInt {
int256 ulow;
int256 ucrit;
int256 u1;
int256 u2;
int256 rmin;
int256 rcritMin;
int256 rcritMax;
int256 r100;
int256 t1;
int256 t2;
int256 tlow;
int256 tcrit;
int256 tMin;
}
/// @notice Internal configuration structure used by the model for calculations
/// @dev These values are used in the mathematical calculations of the interest rate model.
/// Utilization values are in 18 decimals 1e18 = 100%.
/// @param ulow ulow ∈ [0, 1e18) Low utilization threshold
/// @param u1 u1 ∈ [0, 1e18) Lower bound of optimal utilization range
/// @param u2 u2 ∈ [u1, 1e18) Upper bound of optimal utilization range
/// @param ucrit ucrit ∈ [ulow, 1e18) Critical utilization threshold
/// @param rmin rmin >= 0 Minimal per-second interest rate
/// @param kmin kmin >= 0 Minimal slope k of central segment (curve) of the kink
/// @param kmax kmax >= kmin Maximal slope k of central segment (curve) of the kink
/// @param alpha alpha >= 0 Factor controlling the slope for the critical segment of the kink
/// @param cminus cminus >= 0 Coefficient of decrease of the slope k
/// @param cplus cplus >= 0 Coefficient for increasing the slope k
/// @param c1 c1 >= 0 Minimal rate of decrease of the slope k
/// @param c2 c2 >= 0 Minimal growth rate of the slope k
/// @param dmax dmax >= 0 Maximum growth rate of the slope k
struct Config {
int256 ulow;
int256 u1;
int256 u2;
int256 ucrit;
int256 rmin;
int96 kmin;
int96 kmax;
int256 alpha;
int256 cminus;
int256 cplus;
int256 c1;
int256 c2;
int256 dmax;
}
struct ImmutableArgs {
uint32 timelock;
int96 rcompCap;
}
struct ImmutableConfig {
uint32 timelock;
int96 rcompCapPerSecond;
}
/// @notice Internal variables used during compound interest calculations
/// @dev This structure contains temporary variables used in the mathematical calculations.
/// Integrators typically don't need to interact with these values directly.
///
/// @param T Time elapsed since the last interest rate update (in seconds)
/// @param k1 Internal variable for slope calculations
/// @param f Factor used in kink slope calculations
/// @param roc Rate of change variable for slope calculations
/// @param x Internal calculation variable
/// @param interest Absolute value of compounded interest
struct LocalVarsRCOMP {
int256 T;
int256 k1;
int256 f;
int256 roc;
int256 x;
int256 interest;
}
struct CompoundInterestRateArgs {
address silo;
uint256 collateralAssets;
uint256 debtAssets;
uint256 interestRateTimestamp;
uint256 blockTimestamp;
bool usePending;
}
/// @notice Current state of the Dynamic Kink Model
/// @dev This structure tracks the current state of the model, including the dynamic slope value
/// that changes over time based on utilization patterns.
///
/// @param k Current slope value of the kink curve (changes dynamically over time)
/// @param silo Address of the Silo contract this model is associated with
struct ModelState {
int96 k;
address silo;
}
/// @notice Emitted when the model is initialized with a new configuration
/// @param owner Address that will own this model instance
/// @param silo Address of the Silo contract this model is associated with
event Initialized(address indexed owner, address indexed silo);
/// @notice Emitted when a new configuration is set for the model
/// @param config The new configuration contract address
/// @param activeAt Timestamp at which the configuration becomes active
event NewConfig(IDynamicKinkModelConfig indexed config, uint256 activeAt);
/// @notice Emitted when a pending configuration update is canceled
/// @param config The canceled configuration contract address
event PendingUpdateConfigCanceled(IDynamicKinkModelConfig indexed config);
error AddressZero();
error AlphaDividerZero();
error AlreadyInitialized();
error EmptySilo();
error InvalidAlpha();
error InvalidC1();
error InvalidC2();
error InvalidCminus();
error InvalidCplus();
error InvalidDefaultConfig();
error InvalidDmax();
error InvalidKmax();
error InvalidKmin();
error InvalidKRange();
error InvalidRcompCap();
error InvalidRcritMax();
error InvalidRcritMin();
error InvalidRmin();
error InvalidSilo();
error InvalidT1();
error InvalidT2();
error InvalidTimelock();
error InvalidTimestamp();
error InvalidTMin();
error InvalidTLow();
error InvalidTCrit();
error InvalidU1();
error InvalidU2();
error InvalidUcrit();
error InvalidUlow();
error NegativeRcomp();
error NegativeRcur();
error NoPendingUpdateToCancel();
error NoPendingConfig();
error OnlySilo();
error PendingUpdate();
error XOverflow();
/// @notice Initialize the Dynamic Kink Model with configuration and ownership
/// @dev This function sets up the model for a specific Silo contract. Can only be called once.
/// @param _config The configuration parameters for the interest rate model
/// @param _immutableArgs The immutable configuration parameters for the interest rate model
/// @param _initialOwner Address that will own and control this model instance
/// @param _silo Address of the Silo contract this model will serve
function initialize(
IDynamicKinkModel.Config calldata _config,
IDynamicKinkModel.ImmutableArgs calldata _immutableArgs,
address _initialOwner,
address _silo
)
external;
/// @notice Update the model configuration
/// @dev This function allows the model owner to update the configuration of the model.
/// By setting the same config, we can reset k to kmin.
/// @param _config The new configuration parameters for the interest rate model
function updateConfig(IDynamicKinkModel.Config calldata _config) external;
/// @notice Cancel the pending configuration update
/// @dev This function allows the model owner to cancel the pending configuration update.
/// It will revert if there is no pending update.
function cancelPendingUpdateConfig() external;
/// @notice Calculate compound interest rate and update the model's internal state
/// @dev This function is the primary method used by Silo contracts to calculate
/// and accrue interest. Unlike getCompoundInterestRate(), this function
/// modifies the model's internal state by updating the dynamic slope value (k).
///
/// This function should only be called by the associated Silo contract,
/// as it performs state updates that affect future interest calculations.
/// It includes comprehensive overflow protection and gracefully handles
/// calculation errors by returning 0 and resetting the slope to minimum.
