Overview
S Balance
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
ManagedPoolRebalanceHelper
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 1000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.23; import {IManagedPool} from '@balancer-labs/v2-interfaces/contracts/pool-utils/IManagedPool.sol'; import {IVault, IERC20} from '@balancer-labs/v2-interfaces/contracts/vault/IVault.sol'; import {SafeERC20, IERC20 as SIERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {AccessManagedUpgradeable} from "@openzeppelin/contracts-upgradeable/access/manager/AccessManagedUpgradeable.sol"; import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import {ISwapExecutor} from "../interfaces/ISwapExecutor.sol"; import {IBalancerPoolToken} from "../interfaces/balancer/IBalancerPoolToken.sol"; contract ManagedPoolRebalanceHelper is AccessManagedUpgradeable, UUPSUpgradeable { using SafeERC20 for SIERC20; uint public rebalanceCooldownBlocks = 0; uint public maxBalanceDeviation; uint public maxRebalanceSlippage; uint public maxInitialTokenWeight; ISwapExecutor public immutable SWAP_EXECUTOR; error Expired(uint deadline); error TokenBalanceLessThanMin(address token, uint balance, uint minBalance); modifier _deadline(uint32 deadline) { if (deadline < block.timestamp) { revert Expired(deadline); } _; } constructor (address swapExecutor) { SWAP_EXECUTOR = ISwapExecutor(swapExecutor); _disableInitializers(); } function initialize( address _authority, uint _rebalanceCooldownBlocks, uint _maxBalanceDeviation, uint _maxRebalanceSlippage, uint _maxInitialTokenWeight ) public initializer { __AccessManaged_init(_authority); __UUPSUpgradeable_init(); rebalanceCooldownBlocks = _rebalanceCooldownBlocks; maxBalanceDeviation = _maxBalanceDeviation; maxRebalanceSlippage = _maxRebalanceSlippage; maxInitialTokenWeight = _maxInitialTokenWeight; } function _authorizeUpgrade(address newImplementation) internal restricted override { } function setParams( uint _rebalanceCooldownBlocks, uint _maxBalanceDeviation, uint _maxRebalanceSlippage, uint _maxInitialTokenWeight ) external restricted { rebalanceCooldownBlocks = _rebalanceCooldownBlocks; maxBalanceDeviation = _maxBalanceDeviation; maxRebalanceSlippage = _maxRebalanceSlippage; maxInitialTokenWeight = _maxInitialTokenWeight; } function addToken( IManagedPool pool, address token, uint256 weight, uint256 amount ) external restricted { SIERC20(token).safeTransferFrom(msg.sender, address(this), amount); pool.addToken({ tokenToAdd: IERC20(token), assetManager: address(this), tokenToAddNormalizedWeight: weight, mintAmount: 0, recipient: msg.sender }); IVault vault = IVault(IBalancerPoolToken(address(pool)).getVault()); SIERC20(address(token)).forceApprove(address(vault), amount); IVault.PoolBalanceOp[] memory op = new IVault.PoolBalanceOp[](1); bytes32 poolId = pool.getPoolId(); op[0] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.UPDATE, poolId: poolId, token: IERC20(token), amount: amount }); vault.managePoolBalance(op); op[0] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.DEPOSIT, poolId: poolId, token: IERC20(token), amount: amount }); vault.managePoolBalance(op); } function rebalance( IManagedPool pool, uint[] calldata weights, ISwapExecutor.SwapInfo[] calldata swaps, uint[] calldata minPoolBalances, uint32 deadline ) external restricted _deadline(deadline) returns (uint256[] memory poolBalances) { IERC20[] memory tokens; (tokens, poolBalances) = _rebalance(pool, weights, swaps); for (uint i = 0; i < minPoolBalances.length; ++i) { if (poolBalances[i] < minPoolBalances[i]) revert TokenBalanceLessThanMin(address(tokens[i]), poolBalances[i], minPoolBalances[i]); } } function _rebalance( IManagedPool pool, uint[] calldata weights, ISwapExecutor.SwapInfo[] calldata swaps ) private returns (IERC20[] memory tokens, uint256[] memory poolBalances) { uint256[] memory origBalances; IVault vault = IVault(IBalancerPoolToken(address(pool)).getVault()); bytes32 poolId = pool.getPoolId(); { uint256 lastChangeBlock; (tokens, origBalances, lastChangeBlock) = vault.getPoolTokens(poolId); (tokens, origBalances) = dropBpt(tokens, origBalances); require(lastChangeBlock + rebalanceCooldownBlocks <= block.number, "TIME"); } uint256[] memory origWeights = pool.getNormalizedWeights(); IVault.PoolBalanceOp[] memory withdrawalOps = _withdraw( vault, poolId, tokens, weights, origWeights, origBalances ); _makeSwaps(withdrawalOps, swaps); _deposit(vault, poolId, tokens); _verifyState(vault, poolId, origBalances, origWeights, weights); _updateWeights(pool, tokens, weights); (tokens, poolBalances,) = vault.getPoolTokens(poolId); } function _getPool(IVault vault, bytes32 poolId) private view returns (IManagedPool pool) { (address poolAddr, ) = vault.getPool(poolId); pool = IManagedPool(poolAddr); } function _updateWeights(IManagedPool pool, IERC20[] memory tokens, uint256[] memory weights) private { uint nonZeroWeights; for (uint i = 0; i < tokens.length; ++i) { if (weights[i] == 0) { pool.removeToken({ tokenToRemove: tokens[i], burnAmount: 0, sender: address(this) }); } else { nonZeroWeights++; } } IERC20[] memory newTokens = new IERC20[](nonZeroWeights); uint[] memory newWeights = new uint[](nonZeroWeights); uint idx; for (uint i = 0; i < tokens.length; ++i) { if (weights[i] != 0) { newTokens[idx] = tokens[i]; newWeights[idx] = weights[i]; idx++; } } pool.updateWeightsGradually( block.timestamp, block.timestamp, newTokens, newWeights ); } function _withdraw( IVault vault, bytes32 poolId, IERC20[] memory tokens, uint256[] calldata weights, uint256[] memory origWeights, uint256[] memory origBalances ) private returns (IVault.PoolBalanceOp[] memory withdrawalOps) { uint count = 0; for (uint i = 0; i < tokens.length; ++i) { if (weights[i] < origWeights[i]) { ++count; } } uint index = 0; withdrawalOps = new IVault.PoolBalanceOp[](count); IVault.PoolBalanceOp[] memory updateOps = new IVault.PoolBalanceOp[](count); for (uint i = 0; i < tokens.length; ++i) { if (weights[i] < origWeights[i]) { uint withdrawAmount = origBalances[i] * (origWeights[i] - weights[i]) / origWeights[i]; withdrawalOps[index] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.WITHDRAW, poolId: poolId, token: IERC20(tokens[i]), amount: withdrawAmount }); updateOps[index] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.UPDATE, poolId: poolId, token: IERC20(tokens[i]), amount: 0 }); ++index; } } vault.managePoolBalance(withdrawalOps); vault.managePoolBalance(updateOps); } function _makeSwaps(IVault.PoolBalanceOp[] memory withdrawalOps, ISwapExecutor.SwapInfo[] calldata swaps) private { for (uint i = 0; i < withdrawalOps.length; ++i) { IVault.PoolBalanceOp memory op = withdrawalOps[i]; SIERC20(address(op.token)).safeTransfer(address(SWAP_EXECUTOR), op.amount); } SWAP_EXECUTOR.executeSwaps(swaps); } function _deposit( IVault vault, bytes32 poolId, IERC20[] memory tokens ) private { (uint[] memory balances, uint balancesCount) = _getBalances(tokens); IVault.PoolBalanceOp[] memory updateOps = new IVault.PoolBalanceOp[](balancesCount); IVault.PoolBalanceOp[] memory depositOps = new IVault.PoolBalanceOp[](balancesCount); uint depositOpsIdx = 0; for (uint i = 0; i < tokens.length; ++i) { IERC20 token = tokens[i]; uint balance = balances[i]; if (balance > 0) { SIERC20(address(token)).forceApprove(address(vault), balance); updateOps[depositOpsIdx] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.UPDATE, poolId: poolId, token: token, amount: balance }); depositOps[depositOpsIdx] = IVault.PoolBalanceOp({ kind: IVault.PoolBalanceOpKind.DEPOSIT, poolId: poolId, token: token, amount: balance }); depositOpsIdx++; } } vault.managePoolBalance(updateOps); vault.managePoolBalance(depositOps); } function _getBalances(IERC20[] memory tokens) private view returns (uint[] memory balances, uint count) { balances = new uint[](tokens.length); for (uint i = 0; i < tokens.length; ++i) { balances[i] = IERC20(tokens[i]).balanceOf(address(this)); if (balances[i] > 0) { ++count; } } } function _verifyState( IVault vault, bytes32 poolId, uint256[] memory origBalances, uint256[] memory origWeights, uint256[] calldata newWeights) private view { (IERC20[] memory pt, uint256[] memory pb,) = vault.getPoolTokens(poolId); (, uint256[] memory newBalances) = dropBpt(pt, pb); uint totalValue; for(uint i = 0; i < origBalances.length; ++i) { totalValue += newBalances[i] * origWeights[i]/origBalances[i]; uint absWeightedBalanceDiff = absDiff(newBalances[i] * origWeights[i], origBalances[i] * newWeights[i]); require(absWeightedBalanceDiff <= maxBalanceDeviation * origWeights[i] * newBalances[i] / 1E18, "RATE1"); require(absWeightedBalanceDiff <= maxBalanceDeviation * origBalances[i] * newWeights[i] / 1E18, "RATE2"); } require(1E18 <= totalValue + maxRebalanceSlippage, "SLIPPAGE"); } function absDiff(uint x, uint y) pure private returns (uint) { return x >= y ? x - y : y - x; } function dropBpt(IERC20[] memory registeredTokens, uint256[] memory registeredBalances) internal pure returns (IERC20[] memory tokens, uint256[] memory balances) { assembly { // See dropBptFromTokens for a detailed explanation of how this works mstore(add(registeredTokens, 32), sub(mload(registeredTokens), 1)) tokens := add(registeredTokens, 32) mstore(add(registeredBalances, 32), sub(mload(registeredBalances), 1)) balances := add(registeredBalances, 32) } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import "../solidity-utils/openzeppelin/IERC20.sol"; import "../vault/IBasePool.sol"; interface IManagedPool is IBasePool { event GradualSwapFeeUpdateScheduled( uint256 startTime, uint256 endTime, uint256 startSwapFeePercentage, uint256 endSwapFeePercentage ); event GradualWeightUpdateScheduled( uint256 startTime, uint256 endTime, uint256[] startWeights, uint256[] endWeights ); event SwapEnabledSet(bool swapEnabled); event JoinExitEnabledSet(bool joinExitEnabled); event MustAllowlistLPsSet(bool mustAllowlistLPs); event AllowlistAddressAdded(address indexed member); event AllowlistAddressRemoved(address indexed member); event ManagementAumFeePercentageChanged(uint256 managementAumFeePercentage); event ManagementAumFeeCollected(uint256 bptAmount); event CircuitBreakerSet( IERC20 indexed token, uint256 bptPrice, uint256 lowerBoundPercentage, uint256 upperBoundPercentage ); event TokenAdded(IERC20 indexed token, uint256 normalizedWeight); event TokenRemoved(IERC20 indexed token); /** * @notice Returns the effective BPT supply. * * @dev The Pool owes debt to the Protocol and the Pool's owner in the form of unminted BPT, which will be minted * immediately before the next join or exit. We need to take these into account since, even if they don't yet exist, * they will effectively be included in any Pool operation that involves BPT. * * In the vast majority of cases, this function should be used instead of `totalSupply()`. * * WARNING: since this function reads balances directly from the Vault, it is potentially subject to manipulation * via reentrancy. See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference. * * To call this function safely, attempt to trigger the reentrancy guard in the Vault by calling a non-reentrant * function before calling `getActualSupply`. That will make the transaction revert in an unsafe context. * (See `whenNotInVaultContext` in `ManagedPoolSettings`). */ function getActualSupply() external view returns (uint256); // Swap fee percentage /** * @notice Schedule a gradual swap fee update. * @dev The swap fee will change from the given starting value (which may or may not be the current * value) to the given ending fee percentage, over startTime to endTime. * * Note that calling this with a starting swap fee different from the current value will immediately change the * current swap fee to `startSwapFeePercentage`, before commencing the gradual change at `startTime`. * Emits the GradualSwapFeeUpdateScheduled event. * This is a permissioned function. * * @param startTime - The timestamp when the swap fee change will begin. * @param endTime - The timestamp when the swap fee change will end (must be >= startTime). * @param startSwapFeePercentage - The starting value for the swap fee change. * @param endSwapFeePercentage - The ending value for the swap fee change. If the current timestamp >= endTime, * `getSwapFeePercentage()` will return this value. */ function updateSwapFeeGradually( uint256 startTime, uint256 endTime, uint256 startSwapFeePercentage, uint256 endSwapFeePercentage ) external; /** * @notice Returns the current gradual swap fee update parameters. * @dev The current swap fee can be retrieved via `getSwapFeePercentage()`. * @return startTime - The timestamp when the swap fee update will begin. * @return endTime - The timestamp when the swap fee update will end. * @return startSwapFeePercentage - The starting swap fee percentage (could be different from the current value). * @return endSwapFeePercentage - The final swap fee percentage, when the current timestamp >= endTime. */ function getGradualSwapFeeUpdateParams() external view returns ( uint256 startTime, uint256 endTime, uint256 startSwapFeePercentage, uint256 endSwapFeePercentage ); // Token weights /** * @notice Schedule a gradual weight change. * @dev The weights will change from their current values to the given endWeights, over startTime to endTime. * This is a permissioned function. * * Since, unlike with swap fee updates, we generally do not want to allow instantaneous weight changes, * the weights always start from their current values. This also guarantees a smooth transition when * updateWeightsGradually is called during an ongoing weight change. * @param startTime - The timestamp when the weight change will begin. * @param endTime - The timestamp when the weight change will end (can be >= startTime). * @param tokens - The tokens associated with the target weights (must match the current pool tokens). * @param endWeights - The target weights. If the current timestamp >= endTime, `getNormalizedWeights()` * will return these values. */ function updateWeightsGradually( uint256 startTime, uint256 endTime, IERC20[] memory tokens, uint256[] memory endWeights ) external; /** * @notice Returns all normalized weights, in the same order as the Pool's tokens. */ function getNormalizedWeights() external view returns (uint256[] memory); /** * @notice Returns the current gradual weight change update parameters. * @dev The current weights can be retrieved via `getNormalizedWeights()`. * @return startTime - The timestamp when the weight update will begin. * @return endTime - The timestamp when the weight update will end. * @return startWeights - The starting weights, when the weight change was initiated. * @return endWeights - The final weights, when the current timestamp >= endTime. */ function getGradualWeightUpdateParams() external view returns ( uint256 startTime, uint256 endTime, uint256[] memory startWeights, uint256[] memory endWeights ); // Join and Exit enable/disable /** * @notice Enable or disable joins and exits. Note that this does not affect Recovery Mode exits. * @dev Emits the JoinExitEnabledSet event. This is a permissioned function. * @param joinExitEnabled - The new value of the join/exit enabled flag. */ function setJoinExitEnabled(bool joinExitEnabled) external; /** * @notice Returns whether joins and exits are enabled. */ function getJoinExitEnabled() external view returns (bool); // Swap enable/disable /** * @notice Enable or disable trading. * @dev Emits the SwapEnabledSet event. This is a permissioned function. * @param swapEnabled - The new value of the swap enabled flag. */ function setSwapEnabled(bool swapEnabled) external; /** * @notice Returns whether swaps are enabled. */ function getSwapEnabled() external view returns (bool); // LP Allowlist /** * @notice Enable or disable the LP allowlist. * @dev Note that any addresses added to the allowlist will be retained if the allowlist is toggled off and * back on again, because this action does not affect the list of LP addresses. * Emits the MustAllowlistLPsSet event. This is a permissioned function. * @param mustAllowlistLPs - The new value of the mustAllowlistLPs flag. */ function setMustAllowlistLPs(bool mustAllowlistLPs) external; /** * @notice Adds an address to the LP allowlist. * @dev Will fail if the address is already allowlisted. * Emits the AllowlistAddressAdded event. This is a permissioned function. * @param member - The address to be added to the allowlist. */ function addAllowedAddress(address member) external; /** * @notice Removes an address from the LP allowlist. * @dev Will fail if the address was not previously allowlisted. * Emits the AllowlistAddressRemoved event. This is a permissioned function. * @param member - The address to be removed from the allowlist. */ function removeAllowedAddress(address member) external; /** * @notice Returns whether the allowlist for LPs is enabled. */ function getMustAllowlistLPs() external view returns (bool); /** * @notice Check whether an LP address is on the allowlist. * @dev This simply checks the list, regardless of whether the allowlist feature is enabled. * @param member - The address to check against the allowlist. * @return true if the given address is on the allowlist. */ function isAddressOnAllowlist(address member) external view returns (bool); // Management fees /** * @notice Collect any accrued AUM fees and send them to the pool manager. * @dev This can be called by anyone to collect accrued AUM fees - and will be called automatically * whenever the supply changes (e.g., joins and exits, add and remove token), and before the fee * percentage is changed by the manager, to prevent fees from being applied retroactively. * * Correct behavior depends on the current supply, which is potentially manipulable if the pool * is reentered during execution of a Vault hook. This is protected where overridden in ManagedPoolSettings, * and so is safe to call on ManagedPool. * * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference. * * @return The amount of BPT minted to the manager. */ function collectAumManagementFees() external returns (uint256); /** * @notice Setter for the yearly percentage AUM management fee, which is payable to the pool manager. * @dev Attempting to collect AUM fees in excess of the maximum permitted percentage will revert. * To avoid retroactive fee increases, we force collection at the current fee percentage before processing * the update. Emits the ManagementAumFeePercentageChanged event. This is a permissioned function. * * To prevent changing management fees retroactively, this triggers payment of protocol fees before applying * the change. Correct behavior depends on the current supply, which is potentially manipulable if the pool * is reentered during execution of a Vault hook. This is protected where overridden in ManagedPoolSettings, * and so is safe to call on ManagedPool. * * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference. * * @param managementAumFeePercentage - The new management AUM fee percentage. * @return amount - The amount of BPT minted to the manager before the update, if any. */ function setManagementAumFeePercentage(uint256 managementAumFeePercentage) external returns (uint256); /** * @notice Returns the management AUM fee percentage as an 18-decimal fixed point number and the timestamp of the * last collection of AUM fees. */ function getManagementAumFeeParams() external view returns (uint256 aumFeePercentage, uint256 lastCollectionTimestamp); // Circuit Breakers /** * @notice Set a circuit breaker for one or more tokens. * @dev This is a permissioned function. The lower and upper bounds are percentages, corresponding to a * relative change in the token's spot price: e.g., a lower bound of 0.8 means the breaker should prevent * trades that result in the value of the token dropping 20% or more relative to the rest of the pool. */ function setCircuitBreakers( IERC20[] memory tokens, uint256[] memory bptPrices, uint256[] memory lowerBoundPercentages, uint256[] memory upperBoundPercentages ) external; /** * @notice Return the full circuit breaker state for the given token. * @dev These are the reference values (BPT price and reference weight) passed in when the breaker was set, * along with the percentage bounds. It also returns the current BPT price bounds, needed to check whether * the circuit breaker should trip. */ function getCircuitBreakerState(IERC20 token) external view returns ( uint256 bptPrice, uint256 referenceWeight, uint256 lowerBound, uint256 upperBound, uint256 lowerBptPriceBound, uint256 upperBptPriceBound ); // Add/remove tokens /** * @notice Adds a token to the Pool's list of tradeable tokens. This is a permissioned function. * * @dev By adding a token to the Pool's composition, the weights of all other tokens will be decreased. The new * token will have no balance - it is up to the owner to provide some immediately after calling this function. * Note however that regular join functions will not work while the new token has no balance: the only way to * deposit an initial amount is by using an Asset Manager. * * Token addition is forbidden during a weight change, or if one is scheduled to happen in the future. * * The caller may additionally pass a non-zero `mintAmount` to have some BPT be minted for them, which might be * useful in some scenarios to account for the fact that the Pool will have more tokens. * * Emits the TokenAdded event. This is a permissioned function. * * Correct behavior depends on the token balances from the Vault, which may be out of sync with the state of * the pool during execution of a Vault hook. This is protected where overridden in ManagedPoolSettings, * and so is safe to call on ManagedPool. * * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference. * * @param tokenToAdd - The ERC20 token to be added to the Pool. * @param assetManager - The Asset Manager for the token. * @param tokenToAddNormalizedWeight - The normalized weight of `token` relative to the other tokens in the Pool. * @param mintAmount - The amount of BPT to be minted as a result of adding `token` to the Pool. * @param recipient - The address to receive the BPT minted by the Pool. */ function addToken( IERC20 tokenToAdd, address assetManager, uint256 tokenToAddNormalizedWeight, uint256 mintAmount, address recipient ) external; /** * @notice Removes a token from the Pool's list of tradeable tokens. * @dev Tokens can only be removed if the Pool has more than 2 tokens, as it can never have fewer than 2 (not * including BPT). Token removal is also forbidden during a weight change, or if one is scheduled to happen in * the future. * * Emits the TokenRemoved event. This is a permissioned function. * Correct behavior depends on the token balances from the Vault, which may be out of sync with the state of * the pool during execution of a Vault hook. This is protected where overridden in ManagedPoolSettings, * and so is safe to call on ManagedPool. * * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference. * * The caller may additionally pass a non-zero `burnAmount` to burn some of their BPT, which might be useful * in some scenarios to account for the fact that the Pool now has fewer tokens. This is a permissioned function. * @param tokenToRemove - The ERC20 token to be removed from the Pool. * @param burnAmount - The amount of BPT to be burned after removing `token` from the Pool. * @param sender - The address to burn BPT from. */ function removeToken( IERC20 tokenToRemove, uint256 burnAmount, address sender ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.7.0 <0.9.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); /** * @dev Returns this Pool's ID, used when interacting with the Vault (to e.g. join the Pool or swap with it). */ function getPoolId() external view returns (bytes32); /** * @dev Returns the current swap fee percentage as a 18 decimal fixed point number, so e.g. 1e17 corresponds to a * 10% swap fee. */ function getSwapFeePercentage() external view returns (uint256); /** * @dev Returns the scaling factors of each of the Pool's tokens. This is an implementation detail that is typically * not relevant for outside parties, but which might be useful for some types of Pools. */ function getScalingFactors() external view returns (uint256[] memory); function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn); function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "../solidity-utils/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity >=0.7.0 <0.9.0; pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "../solidity-utils/openzeppelin/IERC20.sol"; import "../solidity-utils/helpers/IAuthentication.sol"; import "../solidity-utils/helpers/ISignaturesValidator.sol"; import "../solidity-utils/helpers/ITemporarilyPausable.sol"; import "../solidity-utils/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity >=0.7.0 <0.9.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AccessManaged.sol) pragma solidity ^0.8.20; import {IAuthority} from "@openzeppelin/contracts/access/manager/IAuthority.sol"; import {AuthorityUtils} from "@openzeppelin/contracts/access/manager/AuthorityUtils.sol"; import {IAccessManager} from "@openzeppelin/contracts/access/manager/IAccessManager.sol"; import {IAccessManaged} from "@openzeppelin/contracts/access/manager/IAccessManaged.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface, * implementing a policy that allows certain callers to access certain functions. * * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public` * functions, and ideally only used in `external` functions. See {restricted}. */ abstract contract AccessManagedUpgradeable is Initializable, ContextUpgradeable, IAccessManaged { /// @custom:storage-location erc7201:openzeppelin.storage.AccessManaged struct AccessManagedStorage { address _authority; bool _consumingSchedule; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessManaged")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessManagedStorageLocation = 0xf3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00; function _getAccessManagedStorage() private pure returns (AccessManagedStorage storage $) { assembly { $.slot := AccessManagedStorageLocation } } /** * @dev Initializes the contract connected to an initial authority. */ function __AccessManaged_init(address initialAuthority) internal onlyInitializing { __AccessManaged_init_unchained(initialAuthority); } function __AccessManaged_init_unchained(address initialAuthority) internal onlyInitializing { _setAuthority(initialAuthority); } /** * @dev Restricts access to a function as defined by the connected Authority for this contract and the * caller and selector of the function that entered the contract. * * [IMPORTANT] * ==== * In general, this modifier should only be used on `external` functions. It is okay to use it on `public` * functions that are used as external entry points and are not called internally. Unless you know what you're * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security * implications! This is because the permissions are determined by the function that entered the contract, i.e. the * function at the bottom of the call stack, and not the function where the modifier is visible in the source code. * ==== * * [WARNING] * ==== * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`] * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These * functions are the only execution paths where a function selector cannot be unambiguosly determined from the calldata * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function * if no calldata is provided. (See {_checkCanCall}). * * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length. * ==== */ modifier restricted() { _checkCanCall(_msgSender(), _msgData()); _; } /// @inheritdoc IAccessManaged function authority() public view virtual returns (address) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._authority; } /// @inheritdoc IAccessManaged function setAuthority(address newAuthority) public virtual { address caller = _msgSender(); if (caller != authority()) { revert AccessManagedUnauthorized(caller); } if (newAuthority.code.length == 0) { revert AccessManagedInvalidAuthority(newAuthority); } _setAuthority(newAuthority); } /// @inheritdoc IAccessManaged function isConsumingScheduledOp() public view returns (bytes4) { AccessManagedStorage storage $ = _getAccessManagedStorage(); return $._consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0); } /** * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the * permissions set by the current authority. */ function _setAuthority(address newAuthority) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); $._authority = newAuthority; emit AuthorityUpdated(newAuthority); } /** * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata * is less than 4 bytes long. */ function _checkCanCall(address caller, bytes calldata data) internal virtual { AccessManagedStorage storage $ = _getAccessManagedStorage(); (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay( authority(), caller, address(this), bytes4(data[0:4]) ); if (!immediate) { if (delay > 0) { $._consumingSchedule = true; IAccessManager(authority()).consumeScheduledOp(caller, data); $._consumingSchedule = false; } else { revert AccessManagedUnauthorized(caller); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol"; import {Initializable} from "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol) pragma solidity ^0.8.20; import {IAuthority} from "./IAuthority.sol"; library AuthorityUtils { /** * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data. * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting. */ function canCallWithDelay( address authority, address caller, address target, bytes4 selector ) internal view returns (bool immediate, uint32 delay) { (bool success, bytes memory data) = authority.staticcall( abi.encodeCall(IAuthority.canCall, (caller, target, selector)) ); if (success) { if (data.length >= 0x40) { (immediate, delay) = abi.decode(data, (bool, uint32)); } else if (data.length >= 0x20) { immediate = abi.decode(data, (bool)); } } return (immediate, delay); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol) pragma solidity ^0.8.20; interface IAccessManaged { /** * @dev Authority that manages this contract was updated. */ event AuthorityUpdated(address authority); error AccessManagedUnauthorized(address caller); error AccessManagedRequiredDelay(address caller, uint32 delay); error AccessManagedInvalidAuthority(address authority); /** * @dev Returns the current authority. */ function authority() external view returns (address); /** * @dev Transfers control to a new authority. The caller must be the current authority. */ function setAuthority(address) external; /** * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs * attacker controlled calls. */ function isConsumingScheduledOp() external view returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManager.sol) pragma solidity ^0.8.20; import {IAccessManaged} from "./IAccessManaged.sol"; import {Time} from "../../utils/types/Time.sol"; interface IAccessManager { /** * @dev A delayed operation was scheduled. */ event OperationScheduled( bytes32 indexed operationId, uint32 indexed nonce, uint48 schedule, address caller, address target, bytes data ); /** * @dev A scheduled operation was executed. */ event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev A scheduled operation was canceled. */ event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev Informational labelling for a roleId. */ event RoleLabel(uint64 indexed roleId, string label); /** * @dev Emitted when `account` is granted `roleId`. * * NOTE: The meaning of the `since` argument depends on the `newMember` argument. * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role, * otherwise it indicates the execution delay for this account and roleId is updated. */ event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember); /** * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous. */ event RoleRevoked(uint64 indexed roleId, address indexed account); /** * @dev Role acting as admin over a given `roleId` is updated. */ event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin); /** * @dev Role acting as guardian over a given `roleId` is updated. */ event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian); /** * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached. */ event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since); /** * @dev Target mode is updated (true = closed, false = open). */ event TargetClosed(address indexed target, bool closed); /** * @dev Role required to invoke `selector` on `target` is updated to `roleId`. */ event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId); /** * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached. */ event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since); error AccessManagerAlreadyScheduled(bytes32 operationId); error AccessManagerNotScheduled(bytes32 operationId); error AccessManagerNotReady(bytes32 operationId); error AccessManagerExpired(bytes32 operationId); error AccessManagerLockedAccount(address account); error AccessManagerLockedRole(uint64 roleId); error AccessManagerBadConfirmation(); error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId); error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector); error AccessManagerUnauthorizedConsume(address target); error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector); error AccessManagerInvalidInitialAdmin(address initialAdmin); /** * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule} * & {execute} workflow. * * This function is usually called by the targeted contract to control immediate execution of restricted functions. * Therefore we only return true if the call can be performed without any delay. If the call is subject to a * previously set delay (not zero), then the function should return false and the caller should schedule the operation * for future execution. * * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise * the operation can be executed if and only if delay is greater than 0. * * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail * to identify the indirect workflow, and will consider calls that require a delay to be forbidden. * * NOTE: This function does not report the permissions of this manager itself. These are defined by the * {_canCallSelf} function instead. */ function canCall( address caller, address target, bytes4 selector ) external view returns (bool allowed, uint32 delay); /** * @dev Expiration delay for scheduled proposals. Defaults to 1 week. * * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately, * disabling any scheduling usage. */ function expiration() external view returns (uint32); /** * @dev Minimum setback for all delay updates, with the exception of execution delays. It * can be increased without setback (and reset via {revokeRole} in the case event of an * accidental increase). Defaults to 5 days. */ function minSetback() external view returns (uint32); /** * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied. */ function isTargetClosed(address target) external view returns (bool); /** * @dev Get the role required to call a function. */ function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64); /** * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay. */ function getTargetAdminDelay(address target) external view returns (uint32); /** * @dev Get the id of the role that acts as an admin for the given role. * * The admin permission is required to grant the role, revoke the role and update the execution delay to execute * an operation that is restricted to this role. */ function getRoleAdmin(uint64 roleId) external view returns (uint64); /** * @dev Get the role that acts as a guardian for a given role. * * The guardian permission allows canceling operations that have been scheduled under the role. */ function getRoleGuardian(uint64 roleId) external view returns (uint64); /** * @dev Get the role current grant delay. * * Its value may change at any point without an event emitted following a call to {setGrantDelay}. * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event. */ function getRoleGrantDelay(uint64 roleId) external view returns (uint32); /** * @dev Get the access details for a given account for a given role. These details include the timepoint at which * membership becomes active, and the delay applied to all operation by this user that requires this permission * level. * * Returns: * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted. * [1] Current execution delay for the account. * [2] Pending execution delay for the account. * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled. */ function getAccess(uint64 roleId, address account) external view returns (uint48, uint32, uint32, uint48); /** * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this * permission might be associated with an execution delay. {getAccess} can provide more details. */ function hasRole(uint64 roleId, address account) external view returns (bool, uint32); /** * @dev Give a label to a role, for improved role discoverability by UIs. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleLabel} event. */ function labelRole(uint64 roleId, string calldata label) external; /** * @dev Add `account` to `roleId`, or change its execution delay. * * This gives the account the authorization to call any function that is restricted to this role. An optional * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation * that is restricted to members of this role. The user will only be able to execute the operation after the delay has * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}). * * If the account has already been granted this role, the execution delay will be updated. This update is not * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any * operation executed in the 3 hours that follows this update was indeed scheduled before this update. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - granted role must not be the `PUBLIC_ROLE` * * Emits a {RoleGranted} event. */ function grantRole(uint64 roleId, address account, uint32 executionDelay) external; /** * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has * no effect. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - revoked role must not be the `PUBLIC_ROLE` * * Emits a {RoleRevoked} event if the account had the role. */ function revokeRole(uint64 roleId, address account) external; /** * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in * the role this call has no effect. * * Requirements: * * - the caller must be `callerConfirmation`. * * Emits a {RoleRevoked} event if the account had the role. */ function renounceRole(uint64 roleId, address callerConfirmation) external; /** * @dev Change admin role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleAdminChanged} event */ function setRoleAdmin(uint64 roleId, uint64 admin) external; /** * @dev Change guardian role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGuardianChanged} event */ function setRoleGuardian(uint64 roleId, uint64 guardian) external; /** * @dev Update the delay for granting a `roleId`. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGrantDelayChanged} event. */ function setGrantDelay(uint64 roleId, uint32 newDelay) external; /** * @dev Set the role required to call functions identified by the `selectors` in the `target` contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetFunctionRoleUpdated} event per selector. */ function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external; /** * @dev Set the delay for changing the configuration of a given target contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetAdminDelayUpdated} event. */ function setTargetAdminDelay(address target, uint32 newDelay) external; /** * @dev Set the closed flag for a contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetClosed} event. */ function setTargetClosed(address target, bool closed) external; /** * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the * operation is not yet scheduled, has expired, was executed, or was canceled. */ function getSchedule(bytes32 id) external view returns (uint48); /** * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never * been scheduled. */ function getNonce(bytes32 id) external view returns (uint32); /** * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays * required for the caller. The special value zero will automatically set the earliest possible time. * * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}. * * Emits a {OperationScheduled} event. * * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target * contract if it is using standard Solidity ABI encoding. */ function schedule(address target, bytes calldata data, uint48 when) external returns (bytes32, uint32); /** * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the * execution delay is 0. * * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the * operation wasn't previously scheduled (if the caller doesn't have an execution delay). * * Emits an {OperationExecuted} event only if the call was scheduled and delayed. */ function execute(address target, bytes calldata data) external payable returns (uint32); /** * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled * operation that is cancelled. * * Requirements: * * - the caller must be the proposer, a guardian of the targeted function, or a global admin * * Emits a {OperationCanceled} event. */ function cancel(address caller, address target, bytes calldata data) external returns (uint32); /** * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error. * * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager, * with all the verifications that it implies. * * Emit a {OperationExecuted} event. */ function consumeScheduledOp(address caller, bytes calldata data) external; /** * @dev Hashing function for delayed operations. */ function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32); /** * @dev Changes the authority of a target managed by this manager instance. * * Requirements: * * - the caller must be a global admin */ function updateAuthority(address target, address newAuthority) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol) pragma solidity ^0.8.20; /** * @dev Standard interface for permissioning originally defined in Dappsys. */ interface IAuthority { /** * @dev Returns true if the caller can invoke on a target the function identified by a function selector. */ function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.19; import {IVault} from '@balancer-labs/v2-interfaces/contracts/vault/IVault.sol'; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IBalancerPoolToken is IERC20 { function getVault() external view returns (IVault); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.19; interface ISwapExecutor { error SwapError(address callee, bytes data, bytes error); struct SwapInfo { address callee; // callee bytes data; // swap call data uint256 amount; // amount to swap address token; // token to swap } function executeSwaps(SwapInfo[] calldata swaps) external; function executeSwap(ISwapExecutor.SwapInfo calldata swap) external; function defaultSwap( address fromToken, address toToken, uint256 amountOutMinimum ) external returns (uint256 toAmount); }