///
/// The function calculates interest based on:
/// - Current collateral and debt amounts
/// - Time elapsed since last interest rate update
/// - Dynamic slope adjustments based on utilization patterns
///
/// @param _collateralAssets Total collateral assets in the Silo (in asset units)
/// @param _debtAssets Total debt assets in the Silo (in asset units)
/// @param _interestRateTimestamp Timestamp of the last interest rate update
/// @return rcomp Total compound interest multiplier (in 18 decimals, represents total accrued interest)
/// @custom:throws OnlySilo() if called by any address other than the associated Silo contract
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
/// @notice Get the current (active) configuration contract for this model
/// @return config The IDynamicKinkModelConfig contract containing the model parameters
function irmConfig() external view returns (IDynamicKinkModelConfig config);
/// @notice Get both the current model state and configuration
/// @param _usePending Whether to use the pending configuration to pull config from
/// @return state Current state of the model (including dynamic slope value)
/// @return config configuration parameters, either active or pending, depending on _usePending
/// @return immutableConfig Immutable configuration parameters
function getModelStateAndConfig(bool _usePending)
external
view
returns (ModelState memory state, Config memory config, ImmutableConfig memory immutableConfig);
/// @notice Maximum compound interest rate per second (prevents extreme rates)
/// @return cap Maximum per-second compound interest rate in 18 decimals
function RCOMP_CAP_PER_SECOND() external view returns (int256 cap); // solhint-disable-line func-name-mixedcase
/// @notice Maximum current interest rate (prevents extreme APRs)
/// @return cap Maximum annual interest rate in 18 decimals (e.g., 25e18 = 2500% APR)
function RCUR_CAP() external view returns (int256 cap); // solhint-disable-line func-name-mixedcase
/// @notice Number of seconds in one year (used for rate calculations)
/// @return secondsInYear Seconds in one year (365 days)
function ONE_YEAR() external view returns (int256 secondsInYear); // solhint-disable-line func-name-mixedcase
/// @notice Maximum input value for exponential calculations (prevents overflow)
/// @return max Maximum safe input value for exp() function
function X_MAX() external view returns (int256 max); // solhint-disable-line func-name-mixedcase
/// @notice Universal limit for various model parameters
/// @return limit Maximum allowed value for certain configuration parameters
function UNIVERSAL_LIMIT() external view returns (int256 limit); // solhint-disable-line func-name-mixedcase
/// @notice Maximum time lock for configuration changes
/// @return maxTimeLock Maximum time lock for configuration changes
function MAX_TIMELOCK() external view returns (uint32 maxTimeLock); // solhint-disable-line func-name-mixedcase
/// @return timestamp Timestamp at which the pending configuration becomes active
function activateConfigAt() external view returns (uint256 timestamp);
/// @return pendingIrmConfig Pending irm config for configuration changes, 0 if no pending
function pendingIrmConfig() external view returns (address pendingIrmConfig);
/// @notice Validate that configuration parameters are within acceptable limits
/// @dev This function checks if all configuration parameters are within the safe operating ranges
/// defined by the model whitepaper. Some limits are narrower than the original whitepaper
/// due to additional research and safety considerations.
///
/// For detailed limits, see:
/// https://silofinance.atlassian.net/wiki/spaces/SF/pages/347963393/DynamicKink+model+config+limits+V1
///
/// @param _config The configuration to validate (does not include model state)
/// @custom:throws Reverts if any parameter is outside acceptable limits
function verifyConfig(IDynamicKinkModel.Config calldata _config) external view;
/// @notice Calculate compound interest rate for a specific Silo at a given timestamp
/// @dev This function calculates the total compound interest that has accrued over time
/// for a specific Silo contract.
///
/// The function fetches current utilization data from the Silo contract and
/// calculates interest based on the time elapsed since the last rate update.
/// It handles overflow protection and returns 0 if calculations would overflow.
///
/// @param _silo Address of the Silo contract to calculate interest for
/// @param _blockTimestamp Timestamp to calculate interest up to (usually block.timestamp)
/// @return rcomp Total compound interest multiplier (in 18 decimals, represents total accrued interest)
/// @custom:throws InvalidSilo() if the provided Silo address doesn't match this model's associated Silo
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @notice Same as getCompoundInterestRate but uses pending configuration, throws if no pending
function getPendingCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @notice get current annual interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp timestamp to calculate interest up to (usually block.timestamp)
/// @return rcur current annual interest rate (1e18 == 100%)
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @notice Same as getCurrentInterestRate but uses pending configuration, throws if no pending
function getPendingCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @notice Calculate the compound interest rate for a given time period
/// @dev This function calculates how much interest has accrued over a time period,
/// taking into account the dynamic nature of the kink model. The rate changes
/// over time based on utilization patterns and the model's adaptive behavior.
///
/// This is the core function used by Silo contracts to determine how much
/// interest borrowers owe and how much lenders should receive.
///
/// @param _cfg Model configuration parameters
/// @param _state Current model state (including dynamic slope value)
/// @param _rcompCapPerSecond Maximum compound interest rate per second
/// @param _t0 Timestamp of the last interest rate update
/// @param _t1 Current timestamp for the calculation
/// @param _u Utilization ratio at time _t0 (0 to 1e18, where 1e18 = 100% utilized)
/// @param _tba Total borrowed amount at time _t1
/// @return rcomp Total compound interest accrued over the time period (in 18 decimals, represents multiplier)
/// @return k Updated model state (new slope value) at time _t1
function compoundInterestRate(
Config memory _cfg,
ModelState memory _state,
int256 _rcompCapPerSecond,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
external
pure
returns (int256 rcomp, int256 k);
/// @notice Calculate the current instantaneous interest rate
/// @dev This function returns the current interest rate that would apply if a new
/// transaction were to occur right now. Unlike compoundInterestRate, this
/// doesn't calculate accrued interest over time, but rather the rate at
/// the current moment.
///
/// This is useful for:
/// - Displaying current rates to users
/// - Calculating what rate would apply to new borrows
/// - Monitoring rate changes in real-time
///
/// @param _cfg Model configuration parameters
/// @param _state Current model state (including dynamic slope value)
/// @param _t0 Timestamp of the last interest rate update
/// @param _t1 Current timestamp for the calculation
/// @param _u Current utilization ratio (0 to 1e18, where 1e18 = 100% utilized)
/// @param _tba Current total borrowed amount
/// @return rcur Current instantaneous interest rate (in 18 decimals, annual rate)
function currentInterestRate(
Config memory _cfg,
ModelState memory _state,
int256 _t0,
int256 _t1,
int256 _u,
int256 _tba
)
external
pure
returns (int256 rcur);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IDynamicKinkModel} from "./IDynamicKinkModel.sol";
interface IDynamicKinkModelConfig {
/// @return config returns immutable IRM configuration that is present in contract
function getConfig()
external
view
returns (IDynamicKinkModel.Config memory config, IDynamicKinkModel.ImmutableConfig memory immutableConfig);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {IDynamicKinkModelConfig} from "../../interfaces/IDynamicKinkModelConfig.sol";
import {IDynamicKinkModel} from "../../interfaces/IDynamicKinkModel.sol";
/// @title InterestRateModelV2Config
/// @notice Please never deploy config manually, always use factory, because factory does necessary checks.