{ "viaIR": true, "optimizer": { "enabled": true, "runs": 1000 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"swapExecutor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"Expired","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"minBalance","type":"uint256"}],"name":"TokenBalanceLessThanMin","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"SWAP_EXECUTOR","outputs":[{"internalType":"contract ISwapExecutor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IManagedPool","name":"pool","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"weight","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"addToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_authority","type":"address"},{"internalType":"uint256","name":"_rebalanceCooldownBlocks","type":"uint256"},{"internalType":"uint256","name":"_maxBalanceDeviation","type":"uint256"},{"internalType":"uint256","name":"_maxRebalanceSlippage","type":"uint256"},{"internalType":"uint256","name":"_maxInitialTokenWeight","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxBalanceDeviation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxInitialTokenWeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxRebalanceSlippage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IManagedPool","name":"pool","type":"address"},{"internalType":"uint256[]","name":"weights","type":"uint256[]"},{"components":[{"internalType":"address","name":"callee","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"token","type":"address"}],"internalType":"struct ISwapExecutor.SwapInfo[]","name":"swaps","type":"tuple[]"},{"internalType":"uint256[]","name":"minPoolBalances","type":"uint256[]"},{"internalType":"uint32","name":"deadline","type":"uint32"}],"name":"rebalance","outputs":[{"internalType":"uint256[]","name":"poolBalances","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rebalanceCooldownBlocks","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_rebalanceCooldownBlocks","type":"uint256"},{"internalType":"uint256","name":"_maxBalanceDeviation","type":"uint256"},{"internalType":"uint256","name":"_maxRebalanceSlippage","type":"uint256"},{"internalType":"uint256","name":"_maxInitialTokenWeight","type":"uint256"}],"name":"setParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"}]
Contract Creation Code
60c03461014b57601f6129ba38819003918201601f19168301916001600160401b038311848410176101505780849260209460405283398101031261014b57516001600160a01b0381169081900361014b57306080526000805560a0527ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460ff8160401c1661013a576002600160401b03196001600160401b038216016100d1575b604051612853908161016782396080518181816106cf015261111e015260a05181818161013c0152611d2e0152f35b6001600160401b0319166001600160401b039081177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1386100a2565b63f92ee8a960e01b60005260046000fd5b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001257600080fd5b60003560e01c80630b34587914610107578063207838161461010257806324b77843146100fd5780632aba2aeb146100f85780633dc9067f146100f35780634f1ef286146100ee57806352d1902d146100e957806353df519c146100e45780637a9e5e4b146100df5780637ece45e8146100da5780638fb36037146100d5578063ad3cb1cc146100d0578063bf7e214f146100cb578063f92ad219146100c65763fcbae451146100c157600080fd5b610b8f565b610966565b610932565b61089e565b610833565b6107fe565b610767565b610749565b6106b4565b610638565b610596565b6102d2565b610216565b610160565b61011c565b600091031261011757565b600080fd5b346101175760003660031901126101175760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610117576000366003190112610117576020600154604051908152f35b6001600160a01b0381160361011757565b9181601f840112156101175782359167ffffffffffffffff8311610117576020808501948460051b01011161011757565b63ffffffff81160361011757565b906020808351928381520192019060005b8181106101ec5750505090565b82518452602093840193909201916001016101df565b9060206102139281815201906101ce565b90565b346101175760a0366003190112610117576004356102338161017e565b60243567ffffffffffffffff81116101175761025390369060040161018f565b909160443567ffffffffffffffff81116101175761027590369060040161018f565b9290936064359367ffffffffffffffff8511610117576102c1956102a06102b596369060040161018f565b949093608435966102b0886101c0565b610bad565b60405191829182610202565b0390f35b35906102d08261017e565b565b34610117576080366003190112610117576004356102ef8161017e565b602435906102fc8261017e565b604435916001600160a01b038060643592610317363361132a565b16926103258330338761168a565b1692833b15610117576040517f34a36df80000000000000000000000000000000000000000000000000000000081526001600160a01b038416600482015230602482015260448101919091526000606482018190523360848301528160a48183885af1801561050757610581575b50604051906311b2515f60e31b8252602082600481875afa918215610507576004926001600160a01b0391600091610552575b5016926103d48285836116e9565b60206103de610faa565b956040519485809263038fff2d60e41b82525afa92831561050757600093610521575b5061040a61060d565b60028152602081018490526001600160a01b038216604082015282606082015261043386610f3b565b5261043d85610f3b565b50833b156101175760405190637362304960e11b825260008280610464896004830161108b565b038183895af19182156105075761049d9261050c575b5061048361060d565b600181529360208501526001600160a01b03166040840152565b60608201526104ab83610f3b565b526104b582610f3b565b50803b1561011757604051637362304960e11b81529060009082908183816104e0886004830161108b565b03925af18015610507576104f057005b806104ff6000610505936105eb565b8061010c565b005b610f71565b806104ff600061051b936105eb565b3861047a565b61054491935060203d60201161054b575b61053c81836105eb565b81019061107c565b9138610401565b503d610532565b610574915060203d60201161057a575b61056c81836105eb565b810190610f7d565b386103c6565b503d610562565b806104ff6000610590936105eb565b38610393565b34610117576000366003190112610117576020600054604051908152f35b634e487b7160e01b600052604160045260246000fd5b6080810190811067ffffffffffffffff8211176105e657604052565b6105b4565b90601f8019910116810190811067ffffffffffffffff8211176105e657604052565b604051906102d06080836105eb565b67ffffffffffffffff81116105e657601f01601f191660200190565b6040366003190112610117576004356106508161017e565b6024359067ffffffffffffffff821161011757366023830112156101175781600401359061067d8261061c565b9161068b60405193846105eb565b808352366024828601011161011757602081600092602461050597018387013784010152611112565b34610117576000366003190112610117576001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016300361071f5760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba0000000000000000000000000000000000000000000000000000000060005260046000fd5b34610117576000366003190112610117576020600354604051908152f35b34610117576020366003190112610117576004356107848161017e565b6001600160a01b036000805160206127fe833981519152541633036107ea57803b156107b357610505906117df565b6001600160a01b03907fc2f31e5e000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b62d1953b60e31b6000523360045260246000fd5b3461011757608036600319011261011757606435604435602435600435610825363361132a565b600055600155600255600355005b34610117576000366003190112610117576000805160206127fe8339815191525460a01c60ff16156108955760207f8fb36037000000000000000000000000000000000000000000000000000000005b6001600160e01b031960405191168152f35b60206000610883565b346101175760003660031901126101175760408051906108be81836105eb565b600582527f352e302e300000000000000000000000000000000000000000000000000000006020830152805180926020825280519081602084015260005b82811061091b5750506000828201840152601f01601f19168101030190f35b6020828201810151878301870152869450016108fc565b346101175760003660031901126101175760206001600160a01b036000805160206127fe8339815191525416604051908152f35b346101175760a0366003190112610117576004356109838161017e565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549060843560643560443560243567ffffffffffffffff6109d560ff604089901c16159767ffffffffffffffff1690565b1680159081610b87575b6001149081610b7d575b159081610b74575b50610b4a57610a5b9486610a52600167ffffffffffffffff197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005416177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b610ae557611276565b610a6157005b610ab668ff0000000000000000197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1005b610b456801000000000000000068ff0000000000000000197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005416177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b611276565b7ff92ee8a90000000000000000000000000000000000000000000000000000000060005260046000fd5b905015386109f1565b303b1591506109e9565b8791506109df565b34610117576000366003190112610117576020600254604051908152f35b909192959663ffffffff90610bc2363361132a565b16428110610ef857506001600160a01b03811690604051936311b2515f60e31b8552602085600481865afa94851561050757600095610ed7575b506040519463038fff2d60e41b8652602086600481875afa95861561050757600096610eb6575b50604051631f29a8cd60e31b8152600481018790526001600160a01b0382169590926000846024818a5afa92831561050757610c9a96600080600096610e83575b8051600019908101602092830190815283519091019190920190815295965060049560009291610ca2915b9a90988454906115bb565b4310156115cd565b604051958680927ff89f27ed0000000000000000000000000000000000000000000000000000000082525afa998a15610507578360009b610d2f99610d4f9f610d22958f958f9289878e610d299e839b99610e4b575b5088610d12959493610d0d938a938a8a6119e5565b611d2a565b610d1d8b8383611de9565b612007565b369161163e565b91612272565b6040518080968194631f29a8cd60e31b8352600483019190602083019252565b03915afa92831561050757600092600094610e1f575b5060005b818110610d77575050505090565b610d818186610f4d565b51610d8d828486610f61565b3511610d9b57600101610d69565b610ddd91610dd682610dd0610dc4610db783610e1b9b9a610f4d565b516001600160a01b031690565b6001600160a01b031690565b96610f4d565b5193610f61565b7f18da4740000000000000000000000000000000000000000000000000000000006000526001600160a01b0390921660045260245235604452606490565b6000fd5b909350610e409192503d806000833e610e3881836105eb565b8101906114f8565b509190919238610d65565b610d0d92995090610d12959493610e768a933d60008190833e610e6e81836105eb565b810190611618565b9a93509394955090610cf8565b505060049450600090610ca2610ea5610c8f983d8086833e610e3881836105eb565b919950909750919250879050610c64565b610ed091965060203d60201161054b5761053c81836105eb565b9438610c23565b610ef191955060203d60201161057a5761056c81836105eb565b9338610bfc565b7ff80dbaea0000000000000000000000000000000000000000000000000000000060005260045260246000fd5b634e487b7160e01b600052603260045260246000fd5b805115610f485760200190565b610f25565b8051821015610f485760209160051b010190565b9190811015610f485760051b0190565b6040513d6000823e3d90fd5b9081602091031261011757516102138161017e565b67ffffffffffffffff81116105e65760051b60200190565b604080519190610fba90836105eb565b6001825281601f19610fcc6001610f92565b019060005b828110610fdd57505050565b602090604051610fec816105ca565b60008152600083820152600060408201526000606082015282828501015201610fd1565b9061101a82610f92565b61102760405191826105eb565b8281528092611038601f1991610f92565b019060005b82811061104957505050565b602090604051611058816105ca565b6000815260008382015260006040820152600060608201528282850101520161103d565b90816020910312610117575190565b602060408183019282815284518094520192019060005b8181106110af5750505090565b909192835180519060038210156110fc578260606080926020946001965284810151858401526001600160a01b0360408201511660408401520151606082015201940191019190916110a2565b634e487b7160e01b600052602160045260246000fd5b90916001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016803014908115611241575b5061071f57611158363361132a565b604051927f52d1902d0000000000000000000000000000000000000000000000000000000084526020846004816001600160a01b0387165afa60009481611220575b506111bd57634c9c8ce360e01b6000526001600160a01b03831660045260246000fd5b90917f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc84036111f1576102d09293506124bf565b7faa1d49a400000000000000000000000000000000000000000000000000000000600052600484905260246000fd5b61123a91955060203d60201161054b5761053c81836105eb565b933861119a565b90506001600160a01b037f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141538611149565b61128f906112826125b7565b61128a6125b7565b6117df565b6112976125b7565b600055600155600255600355565b906004116101175790600490565b919091356001600160e01b0319811692600481106112cf575050565b6001600160e01b0319929350829060040360031b1b161690565b908060209392818452848401376000828201840152601f01601f1916010190565b6040906001600160a01b03610213959316815281602082015201916112e9565b61136961134c6000805160206127fe833981519152546001600160a01b031690565b61136061135a8560006112a5565b906112b3565b908330916118c2565b901561137457505050565b63ffffffff161561147f576113c27401000000000000000000000000000000000000000060ff60a01b196000805160206127fe8339815191525416176000805160206127fe83398151915255565b6113e7610dc4610dc46000805160206127fe833981519152546001600160a01b031690565b91823b156101175761142e926000808094604051968795869485937f94c7d7ee0000000000000000000000000000000000000000000000000000000085526004850161130a565b03925af180156105075761146a575b506102d060ff60a01b196000805160206127fe83398151915254166000805160206127fe83398151915255565b806104ff6000611479936105eb565b3861143d565b62d1953b60e31b6000526001600160a01b031660045260246000fd5b9080601f830112156101175781516114b281610f92565b926114c060405194856105eb565b81845260208085019260051b82010192831161011757602001905b8282106114e85750505090565b81518152602091820191016114db565b909160608284031261011757815167ffffffffffffffff811161011757820183601f820112156101175780519061152e82610f92565b9161153c60405193846105eb565b80835260208084019160051b8301019186831161011757602001905b82821061158b5750505092602083015167ffffffffffffffff81116101175760409161158591850161149b565b92015190565b60208091835161159a8161017e565b815201910190611558565b634e487b7160e01b600052601160045260246000fd5b919082018092116115c857565b6115a5565b156115d457565b606460405162461bcd60e51b815260206004820152600460248201527f54494d45000000000000000000000000000000000000000000000000000000006044820152fd5b9060208282031261011757815167ffffffffffffffff811161011757610213920161149b565b92919061164a81610f92565b9361165860405195866105eb565b602085838152019160051b810192831161011757905b82821061167a57505050565b813581526020918201910161166e565b9091926001600160a01b036102d09481604051957f23b872dd0000000000000000000000000000000000000000000000000000000060208801521660248601521660448401526064830152606482526116e46084836105eb565b61242d565b60405163095ea7b360e01b602082019081526001600160a01b03841660248301526044808301959095529381529192611756906117276064856105eb565b6000806001600160a01b0385169286519082855af19061174561184e565b826117ad575b50816117a657501590565b61175f57505050565b60405163095ea7b360e01b60208201526001600160a01b03939093166024840152600060448085019190915283526102d0926116e4906117a06064826105eb565b8261242d565b3b15919050565b805191925081159182156117c5575b5050903861174b565b6117d8925060208091830101910161188b565b38806117bc565b60206001600160a01b037f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad92168073ffffffffffffffffffffffffffffffffffffffff196000805160206127fe8339815191525416176000805160206127fe83398151915255604051908152a1565b3d15611879573d9061185f8261061c565b9161186d60405193846105eb565b82523d6000602084013e565b606090565b5190811515820361011757565b90816020910312610117576102139061187e565b91908260409103126101175760206118b68361187e565b920151610213816101c0565b60009190829195949582946001600160e01b031984986001600160a01b03604051938160208601967fb70096130000000000000000000000000000000000000000000000000000000088521660248601521660448401521660648201526064815261192e6084826105eb565b51915afa61193a61184e565b9061194457509190565b8051939091604085106119695750506020806119659394830101910161189f565b9091565b919093602081101561197c575b50509190565b61198f925060208091830101910161188b565b3880611976565b60001981146115c85760010190565b919082039182116115c857565b818102929181159184041417156115c857565b81156119cf570490565b634e487b7160e01b600052601260045260246000fd5b919095969493929660009560005b8351811015611a3557611a0781878c610f61565b35611a128289610f4d565b5111611a21575b6001016119f3565b96611a2d600191611996565b979050611a19565b50919597949796909296600095611a54611a4e83611010565b92611010565b93875b8951811015611b8957898c611a6d838b87610f61565b35611a788483610f4d565b5111611a89575b5050600101611a57565b99611b36610db784611b7f948a829f8f908f85611ad5611ae2948f611acf9060019f80611abc611ac892611adb99610f4d565b5194610dd6828b610f4d565b35906119a5565b906119b2565b92610f4d565b51906119c5565b611b16611af2610db78686610f4d565b611afa61060d565b9360008552602085015260408401906001600160a01b03169052565b6060820152611b25868c610f4d565b52611b30858b610f4d565b50610f4d565b611b5d611b4161060d565b6002815291602083018a90526001600160a01b03166040830152565b60006060820152611b6e828a610f4d565b52611b798189610f4d565b50611996565b989050898c611a7f565b50989550509750509350506001600160a01b03915016803b1561011757604051637362304960e11b815260008180611bc4886004830161108b565b038183865af1801561050757611c22575b50803b1561011757611c02600092918392604051948580948193637362304960e11b83526004830161108b565b03925af1801561050757611c135750565b806104ff60006102d0936105eb565b806104ff6000611c31936105eb565b38611bd5565b9180602084016020855252604083019060408160051b8501019383600091607e1982360301905b848410611c6f575050505050505090565b90919293949596603f19828203018752873583811215610117578401906001600160a01b038235611c9f8161017e565b1681526020820135601e1983360301811215610117578201916020833593019067ffffffffffffffff841161011757833603821361011757611d1b836060611d0d81611cfc6020989760019a60808b809b015260808701916112e9565b9560408101356040860152016102c5565b6001600160a01b0316910152565b99019701959401929190611c5e565b91927f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316929160005b8351811015611da15780611d9b611d7460019387610f4d565b51876060611d92610dc4610dc460408601516001600160a01b031690565b92015191612610565b01611d5b565b50915092823b1561011757611c0292600092836040518096819582947f3de0f53600000000000000000000000000000000000000000000000000000000845260048401611c37565b90929192611df684612665565b611e08611e0282611010565b91611010565b600093845b8851811015611eeb57611e23610db7828b610f4d565b611e2d8287610f4d565b5180611e3e575b5050600101611e0d565b96611ee39188611e646001959a6001600160a01b038d166001600160a01b0385166116e9565b611e6c61060d565b60028152602081018790526001600160a01b0383166040820152816060820152611e96848a610f4d565b52611ea18389610f4d565b50611ec9611ead61060d565b6001815292602084018890526001600160a01b03166040840152565b6060820152611ed88287610f4d565b52611b798186610f4d565b959038611e34565b50509495509290506001600160a01b0391501690813b15610117576000611bc49160405180938192637362304960e11b83526004830161108b565b15611f2d57565b606460405162461bcd60e51b815260206004820152600560248201527f52415445310000000000000000000000000000000000000000000000000000006044820152fd5b15611f7857565b606460405162461bcd60e51b815260206004820152600560248201527f52415445320000000000000000000000000000000000000000000000000000006044820152fd5b15611fc357565b606460405162461bcd60e51b815260206004820152600860248201527f534c4950504147450000000000000000000000000000000000000000000000006044820152fd5b604051631f29a8cd60e31b8152600481019290925292949392600090829060249082906001600160a01b03165afa80156105075761206f916000906000926121bc575b5096959691909160206000198251019101908152916020600019825101910190815290565b90506000956000600154975b84518210156121925761208e8285610f4d565b516120998385610f4d565b516120a3916119b2565b6120ad8387610f4d565b516120b7916119c5565b6120c0916115bb565b906120cb8185610f4d565b516120d68285610f4d565b516120e0916119b2565b6120ea8287610f4d565b516120f6838a8a610f61565b35612100916119b2565b61210991612732565b6121138285610f4d565b5161211e908b6119b2565b6121288387610f4d565b51612132916119b2565b670de0b6b3a7640000900481111561214990611f26565b6121538287610f4d565b5161215e908b6119b2565b612169838a8a610f61565b35612173916119b2565b670de0b6b3a76400009004101561218990611f71565b6001019061207b565b9450505050506102d09293506121ac9150600254906115bb565b670de0b6b3a76400001115611fbc565b90506121d391503d806000833e610e3881836105eb565b50903861204a565b906121e582610f92565b6121f260405191826105eb565b8281528092612203601f1991610f92565b0190602036910137565b90949391608082019582526020820152608060408201528251809552602060a0820193016000955b80871061225157505061021393945060608184039101526101ce565b90936020806001926001600160a01b03885116815201950196019590612235565b90929160009060005b85518110156123435761228e8183610f4d565b51612331576001600160a01b038416906122ab610db78289610f4d565b91803b15610117576040517f97bb15c90000000000000000000000000000000000000000000000000000000081526001600160a01b03939093166004840152600060248401819052306044850152908390606490829084905af19182156105075760019261231c575b505b0161227b565b806104ff600061232b936105eb565b38612314565b9161233d600191611996565b92612316565b509091929361235a612354846121db565b936121db565b9260009560005b83518110156123d4576123748186610f4d565b51612382575b600101612361565b966123cc6001916123b1612399610db78c89610f4d565b6123a38388610f4d565b906001600160a01b03169052565b6123bb8a88610f4d565b516123c6828a610f4d565b52611996565b97905061237a565b509550929390506001600160a01b0391501691823b1561011757611c0292600092836040518096819582947f819c70f300000000000000000000000000000000000000000000000000000000845242426004860161220d565b6000806001600160a01b0361245793169360208151910182865af161245061184e565b908361276d565b80519081151591826124a4575b505061246d5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b6124b7925060208091830101910161188b565b153880612464565b90813b15612599576001600160a01b0382168073ffffffffffffffffffffffffffffffffffffffff197f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b600080a28051156125665761256391612753565b50565b50503461256f57565b7fb398979f0000000000000000000000000000000000000000000000000000000060005260046000fd5b6001600160a01b0382634c9c8ce360e01b6000521660045260246000fd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c16156125e657565b7fd7e6bcf80000000000000000000000000000000000000000000000000000000060005260046000fd5b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039290921660248301526044808301939093529181526102d0916116e46064836105eb565b90600061267283516121db565b9260005b815181101561272d5761268f610dc4610db78385610f4d565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015290602090829060249082905afa9081156105075760009161270f575b506126e28287610f4d565b526126ed8186610f4d565b516126fb575b600101612676565b91612707600191611996565b9290506126f3565b612727915060203d811161054b5761053c81836105eb565b386126d7565b505090565b908082106127465781039081116115c85790565b9081039081116115c85790565b60008061021393602081519101845af461276b61184e565b915b906127ac575080511561278257805190602001fd5b7f1425ea420000000000000000000000000000000000000000000000000000000060005260046000fd5b815115806127f4575b6127bd575090565b6001600160a01b03907f9996b315000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b50803b156127b556fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a2646970667358221220d80af2deea32e230fa044626a3f2a2036b26d6d6a4b72b5a0eb3db253156570c64736f6c634300081c0033000000000000000000000000e5e0d1db9fb66782cfb53a80563795e76a1b5ce8