contract DynamicKinkModelConfig is IDynamicKinkModelConfig {
int256 internal immutable _ULOW;
int256 internal immutable _U1;
int256 internal immutable _U2;
int256 internal immutable _UCRIT;
int256 internal immutable _RMIN;
int96 internal immutable _KMIN;
int96 internal immutable _KMAX;
int256 internal immutable _ALPHA;
int256 internal immutable _CMINUS;
int256 internal immutable _CPLUS;
int256 internal immutable _C1;
int256 internal immutable _C2;
int256 internal immutable _DMAX;
uint32 internal immutable _TIMELOCK;
int96 internal immutable _RCOMP_CAP_PER_SECOND;
constructor(IDynamicKinkModel.Config memory _config, IDynamicKinkModel.ImmutableConfig memory _immutableConfig) {
_ULOW = _config.ulow;
_U1 = _config.u1;
_U2 = _config.u2;
_UCRIT = _config.ucrit;
_RMIN = _config.rmin;
_KMIN = _config.kmin;
_KMAX = _config.kmax;
_ALPHA = _config.alpha;
_CMINUS = _config.cminus;
_CPLUS = _config.cplus;
_C1 = _config.c1;
_C2 = _config.c2;
_DMAX = _config.dmax;
_TIMELOCK = _immutableConfig.timelock;
_RCOMP_CAP_PER_SECOND = _immutableConfig.rcompCapPerSecond;
}
/// @inheritdoc IDynamicKinkModelConfig
function getConfig()
external
view
virtual
returns (IDynamicKinkModel.Config memory config, IDynamicKinkModel.ImmutableConfig memory immutableConfig)
{
config.ulow = _ULOW;
config.u1 = _U1;
config.u2 = _U2;
config.ucrit = _UCRIT;
config.rmin = _RMIN;
config.kmin = _KMIN;
config.kmax = _KMAX;
config.alpha = _ALPHA;
config.cminus = _CMINUS;
config.cplus = _CPLUS;
config.c1 = _C1;
config.c2 = _C2;
config.dmax = _DMAX;
immutableConfig.timelock = _TIMELOCK;
immutableConfig.rcompCapPerSecond = _RCOMP_CAP_PER_SECOND;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
library KinkMath {
/// @notice Check if a value is within a closed interval [a, b]
/// @dev Mathematical notation: x ∈ [a, b] where a ≤ x ≤ b
/// @param _var The value to check
/// @param _lowIncluded Lower bound (inclusive)
/// @param _topIncluded Upper bound (inclusive)
/// @return isWithinInterval true if _var is within the closed interval
function inClosedInterval(
int256 _var,
int256 _lowIncluded,
int256 _topIncluded
) internal pure returns (bool isWithinInterval) {
return (_lowIncluded <= _var && _var <= _topIncluded);
}
/// @notice Check if a value is within a half-open interval [a, b)
/// @dev Mathematical notation: x ∈ [a, b) where a ≤ x < b
/// @param _var The value to check
/// @param _lowIncluded Lower bound (inclusive)
/// @param _topExcluded Upper bound (exclusive)
/// @return isWithinInterval true if _var is within the half-open interval
function inOpenIntervalLowIncluded(
int256 _var,
int256 _lowIncluded,
int256 _topExcluded
) internal pure returns (bool isWithinInterval) {
return (_lowIncluded <= _var && _var < _topExcluded);
}
/// @notice Check if a value is within a half-open interval (a, b]
/// @dev Mathematical notation: x ∈ (a, b] where a < x ≤ b
/// @param _var The value to check
/// @param _lowExcluded Lower bound (exclusive)
/// @param _topIncluded Upper bound (inclusive)
/// @return isWithinInterval true if _var is within the half-open interval
function inOpenIntervalTopIncluded(
int256 _var,
int256 _lowExcluded,
int256 _topIncluded
) internal pure returns (bool isWithinInterval) {
return (_lowExcluded < _var && _var <= _topIncluded);
}
/// @notice Check if a value is within an open interval (a, b)
/// @dev Mathematical notation: x ∈ (a, b) where a < x < b
/// @param _var The value to check
/// @param _lowExcluded Lower bound (exclusive)
/// @param _topExcluded Upper bound (exclusive)
/// @return isWithinInterval true if _var is within the open interval
function inOpenInterval(
int256 _var,
int256 _lowExcluded,
int256 _topExcluded
) internal pure returns (bool isWithinInterval) {
return (_lowExcluded < _var && _var < _topExcluded);
}
/// @notice Check if a uint256 value would overflow when cast to int256
/// @dev This is a safety check for casting unsigned to signed integers
/// @param _value The uint256 value to check
/// @return wouldOverflow true if casting would cause overflow
function wouldOverflowOnCastToInt256(uint256 _value) internal pure returns (bool wouldOverflow) {
return _value > uint256(type(int256).max); // TODO check openzeppelin SafeCast.sol
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
/* solhint-disable */
/// @dev Common mathematical functions used in both PRBMathSD59x18 and PRBMathUD60x18. Note that this shared library
/// does not always assume the signed 59.18-decimal fixed-point or the unsigned 60.18-decimal fixed-point
// representation. When it does not, it is annotated in the function's NatSpec documentation.
/// @author Paul Razvan Berg
library PRBMathCommon {
/// @dev How many trailing decimals can be represented.
uint256 internal constant _SCALE = 1e18;
/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Uses 128.128-bit fixed-point numbers - it is the most efficient way.
/// @param x The exponent as an unsigned 128.128-bit fixed-point number.
/// @return result The result as an unsigned 60x18 decimal fixed-point number.
function exp2(uint256 x) internal pure returns (uint256 result) {
unchecked {
// Start from 0.5 in the 128.128-bit fixed-point format. We need to use uint256 because the intermediary
// may get very close to 2^256, which doesn't fit in int256.
result = 0x80000000000000000000000000000000;
// Multiply the result by root(2, 2^-i) when the bit at debt i is 1. None of the intermediary results overflows
// because the initial result is 2^127 and all magic factors are less than 2^129.
if (x & 0x80000000000000000000000000000000 > 0) result = (result * 0x16A09E667F3BCC908B2FB1366EA957D3E) >> 128;
if (x & 0x40000000000000000000000000000000 > 0) result = (result * 0x1306FE0A31B7152DE8D5A46305C85EDED) >> 128;
if (x & 0x20000000000000000000000000000000 > 0) result = (result * 0x1172B83C7D517ADCDF7C8C50EB14A7920) >> 128;
if (x & 0x10000000000000000000000000000000 > 0) result = (result * 0x10B5586CF9890F6298B92B71842A98364) >> 128;
if (x & 0x8000000000000000000000000000000 > 0) result = (result * 0x1059B0D31585743AE7C548EB68CA417FE) >> 128;
if (x & 0x4000000000000000000000000000000 > 0) result = (result * 0x102C9A3E778060EE6F7CACA4F7A29BDE9) >> 128;
if (x & 0x2000000000000000000000000000000 > 0) result = (result * 0x10163DA9FB33356D84A66AE336DCDFA40) >> 128;
if (x & 0x1000000000000000000000000000000 > 0) result = (result * 0x100B1AFA5ABCBED6129AB13EC11DC9544) >> 128;
if (x & 0x800000000000000000000000000000 > 0) result = (result * 0x10058C86DA1C09EA1FF19D294CF2F679C) >> 128;
if (x & 0x400000000000000000000000000000 > 0) result = (result * 0x1002C605E2E8CEC506D21BFC89A23A011) >> 128;
if (x & 0x200000000000000000000000000000 > 0) result = (result * 0x100162F3904051FA128BCA9C55C31E5E0) >> 128;
if (x & 0x100000000000000000000000000000 > 0) result = (result * 0x1000B175EFFDC76BA38E31671CA939726) >> 128;
if (x & 0x80000000000000000000000000000 > 0) result = (result * 0x100058BA01FB9F96D6CACD4B180917C3E) >> 128;
if (x & 0x40000000000000000000000000000 > 0) result = (result * 0x10002C5CC37DA9491D0985C348C68E7B4) >> 128;
if (x & 0x20000000000000000000000000000 > 0) result = (result * 0x1000162E525EE054754457D5995292027) >> 128;
if (x & 0x10000000000000000000000000000 > 0) result = (result * 0x10000B17255775C040618BF4A4ADE83FD) >> 128;
if (x & 0x8000000000000000000000000000 > 0) result = (result * 0x1000058B91B5BC9AE2EED81E9B7D4CFAC) >> 128;
if (x & 0x4000000000000000000000000000 > 0) result = (result * 0x100002C5C89D5EC6CA4D7C8ACC017B7CA) >> 128;
if (x & 0x2000000000000000000000000000 > 0) result = (result * 0x10000162E43F4F831060E02D839A9D16D) >> 128;
if (x & 0x1000000000000000000000000000 > 0) result = (result * 0x100000B1721BCFC99D9F890EA06911763) >> 128;
if (x & 0x800000000000000000000000000 > 0) result = (result * 0x10000058B90CF1E6D97F9CA14DBCC1629) >> 128;
if (x & 0x400000000000000000000000000 > 0) result = (result * 0x1000002C5C863B73F016468F6BAC5CA2C) >> 128;
if (x & 0x200000000000000000000000000 > 0) result = (result * 0x100000162E430E5A18F6119E3C02282A6) >> 128;
if (x & 0x100000000000000000000000000 > 0) result = (result * 0x1000000B1721835514B86E6D96EFD1BFF) >> 128;
if (x & 0x80000000000000000000000000 > 0) result = (result * 0x100000058B90C0B48C6BE5DF846C5B2F0) >> 128;
if (x & 0x40000000000000000000000000 > 0) result = (result * 0x10000002C5C8601CC6B9E94213C72737B) >> 128;
if (x & 0x20000000000000000000000000 > 0) result = (result * 0x1000000162E42FFF037DF38AA2B219F07) >> 128;
if (x & 0x10000000000000000000000000 > 0) result = (result * 0x10000000B17217FBA9C739AA5819F44FA) >> 128;
if (x & 0x8000000000000000000000000 > 0) result = (result * 0x1000000058B90BFCDEE5ACD3C1CEDC824) >> 128;
if (x & 0x4000000000000000000000000 > 0) result = (result * 0x100000002C5C85FE31F35A6A30DA1BE51) >> 128;
if (x & 0x2000000000000000000000000 > 0) result = (result * 0x10000000162E42FF0999CE3541B9FFFD0) >> 128;
if (x & 0x1000000000000000000000000 > 0) result = (result * 0x100000000B17217F80F4EF5AADDA45554) >> 128;
if (x & 0x800000000000000000000000 > 0) result = (result * 0x10000000058B90BFBF8479BD5A81B51AE) >> 128;
if (x & 0x400000000000000000000000 > 0) result = (result * 0x1000000002C5C85FDF84BD62AE30A74CD) >> 128;
if (x & 0x200000000000000000000000 > 0) result = (result * 0x100000000162E42FEFB2FED257559BDAA) >> 128;
if (x & 0x100000000000000000000000 > 0) result = (result * 0x1000000000B17217F7D5A7716BBA4A9AF) >> 128;
if (x & 0x80000000000000000000000 > 0) result = (result * 0x100000000058B90BFBE9DDBAC5E109CCF) >> 128;
if (x & 0x40000000000000000000000 > 0) result = (result * 0x10000000002C5C85FDF4B15DE6F17EB0E) >> 128;
if (x & 0x20000000000000000000000 > 0) result = (result * 0x1000000000162E42FEFA494F1478FDE05) >> 128;
if (x & 0x10000000000000000000000 > 0) result = (result * 0x10000000000B17217F7D20CF927C8E94D) >> 128;
if (x & 0x8000000000000000000000 > 0) result = (result * 0x1000000000058B90BFBE8F71CB4E4B33E) >> 128;
if (x & 0x4000000000000000000000 > 0) result = (result * 0x100000000002C5C85FDF477B662B26946) >> 128;
if (x & 0x2000000000000000000000 > 0) result = (result * 0x10000000000162E42FEFA3AE53369388D) >> 128;
if (x & 0x1000000000000000000000 > 0) result = (result * 0x100000000000B17217F7D1D351A389D41) >> 128;
if (x & 0x800000000000000000000 > 0) result = (result * 0x10000000000058B90BFBE8E8B2D3D4EDF) >> 128;
if (x & 0x400000000000000000000 > 0) result = (result * 0x1000000000002C5C85FDF4741BEA6E77F) >> 128;
if (x & 0x200000000000000000000 > 0) result = (result * 0x100000000000162E42FEFA39FE95583C3) >> 128;
if (x & 0x100000000000000000000 > 0) result = (result * 0x1000000000000B17217F7D1CFB72B45E3) >> 128;
if (x & 0x80000000000000000000 > 0) result = (result * 0x100000000000058B90BFBE8E7CC35C3F2) >> 128;
if (x & 0x40000000000000000000 > 0) result = (result * 0x10000000000002C5C85FDF473E242EA39) >> 128;
if (x & 0x20000000000000000000 > 0) result = (result * 0x1000000000000162E42FEFA39F02B772C) >> 128;
if (x & 0x10000000000000000000 > 0) result = (result * 0x10000000000000B17217F7D1CF7D83C1A) >> 128;
if (x & 0x8000000000000000000 > 0) result = (result * 0x1000000000000058B90BFBE8E7BDCBE2E) >> 128;
if (x & 0x4000000000000000000 > 0) result = (result * 0x100000000000002C5C85FDF473DEA871F) >> 128;
if (x & 0x2000000000000000000 > 0) result = (result * 0x10000000000000162E42FEFA39EF44D92) >> 128;
if (x & 0x1000000000000000000 > 0) result = (result * 0x100000000000000B17217F7D1CF79E949) >> 128;
if (x & 0x800000000000000000 > 0) result = (result * 0x10000000000000058B90BFBE8E7BCE545) >> 128;
if (x & 0x400000000000000000 > 0) result = (result * 0x1000000000000002C5C85FDF473DE6ECA) >> 128;
if (x & 0x200000000000000000 > 0) result = (result * 0x100000000000000162E42FEFA39EF366F) >> 128;
if (x & 0x100000000000000000 > 0) result = (result * 0x1000000000000000B17217F7D1CF79AFA) >> 128;