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c80630b34587914610107578063207838161461010257806324b77843146100fd5780632aba2aeb146100f85780633dc9067f146100f35780634f1ef286146100ee57806352d1902d146100e957806353df519c146100e45780637a9e5e4b146100df5780637ece45e8146100da5780638fb36037146100d5578063ad3cb1cc146100d0578063bf7e214f146100cb578063f92ad219146100c65763fcbae451146100c157600080fd5b610b8f565b610966565b610932565b61089e565b610833565b6107fe565b610767565b610749565b6106b4565b610638565b610596565b6102d2565b610216565b610160565b61011c565b600091031261011757565b600080fd5b346101175760003660031901126101175760206040516001600160a01b037f000000000000000000000000e5e0d1db9fb66782cfb53a80563795e76a1b5ce8168152f35b34610117576000366003190112610117576020600154604051908152f35b6001600160a01b0381160361011757565b9181601f840112156101175782359167ffffffffffffffff8311610117576020808501948460051b01011161011757565b63ffffffff81160361011757565b906020808351928381520192019060005b8181106101ec5750505090565b82518452602093840193909201916001016101df565b9060206102139281815201906101ce565b90565b346101175760a0366003190112610117576004356102338161017e565b60243567ffffffffffffffff81116101175761025390369060040161018f565b909160443567ffffffffffffffff81116101175761027590369060040161018f565b9290936064359367ffffffffffffffff8511610117576102c1956102a06102b596369060040161018f565b949093608435966102b0886101c0565b610bad565b60405191829182610202565b0390f35b35906102d08261017e565b565b34610117576080366003190112610117576004356102ef8161017e565b602435906102fc8261017e565b604435916001600160a01b038060643592610317363361132a565b16926103258330338761168a565b1692833b15610117576040517f34a36df80000000000000000000000000000000000000000000000000000000081526001600160a01b038416600482015230602482015260448101919091526000606482018190523360848301528160a48183885af1801561050757610581575b50604051906311b2515f60e31b8252602082600481875afa918215610507576004926001600160a01b0391600091610552575b5016926103d48285836116e9565b60206103de610faa565b956040519485809263038fff2d60e41b82525afa92831561050757600093610521575b5061040a61060d565b60028152602081018490526001600160a01b038216604082015282606082015261043386610f3b565b5261043d85610f3b565b50833b156101175760405190637362304960e11b825260008280610464896004830161108b565b038183895af19182156105075761049d9261050c575b5061048361060d565b600181529360208501526001600160a01b03166040840152565b60608201526104ab83610f3b565b526104b582610f3b565b50803b1561011757604051637362304960e11b81529060009082908183816104e0886004830161108b565b03925af18015610507576104f057005b806104ff6000610505936105eb565b8061010c565b005b610f71565b806104ff600061051b936105eb565b3861047a565b61054491935060203d60201161054b575b61053c81836105eb565b81019061107c565b9138610401565b503d610532565b610574915060203d60201161057a575b61056c81836105eb565b810190610f7d565b386103c6565b503d610562565b806104ff6000610590936105eb565b38610393565b34610117576000366003190112610117576020600054604051908152f35b634e487b7160e01b600052604160045260246000fd5b6080810190811067ffffffffffffffff8211176105e657604052565b6105b4565b90601f8019910116810190811067ffffffffffffffff8211176105e657604052565b604051906102d06080836105eb565b67ffffffffffffffff81116105e657601f01601f191660200190565b6040366003190112610117576004356106508161017e565b6024359067ffffffffffffffff821161011757366023830112156101175781600401359061067d8261061c565b9161068b60405193846105eb565b808352366024828601011161011757602081600092602461050597018387013784010152611112565b34610117576000366003190112610117576001600160a01b037f000000000000000000000000300691328cc2c88ac582d1268dead28e039cfc6116300361071f5760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba0000000000000000000000000000000000000000000000000000000060005260046000fd5b34610117576000366003190112610117576020600354604051908152f35b34610117576020366003190112610117576004356107848161017e565b6001600160a01b036000805160206127fe833981519152541633036107ea57803b156107b357610505906117df565b6001600160a01b03907fc2f31e5e000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b62d1953b60e31b6000523360045260246000fd5b3461011757608036600319011261011757606435604435602435600435610825363361132a565b600055600155600255600355005b34610117576000366003190112610117576000805160206127fe8339815191525460a01c60ff16156108955760207f8fb36037000000000000000000000000000000000000000000000000000000005b6001600160e01b031960405191168152f35b60206000610883565b346101175760003660031901126101175760408051906108be81836105eb565b600582527f352e302e300000000000000000000000000000000000000000000000000000006020830152805180926020825280519081602084015260005b82811061091b5750506000828201840152601f01601f19168101030190f35b6020828201810151878301870152869450016108fc565b346101175760003660031901126101175760206001600160a01b036000805160206127fe8339815191525416604051908152f35b346101175760a0366003190112610117576004356109838161017e565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549060843560643560443560243567ffffffffffffffff6109d560ff604089901c16159767ffffffffffffffff1690565b1680159081610b87575b6001149081610b7d575b159081610b74575b50610b4a57610a5b9486610a52600167ffffffffffffffff197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005416177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b610ae557611276565b610a6157005b610ab668ff0000000000000000197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1005b610b456801000000000000000068ff0000000000000000197ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005416177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0055565b611276565b7ff92ee8a90000000000000000000000000000000000000000000000000000000060005260046000fd5b905015386109f1565b303b1591506109e9565b8791506109df565b34610117576000366003190112610117576020600254604051908152f35b909192959663ffffffff90610bc2363361132a565b16428110610ef857506001600160a01b03811690604051936311b2515f60e31b8552602085600481865afa94851561050757600095610ed7575b506040519463038fff2d60e41b8652602086600481875afa95861561050757600096610eb6575b50604051631f29a8cd60e31b8152600481018790526001600160a01b0382169590926000846024818a5afa92831561050757610c9a96600080600096610e83575b8051600019908101602092830190815283519091019190920190815295965060049560009291610ca2915b9a90988454906115bb565b4310156115cd565b604051958680927ff89f27ed0000000000000000000000000000000000000000000000000000000082525afa998a15610507578360009b610d2f99610d4f9f610d22958f958f9289878e610d299e839b99610e4b575b5088610d12959493610d0d938a938a8a6119e5565b611d2a565b610d1d8b8383611de9565b612007565b369161163e565b91612272565b6040518080968194631f29a8cd60e31b8352600483019190602083019252565b03915afa92831561050757600092600094610e1f575b5060005b818110610d77575050505090565b610d818186610f4d565b51610d8d828486610f61565b3511610d9b57600101610d69565b610ddd91610dd682610dd0610dc4610db783610e1b9b9a610f4d565b516001600160a01b031690565b6001600160a01b031690565b96610f4d565b5193610f61565b7f18da4740000000000000000000000000000000000000000000000000000000006000526001600160a01b0390921660045260245235604452606490565b6000fd5b909350610e409192503d806000833e610e3881836105eb565b8101906114f8565b509190919238610d65565b610d0d92995090610d12959493610e768a933d60008190833e610e6e81836105eb565b810190611618565b9a93509394955090610cf8565b505060049450600090610ca2610ea5610c8f983d8086833e610e3881836105eb565b919950909750919250879050610c64565b610ed091965060203d60201161054b5761053c81836105eb565b9438610c23565b610ef191955060203d60201161057a5761056c81836105eb565b9338610bfc565b7ff80dbaea0000000000000000000000000000000000000000000000000000000060005260045260246000fd5b634e487b7160e01b600052603260045260246000fd5b805115610f485760200190565b610f25565b8051821015610f485760209160051b010190565b9190811015610f485760051b0190565b6040513d6000823e3d90fd5b9081602091031261011757516102138161017e565b67ffffffffffffffff81116105e65760051b60200190565b604080519190610fba90836105eb565b6001825281601f19610fcc6001610f92565b019060005b828110610fdd57505050565b602090604051610fec816105ca565b60008152600083820152600060408201526000606082015282828501015201610fd1565b9061101a82610f92565b61102760405191826105eb565b8281528092611038601f1991610f92565b019060005b82811061104957505050565b602090604051611058816105ca565b6000815260008382015260006040820152600060608201528282850101520161103d565b90816020910312610117575190565b602060408183019282815284518094520192019060005b8181106110af5750505090565b909192835180519060038210156110fc578260606080926020946001965284810151858401526001600160a01b0360408201511660408401520151606082015201940191019190916110a2565b634e487b7160e01b600052602160045260246000fd5b90916001600160a01b037f000000000000000000000000300691328cc2c88ac582d1268dead28e039cfc6116803014908115611241575b5061071f57611158363361132a565b604051927f52d1902d0000000000000000000000000000000000000000000000000000000084526020846004816001600160a01b0387165afa60009481611220575b506111bd57634c9c8ce360e01b6000526001600160a01b03831660045260246000fd5b90917f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc84036111f1576102d09293506124bf565b7faa1d49a400000000000000000000000000000000000000000000000000000000600052600484905260246000fd5b61123a91955060203d60201161054b5761053c81836105eb565b933861119a565b90506001600160a01b037f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141538611149565b61128f906112826125b7565b61128a6125b7565b6117df565b6112976125b7565b600055600155600255600355565b906004116101175790600490565b919091356001600160e01b0319811692600481106112cf575050565b6001600160e01b0319929350829060040360031b1b161690565b908060209392818452848401376000828201840152601f01601f1916010190565b6040906001600160a01b03610213959316815281602082015201916112e9565b61136961134c6000805160206127fe833981519152546001600160a01b031