if (x & 0x80000000000000000 > 0) result = (result * 0x100000000000000058B90BFBE8E7BCD6E) >> 128;
if (x & 0x40000000000000000 > 0) result = (result * 0x10000000000000002C5C85FDF473DE6B3) >> 128;
if (x & 0x20000000000000000 > 0) result = (result * 0x1000000000000000162E42FEFA39EF359) >> 128;
if (x & 0x10000000000000000 > 0) result = (result * 0x10000000000000000B17217F7D1CF79AC) >> 128;
// Multiply the result by the integer part 2^n + 1. We have to shift by one bit extra because we have already divided
// by two when we set the result equal to 0.5 above.
result = result << ((x >> 128) + 1);
// Convert the result to the signed 60.18-decimal fixed-point format.
result = PRBMathCommon.mulDiv(result, 1e18, 2**128);
}
}
/// @notice Calculates floor(x*y÷denominator) with full precision.
///
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Requirements:
/// - The denominator cannot be zero.
/// - The result must fit within uint256.
///
/// Caveats:
/// - This function does not work with fixed-point numbers.
///
/// @param x The multiplicand as an uint256.
/// @param y The multiplier as an uint256.
/// @param denominator The divisor as an uint256.
/// @return result The result as an uint256.
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2**256 and mod 2**256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
unchecked {
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 lpotdod = denominator & (~denominator + 1);
assembly {
// Divide denominator by lpotdod.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Flip lpotdod such that it is 2**256 / lpotdod. If lpotdod is zero, then it becomes one.
lpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * lpotdod;
// Invert denominator mod 2**256. Now that denominator is an odd number, it has an inverse modulo 2**256 such
// that denominator * inv = 1 mod 2**256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2**4
uint256 inverse = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2**8
inverse *= 2 - denominator * inverse; // inverse mod 2**16
inverse *= 2 - denominator * inverse; // inverse mod 2**32
inverse *= 2 - denominator * inverse; // inverse mod 2**64
inverse *= 2 - denominator * inverse; // inverse mod 2**128
inverse *= 2 - denominator * inverse; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2**256. Since the preconditions guarantee that the outcome is
// less than 2**256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
}
/* solhint-enable */// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
/// @notice Protected deposits are not available for a flash loan.
/// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Initiate a flash loan.
/// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
external
returns (bool);
/// @dev The amount of currency available to be lent.
/// @param _token The loan currency.
/// @return The amount of `token` that can be borrowed.
function maxFlashLoan(address _token) external view returns (uint256);
/// @dev The fee to be charged for a given loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @return The amount of `token` to be charged for the loan, on top of the returned principal.
function flashFee(address _token, uint256 _amount) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";
interface ISiloConfig is ICrossReentrancyGuard {
struct InitData {
/// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
/// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
/// fees. NFT can be transferred with the right to claim.
address deployer;
/// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
/// implements liquidation logic and veSilo gauge connection.
address hookReceiver;
/// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
/// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
uint256 deployerFee;
/// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
/// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
uint256 daoFee;
/// @notice Address of the first token
address token0;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle0;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle0;
/// @notice Address of the interest rate model
address interestRateModel0;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
/// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
uint256 maxLtv0;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
/// points. LT must not be lower than maxLTV.
uint256 lt0;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv0;
/// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
/// for repaying insolvent loan.
uint256 liquidationFee0;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee0;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote0;
/// @notice Address of the second token
address token1;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle1;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle1;
/// @notice Address of the interest rate model
address interestRateModel1;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
/// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
uint256 maxLtv1;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
uint256 lt1;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv1;
/// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
uint256 liquidationFee1;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee1;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote1;
}
struct ConfigData {
uint256 daoFee;
uint256 deployerFee;
address silo;
address token;
address protectedShareToken;
address collateralShareToken;
address debtShareToken;
address solvencyOracle;
address maxLtvOracle;
address interestRateModel;
uint256 maxLtv;
uint256 lt;
uint256 liquidationTargetLtv;
uint256 liquidationFee;
uint256 flashloanFee;
address hookReceiver;
bool callBeforeQuote;
}
struct DepositConfig {
address silo;
address token;
address collateralShareToken;
address protectedShareToken;
uint256 daoFee;
uint256 deployerFee;
address interestRateModel;
}
error OnlySilo();
error OnlySiloOrTokenOrHookReceiver();
error WrongSilo();
error OnlyDebtShareToken();
error DebtExistInOtherSilo();
error FeeTooHigh();
/// @dev It should be called on debt transfer (debt share token transfer).
/// In the case if the`_recipient` doesn't have configured a collateral silo,
/// it will be set to the collateral silo of the `_sender`.
/// @param _sender sender address
/// @param _recipient recipient address
function onDebtTransfer(address _sender, address _recipient) external;
/// @notice Set collateral silo.
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo the same as msg.sender.
/// @param _borrower borrower address
/// @return collateralSiloChanged TRUE if collateral silo changed
function setThisSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Set collateral silo
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo opposite to the msg.sender.
/// @param _borrower borrower address
/// @return collateralSiloChanged TRUE if collateral silo changed
function setOtherSiloAsCollateralSilo(address _borrower) external returns (bool collateralSiloChanged);
/// @notice Accrue interest for the silo
/// @param _silo silo for which accrue interest
function accrueInterestForSilo(address _silo) external;
/// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
function accrueInterestForBothSilos() external;
/// @notice Retrieves the collateral silo for a specific borrower.
/// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
/// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
/// After being set, the collateral silo is never set to `address(0)` again but such getters as
/// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
/// collateral silo config if borrower doesn't have debt.
///
/// In the SiloConfig collateral silo is set by the following functions:
/// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
/// This function is called on debt share token transfer (debt transfer).
/// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function.
/// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
///
/// In the Silo collateral silo is set by the following functions:
/// `borrow` - always sets opposite silo as collateral.
/// If Silo0 borrows, then Silo1 will be collateral and vice versa.
/// `borrowSameAsset` - always sets the same silo as collateral.
/// `switchCollateralToThisSilo` - always sets the same silo as collateral.
/// @param _borrower The address of the borrower for which the collateral silo is being retrieved
/// @return collateralSilo The address of the collateral silo for the specified borrower
function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);
/// @notice Retrieves the silo ID
/// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
/// An owner of that token receives the deployer fees.
/// @return siloId The ID of the silo
function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase
/// @notice Retrieves the addresses of the two silos
/// @return silo0 The address of the first silo
/// @return silo1 The address of the second silo
function getSilos() external view returns (address silo0, address silo1);
/// @notice Retrieves the asset associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which the associated asset is being retrieved
/// @return asset The address of the asset associated with the specified silo
function getAssetForSilo(address _silo) external view returns (address asset);
/// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
/// @param _thisSilo The address of the silo in respect of which the debt is checked
/// @param _borrower The address of the borrower for which the debt is checked
/// @return hasDebt true if the borrower has debt in other silo
function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);
/// @notice Retrieves the debt silo associated with a specific borrower
/// @dev This function reverts if debt present in two silo (should not happen)
/// @param _borrower The address of the borrower for which the debt silo is being retrieved
function getDebtSilo(address _borrower) external view returns (address debtSilo);
/// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
/// @param borrower borrower address for which debtConfig will be returned
/// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
/// @return debtConfig The configuration data for debt silo (empty if there is no debt).
function getConfigsForSolvency(address borrower)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves configuration data for a specific silo
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return config The configuration data for the specified silo
function getConfig(address _silo) external view returns (ConfigData memory config);
/// @notice Retrieves configuration data for a specific silo for withdraw fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
/// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
/// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
DepositConfig memory depositConfig,
ConfigData memory collateralConfig,
ConfigData memory debtConfig
);
/// @notice Retrieves configuration data for a specific silo for borrow fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _debtSilo The address of the silo for which configuration data is being retrieved
/// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
/// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
function getConfigsForBorrow(address _debtSilo)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves fee-related information for a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which fee-related information is being retrieved.
/// @return daoFee The DAO fee percentage in 18 decimals points.
/// @return deployerFee The deployer fee percentage in 18 decimals points.
/// @return flashloanFee The flashloan fee percentage in 18 decimals points.
/// @return asset The address of the asset associated with the specified silo.
function getFeesWithAsset(address _silo)
external
view
returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);
/// @notice Retrieves share tokens associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which share tokens are being retrieved
/// @return protectedShareToken The address of the protected (non-borrowable) share token
/// @return collateralShareToken The address of the collateral share token
/// @return debtShareToken The address of the debt share token
function getShareTokens(address _silo)
external
view
returns (address protectedShareToken, address collateralShareToken, address debtShareToken);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @param _collateralType The type of collateral
/// @return shareToken The address of the share token (collateral or protected collateral)
/// @return asset The address of the silo token
function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
external
view
returns (address shareToken, address asset);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @return shareToken The address of the share token (debt)
/// @return asset The address of the silo token
function getDebtShareTokenAndAsset(address _silo)
external
view
returns (address shareToken, address asset);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
interface ISiloFactory is IERC721 {
struct Range {
uint128 min;
uint128 max;
}
/// @notice Emitted on the creation of a Silo.
/// @param implementation Address of the Silo implementation.
/// @param token0 Address of the first Silo token.
/// @param token1 Address of the second Silo token.
/// @param silo0 Address of the first Silo.
/// @param silo1 Address of the second Silo.
/// @param siloConfig Address of the SiloConfig.
event NewSilo(
address indexed implementation,
address indexed token0,
address indexed token1,
address silo0,
address silo1,
address siloConfig
);
event BaseURI(string newBaseURI);
/// @notice Emitted on the update of DAO fee.
/// @param minDaoFee Value of the new minimal DAO fee.
/// @param maxDaoFee Value of the new maximal DAO fee.
event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);
/// @notice Emitted on the update of max deployer fee.
/// @param maxDeployerFee Value of the new max deployer fee.
event MaxDeployerFeeChanged(uint256 maxDeployerFee);
/// @notice Emitted on the update of max flashloan fee.
/// @param maxFlashloanFee Value of the new max flashloan fee.
event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);
/// @notice Emitted on the update of max liquidation fee.
/// @param maxLiquidationFee Value of the new max liquidation fee.
event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);
/// @notice Emitted on the change of DAO fee receiver.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChanged(address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular silo
/// @param silo Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForSilo(address silo, address daoFeeReceiver);
/// @notice Emitted on the change of DAO fee receiver for particular asset
/// @param asset Address for which new DAO fee receiver is set.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChangedForAsset(address asset, address daoFeeReceiver);
error MissingHookReceiver();
error ZeroAddress();
error DaoFeeReceiverZeroAddress();
error SameDaoFeeReceiver();
error EmptyToken0();
error EmptyToken1();
error MaxFeeExceeded();
error InvalidFeeRange();
error SameAsset();
error SameRange();
error InvalidIrm();
error InvalidMaxLtv();
error InvalidLt();
error InvalidDeployer();
error DaoMinRangeExceeded();
error DaoMaxRangeExceeded();
error MaxDeployerFeeExceeded();
error MaxFlashloanFeeExceeded();
error MaxLiquidationFeeExceeded();
error InvalidCallBeforeQuote();
error OracleMisconfiguration();
error InvalidQuoteToken();
error HookIsZeroAddress();
error LiquidationTargetLtvTooHigh();
error NotYourSilo();
error ConfigMismatchSilo();
error ConfigMismatchShareProtectedToken();
error ConfigMismatchShareDebtToken();
error ConfigMismatchShareCollateralToken();
/// @notice Create a new Silo.