690565b61136061135a8560006112a5565b906112b3565b908330916118c2565b901561137457505050565b63ffffffff161561147f576113c27401000000000000000000000000000000000000000060ff60a01b196000805160206127fe8339815191525416176000805160206127fe83398151915255565b6113e7610dc4610dc46000805160206127fe833981519152546001600160a01b031690565b91823b156101175761142e926000808094604051968795869485937f94c7d7ee0000000000000000000000000000000000000000000000000000000085526004850161130a565b03925af180156105075761146a575b506102d060ff60a01b196000805160206127fe83398151915254166000805160206127fe83398151915255565b806104ff6000611479936105eb565b3861143d565b62d1953b60e31b6000526001600160a01b031660045260246000fd5b9080601f830112156101175781516114b281610f92565b926114c060405194856105eb565b81845260208085019260051b82010192831161011757602001905b8282106114e85750505090565b81518152602091820191016114db565b909160608284031261011757815167ffffffffffffffff811161011757820183601f820112156101175780519061152e82610f92565b9161153c60405193846105eb565b80835260208084019160051b8301019186831161011757602001905b82821061158b5750505092602083015167ffffffffffffffff81116101175760409161158591850161149b565b92015190565b60208091835161159a8161017e565b815201910190611558565b634e487b7160e01b600052601160045260246000fd5b919082018092116115c857565b6115a5565b156115d457565b606460405162461bcd60e51b815260206004820152600460248201527f54494d45000000000000000000000000000000000000000000000000000000006044820152fd5b9060208282031261011757815167ffffffffffffffff811161011757610213920161149b565b92919061164a81610f92565b9361165860405195866105eb565b602085838152019160051b810192831161011757905b82821061167a57505050565b813581526020918201910161166e565b9091926001600160a01b036102d09481604051957f23b872dd0000000000000000000000000000000000000000000000000000000060208801521660248601521660448401526064830152606482526116e46084836105eb565b61242d565b60405163095ea7b360e01b602082019081526001600160a01b03841660248301526044808301959095529381529192611756906117276064856105eb565b6000806001600160a01b0385169286519082855af19061174561184e565b826117ad575b50816117a657501590565b61175f57505050565b60405163095ea7b360e01b60208201526001600160a01b03939093166024840152600060448085019190915283526102d0926116e4906117a06064826105eb565b8261242d565b3b15919050565b805191925081159182156117c5575b5050903861174b565b6117d8925060208091830101910161188b565b38806117bc565b60206001600160a01b037f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad92168073ffffffffffffffffffffffffffffffffffffffff196000805160206127fe8339815191525416176000805160206127fe83398151915255604051908152a1565b3d15611879573d9061185f8261061c565b9161186d60405193846105eb565b82523d6000602084013e565b606090565b5190811515820361011757565b90816020910312610117576102139061187e565b91908260409103126101175760206118b68361187e565b920151610213816101c0565b60009190829195949582946001600160e01b031984986001600160a01b03604051938160208601967fb70096130000000000000000000000000000000000000000000000000000000088521660248601521660448401521660648201526064815261192e6084826105eb565b51915afa61193a61184e565b9061194457509190565b8051939091604085106119695750506020806119659394830101910161189f565b9091565b919093602081101561197c575b50509190565b61198f925060208091830101910161188b565b3880611976565b60001981146115c85760010190565b919082039182116115c857565b818102929181159184041417156115c857565b81156119cf570490565b634e487b7160e01b600052601260045260246000fd5b919095969493929660009560005b8351811015611a3557611a0781878c610f61565b35611a128289610f4d565b5111611a21575b6001016119f3565b96611a2d600191611996565b979050611a19565b50919597949796909296600095611a54611a4e83611010565b92611010565b93875b8951811015611b8957898c611a6d838b87610f61565b35611a788483610f4d565b5111611a89575b5050600101611a57565b99611b36610db784611b7f948a829f8f908f85611ad5611ae2948f611acf9060019f80611abc611ac892611adb99610f4d565b5194610dd6828b610f4d565b35906119a5565b906119b2565b92610f4d565b51906119c5565b611b16611af2610db78686610f4d565b611afa61060d565b9360008552602085015260408401906001600160a01b03169052565b6060820152611b25868c610f4d565b52611b30858b610f4d565b50610f4d565b611b5d611b4161060d565b6002815291602083018a90526001600160a01b03166040830152565b60006060820152611b6e828a610f4d565b52611b798189610f4d565b50611996565b989050898c611a7f565b50989550509750509350506001600160a01b03915016803b1561011757604051637362304960e11b815260008180611bc4886004830161108b565b038183865af1801561050757611c22575b50803b1561011757611c02600092918392604051948580948193637362304960e11b83526004830161108b565b03925af1801561050757611c135750565b806104ff60006102d0936105eb565b806104ff6000611c31936105eb565b38611bd5565b9180602084016020855252604083019060408160051b8501019383600091607e1982360301905b848410611c6f575050505050505090565b90919293949596603f19828203018752873583811215610117578401906001600160a01b038235611c9f8161017e565b1681526020820135601e1983360301811215610117578201916020833593019067ffffffffffffffff841161011757833603821361011757611d1b836060611d0d81611cfc6020989760019a60808b809b015260808701916112e9565b9560408101356040860152016102c5565b6001600160a01b0316910152565b99019701959401929190611c5e565b91927f000000000000000000000000e5e0d1db9fb66782cfb53a80563795e76a1b5ce86001600160a01b0316929160005b8351811015611da15780611d9b611d7460019387610f4d565b51876060611d92610dc4610dc460408601516001600160a01b031690565b92015191612610565b01611d5b565b50915092823b1561011757611c0292600092836040518096819582947f3de0f53600000000000000000000000000000000000000000000000000000000845260048401611c37565b90929192611df684612665565b611e08611e0282611010565b91611010565b600093845b8851811015611eeb57611e23610db7828b610f4d565b611e2d8287610f4d565b5180611e3e575b5050600101611e0d565b96611ee39188611e646001959a6001600160a01b038d166001600160a01b0385166116e9565b611e6c61060d565b60028152602081018790526001600160a01b0383166040820152816060820152611e96848a610f4d565b52611ea18389610f4d565b50611ec9611ead61060d565b6001815292602084018890526001600160a01b03166040840152565b6060820152611ed88287610f4d565b52611b798186610f4d565b959038611e34565b50509495509290506001600160a01b0391501690813b15610117576000611bc49160405180938192637362304960e11b83526004830161108b565b15611f2d57565b606460405162461bcd60e51b815260206004820152600560248201527f52415445310000000000000000000000000000000000000000000000000000006044820152fd5b15611f7857565b606460405162461bcd60e51b815260206004820152600560248201527f52415445320000000000000000000000000000000000000000000000000000006044820152fd5b15611fc357565b606460405162461bcd60e51b815260206004820152600860248201527f534c4950504147450000000000000000000000000000000000000000000000006044820152fd5b604051631f29a8cd60e31b8152600481019290925292949392600090829060249082906001600160a01b03165afa80156105075761206f916000906000926121bc575b5096959691909160206000198251019101908152916020600019825101910190815290565b90506000956000600154975b84518210156121925761208e8285610f4d565b516120998385610f4d565b516120a3916119b2565b6120ad8387610f4d565b516120b7916119c5565b6120c0916115bb565b906120cb8185610f4d565b516120d68285610f4d565b516120e0916119b2565b6120ea8287610f4d565b516120f6838a8a610f61565b35612100916119b2565b61210991612732565b6121138285610f4d565b5161211e908b6119b2565b6121288387610f4d565b51612132916119b2565b670de0b6b3a7640000900481111561214990611f26565b6121538287610f4d565b5161215e908b6119b2565b612169838a8a610f61565b35612173916119b2565b670de0b6b3a76400009004101561218990611f71565b6001019061207b565b9450505050506102d09293506121ac9150600254906115bb565b670de0b6b3a76400001115611fbc565b90506121d391503d806000833e610e3881836105eb565b50903861204a565b906121e582610f92565b6121f260405191826105eb565b8281528092612203601f1991610f92565b0190602036910137565b90949391608082019582526020820152608060408201528251809552602060a0820193016000955b80871061225157505061021393945060608184039101526101ce565b90936020806001926001600160a01b03885116815201950196019590612235565b90929160009060005b85518110156123435761228e8183610f4d565b51612331576001600160a01b038416906122ab610db78289610f4d565b91803b15610117576040517f97bb15c90000000000000000000000000000000000000000000000000000000081526001600160a01b03939093166004840152600060248401819052306044850152908390606490829084905af19182156105075760019261231c575b505b0161227b565b806104ff600061232b936105eb565b38612314565b9161233d600191611996565b92612316565b509091929361235a612354846121db565b936121db565b9260009560005b83518110156123d4576123748186610f4d565b51612382575b600101612361565b966123cc6001916123b1612399610db78c89610f4d565b6123a38388610f4d565b906001600160a01b03169052565b6123bb8a88610f4d565b516123c6828a610f4d565b52611996565b97905061237a565b509550929390506001600160a01b0391501691823b1561011757611c0292600092836040518096819582947f819c70f300000000000000000000000000000000000000000000000000000000845242426004860161220d565b6000806001600160a01b0361245793169360208151910182865af161245061184e565b908361276d565b80519081151591826124a4575b505061246d5750565b6001600160a01b03907f5274afe7000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b6124b7925060208091830101910161188b565b153880612464565b90813b15612599576001600160a01b0382168073ffffffffffffffffffffffffffffffffffffffff197f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b600080a28051156125665761256391612753565b50565b50503461256f57565b7fb398979f0000000000000000000000000000000000000000000000000000000060005260046000fd5b6001600160a01b0382634c9c8ce360e01b6000521660045260246000fd5b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c16156125e657565b7fd7e6bcf80000000000000000000000000000000000000000000000000000000060005260046000fd5b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039290921660248301526044808301939093529181526102d0916116e46064836105eb565b90600061267283516121db565b9260005b815181101561272d5761268f610dc4610db78385610f4d565b6040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015290602090829060249082905afa9081156105075760009161270f575b506126e28287610f4d565b526126ed8186610f4d565b516126fb575b600101612676565b91612707600191611996565b9290506126f3565b612727915060203d811161054b5761053c81836105eb565b386126d7565b505090565b908082106127465781039081116115c85790565b9081039081116115c85790565b60008061021393602081519101845af461276b61184e565b915b906127ac575080511561278257805190602001fd5b7f1425ea420000000000000000000000000000000000000000000000000000000060005260046000fd5b815115806127f4575b6127bd575090565b6001600160a01b03907f9996b315000000000000000000000000000000000000000000000000000000006000521660045260246000fd5b50803b156127b556fef3177357ab46d8af007ab3fdb9af81da189e1068fefdc0073dca88a2cab40a00a2646970667358221220d80af2deea32e230fa044626a3f2a2036b26d6d6a4b72b5a0eb3db253156570c64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e5e0d1db9fb66782cfb53a80563795e76a1b5ce8
-----Decoded View---------------
Arg [0] : swapExecutor (address): 0xe5E0d1dB9fB66782CfB53a80563795E76a1B5CE8
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000e5e0d1db9fb66782cfb53a80563795e76a1b5ce8
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.