/// @param _siloConfig Silo configuration.
/// @param _siloImpl Address of the `Silo` implementation.
/// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
/// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
/// @param _deployer Address of the deployer.
/// @param _creator Address of the creator.
function createSilo(
ISiloConfig _siloConfig,
address _siloImpl,
address _shareProtectedCollateralTokenImpl,
address _shareDebtTokenImpl,
address _deployer,
address _creator
)
external;
/// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning,
/// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
/// @param _siloIdToBurn silo ID to burn.
function burn(uint256 _siloIdToBurn) external;
/// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
/// Previously deployed SiloConfigs are immutable.
/// @param _minFee Value of the new DAO minimal fee.
/// @param _maxFee Value of the new DAO maximal fee.
function setDaoFee(uint128 _minFee, uint128 _maxFee) external;
/// @notice Set the default DAO fee receiver.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiver(address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for asset, this setup will be used when fee receiver for silo is empty.
/// @param _asset Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForAsset(address _asset, address _newDaoFeeReceiver) external;
/// @notice Set the new DAO fee receiver for silo. This setup has highest priority.
/// @param _silo Address for which new DAO fee receiver is set.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiverForSilo(address _silo, address _newDaoFeeReceiver) external;
/// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxDeployerFee Value of the new max deployer fee.
function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;
/// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxFlashloanFee Value of the new max flashloan fee.
function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;
/// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
/// liquidation fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxLiquidationFee Value of the new max liquidation fee.
function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
/// @notice Update the base URI.
/// @param _newBaseURI Value of the new base URI.
function setBaseURI(string calldata _newBaseURI) external;
/// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function daoFeeRange() external view returns (Range memory);
/// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxDeployerFee() external view returns (uint256);
/// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxFlashloanFee() external view returns (uint256);
/// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxLiquidationFee() external view returns (uint256);
/// @notice The recipient of DAO fees.
function daoFeeReceiver() external view returns (address);
/// @notice Get SiloConfig address by Silo id.
function idToSiloConfig(uint256 _id) external view returns (address);
/// @notice Get the counter of silos created by the wallet.
function creatorSiloCounter(address _creator) external view returns (uint256);
/// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
/// and implementation. Most critical part of verification would be to check who deployed it.
/// @dev True if the address was deployed using SiloFactory.
function isSilo(address _silo) external view returns (bool);
/// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
/// function call. ID of a first Silo is 1.
function getNextSiloId() external view returns (uint256);
/// @notice Get the DAO and deployer fee receivers for a particular Silo address.
/// @param _silo Silo address.
/// @return dao DAO fee receiver.
/// @return deployer Deployer fee receiver.
function getFeeReceivers(address _silo) external view returns (address dao, address deployer);
/// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
/// @param _initData Silo init data.
function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISiloConfig} from "./ISiloConfig.sol";
interface IHookReceiver {
struct HookConfig {
uint24 hooksBefore;
uint24 hooksAfter;
}
event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);
/// @dev Revert if provided silo configuration during initialization is empty
error EmptySiloConfig();
/// @dev Revert if the hook receiver is already configured/initialized
error AlreadyConfigured();
/// @dev Revert if the caller is not a silo
error OnlySilo();
/// @dev Revert if the caller is not a silo or a share token
error OnlySiloOrShareToken();
/// @notice Initialize a hook receiver
/// @param _siloConfig Silo configuration with all the details about the silo
/// @param _data Data to initialize the hook receiver (if needed)
function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;
/// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;
/// @notice return hooksBefore and hooksAfter configuration
function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IERC3156FlashBorrower {
/// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Receive a flash loan.
/// @param _initiator The initiator of the loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _fee The additional amount of tokens to repay.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
/// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
external
returns (bytes32);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ICrossReentrancyGuard {
error CrossReentrantCall();
error CrossReentrancyNotActive();
/// @notice only silo method for cross Silo reentrancy
function turnOnReentrancyProtection() external;
/// @notice only silo method for cross Silo reentrancy
function turnOffReentrancyProtection() external;
/// @notice view method for checking cross Silo reentrancy flag
/// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
/// `nonReentrant` function in the call stack.
function reentrancyGuardEntered() external view returns (bool entered);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"forge-std/=gitmodules/forge-std/src/",
"silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
"properties/=gitmodules/crytic/properties/contracts/",
"silo-core/=silo-core/",
"silo-oracles/=silo-oracles/",
"silo-vaults/=silo-vaults/",
"@openzeppelin/=gitmodules/openzeppelin-contracts-5/",
"morpho-blue/=gitmodules/morpho-blue/src/",
"openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
"openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
"chainlink/=gitmodules/chainlink/contracts/src/",
"chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
"uniswap/=gitmodules/uniswap/",
"@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
"pyth-sdk-solidity/=gitmodules/pyth-sdk-solidity/target_chains/ethereum/sdk/solidity/",
"a16z-erc4626-tests/=gitmodules/a16z-erc4626-tests/",
"@ensdomains/=node_modules/@ensdomains/",
"@solidity-parser/=node_modules/prettier-plugin-solidity/node_modules/@solidity-parser/",
"ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
"createx/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/src/",
"crytic/=gitmodules/crytic/",
"ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
"halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
"hardhat/=node_modules/hardhat/",
"openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
"openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
"openzeppelin-contracts-upgradeable/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=gitmodules/openzeppelin-contracts-upgradeable-5/lib/openzeppelin-contracts/",
"prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/",
"solady/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/lib/solady/",
"solmate/=gitmodules/crytic/properties/lib/solmate/src/",
"x-silo/=node_modules/x-silo/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false
}Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AddressZero","type":"error"},{"inputs":[],"name":"AlphaDividerZero","type":"error"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"EmptySilo","type":"error"},{"inputs":[],"name":"InvalidAlpha","type":"error"},{"inputs":[],"name":"InvalidC1","type":"error"},{"inputs":[],"name":"InvalidC2","type":"error"},{"inputs":[],"name":"InvalidCminus","type":"error"},{"inputs":[],"name":"InvalidCplus","type":"error"},{"inputs":[],"name":"InvalidDefaultConfig","type":"error"},{"inputs":[],"name":"InvalidDmax","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidKRange","type":"error"},{"inputs":[],"name":"InvalidKmax","type":"error"},{"inputs":[],"name":"InvalidKmin","type":"error"},{"inputs":[],"name":"InvalidRcompCap","type":"error"},{"inputs":[],"name":"InvalidRcritMax","type":"error"},{"inputs":[],"name":"InvalidRcritMin","type":"error"},{"inputs":[],"name":"InvalidRmin","type":"error"},{"inputs":[],"name":"InvalidSilo","type":"error"},{"inputs":[],"name":"InvalidT1","type":"error"},{"inputs":[],"name":"InvalidT2","type":"error"},{"inputs":[],"name":"InvalidTCrit","type":"error"},{"inputs":[],"name":"InvalidTLow","type":"error"},{"inputs":[],"name":"InvalidTMin","type":"error"},{"inputs":[],"name":"InvalidTimelock","type":"error"},{"inputs":[],"name":"InvalidTimestamp","type":"error"},{"inputs":[],"name":"InvalidU1","type":"error"},{"inputs":[],"name":"InvalidU2","type":"error"},{"inputs":[],"name":"InvalidUcrit","type":"error"},{"inputs":[],"name":"InvalidUlow","type":"error"},{"inputs":[],"name":"NegativeRcomp","type":"error"},{"inputs":[],"name":"NegativeRcur","type":"error"},{"inputs":[],"name":"NoPendingConfig","type":"error"},{"inputs":[],"name":"NoPendingUpdateToCancel","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OnlySilo","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PendingUpdate","type":"error"},{"inputs":[{"internalType":"int256","name":"value","type":"int256"}],"name":"SafeCastOverflowedIntToUint","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintToInt","type":"error"},{"inputs":[],"name":"XOverflow","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"silo","type":"address"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IDynamicKinkModelConfig","name":"config","type":"address"},{"indexed":false,"internalType":"uint256","name":"activeAt","type":"uint256"}],"name":"NewConfig","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IDynamicKinkModelConfig","name":"config","type":"address"}],"name":"PendingUpdateConfigCanceled","type":"event"},{"inputs":[],"name":"MAX_TIMELOCK","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ONE_YEAR","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RCOMP_CAP_PER_SECOND","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RCUR_CAP","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UNIVERSAL_LIMIT","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"X_MAX","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"activateConfigAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cancelPendingUpdateConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"_cfg","type":"tuple"},{"components":[{"internalType":"int96","name":"k","type":"int96"},{"internalType":"address","name":"silo","type":"address"}],"internalType":"struct IDynamicKinkModel.ModelState","name":"_state","type":"tuple"},{"internalType":"int256","name":"_rcompCapPerSecond","type":"int256"},{"internalType":"int256","name":"_t0","type":"int256"},{"internalType":"int256","name":"_t1","type":"int256"},{"internalType":"int256","name":"_u","type":"int256"},{"internalType":"int256","name":"_tba","type":"int256"}],"name":"compoundInterestRate","outputs":[{"internalType":"int256","name":"rcomp","type":"int256"},{"internalType":"int256","name":"k","type":"int256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"contract IDynamicKinkModelConfig","name":"current","type":"address"}],"name":"configsHistory","outputs":[{"internalType":"contract IDynamicKinkModelConfig","name":"prev","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"_cfg","type":"tuple"},{"components":[{"internalType":"int96","name":"k","type":"int96"},{"internalType":"address","name":"silo","type":"address"}],"internalType":"struct IDynamicKinkModel.ModelState","name":"_state","type":"tuple"},{"internalType":"int256","name":"_t0","type":"int256"},{"internalType":"int256","name":"_t1","type":"int256"},{"internalType":"int256","name":"_u","type":"int256"},{"internalType":"int256","name":"_tba","type":"int256"}],"name":"currentInterestRate","outputs":[{"internalType":"int256","name":"rcur","type":"int256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_blockTimestamp","type":"uint256"}],"name":"getCompoundInterestRate","outputs":[{"internalType":"uint256","name":"rcomp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_collateralAssets","type":"uint256"},{"internalType":"uint256","name":"_debtAssets","type":"uint256"},{"internalType":"uint256","name":"_interestRateTimestamp","type":"uint256"}],"name":"getCompoundInterestRateAndUpdate","outputs":[{"internalType":"uint256","name":"rcomp","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_blockTimestamp","type":"uint256"}],"name":"getCurrentInterestRate","outputs":[{"internalType":"uint256","name":"rcur","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_usePending","type":"bool"}],"name":"getModelStateAndConfig","outputs":[{"components":[{"internalType":"int96","name":"k","type":"int96"},{"internalType":"address","name":"silo","type":"address"}],"internalType":"struct IDynamicKinkModel.ModelState","name":"state","type":"tuple"},{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"config","type":"tuple"},{"components":[{"internalType":"uint32","name":"timelock","type":"uint32"},{"internalType":"int96","name":"rcompCapPerSecond","type":"int96"}],"internalType":"struct IDynamicKinkModel.ImmutableConfig","name":"immutableConfig","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_blockTimestamp","type":"uint256"}],"name":"getPendingCompoundInterestRate","outputs":[{"internalType":"uint256","name":"rcomp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_silo","type":"address"},{"internalType":"uint256","name":"_blockTimestamp","type":"uint256"}],"name":"getPendingCurrentInterestRate","outputs":[{"internalType":"uint256","name":"rcur","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"_config","type":"tuple"},{"components":[{"internalType":"uint32","name":"timelock","type":"uint32"},{"internalType":"int96","name":"rcompCap","type":"int96"}],"internalType":"struct IDynamicKinkModel.ImmutableArgs","name":"_immutableArgs","type":"tuple"},{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"address","name":"_silo","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"irmConfig","outputs":[{"internalType":"contract IDynamicKinkModelConfig","name":"config","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"modelState","outputs":[{"internalType":"int96","name":"k","type":"int96"},{"internalType":"address","name":"silo","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingIrmConfig","outputs":[{"internalType":"address","name":"config","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership1Step","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"_config","type":"tuple"}],"name":"updateConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"int256","name":"ulow","type":"int256"},{"internalType":"int256","name":"u1","type":"int256"},{"internalType":"int256","name":"u2","type":"int256"},{"internalType":"int256","name":"ucrit","type":"int256"},{"internalType":"int256","name":"rmin","type":"int256"},{"internalType":"int96","name":"kmin","type":"int96"},{"internalType":"int96","name":"kmax","type":"int96"},{"internalType":"int256","name":"alpha","type":"int256"},{"internalType":"int256","name":"cminus","type":"int256"},{"internalType":"int256","name":"cplus","type":"int256"},{"internalType":"int256","name":"c1","type":"int256"},{"internalType":"int256","name":"c2","type":"int256"},{"internalType":"int256","name":"dmax","type":"int256"}],"internalType":"struct IDynamicKinkModel.Config","name":"_config","type":"tuple"}],"name":"verifyConfig","outputs":[],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.