S Price: $0.070281 (-0.90%)
Gas: 55 Gwei

Contract

0x198F37dE4F9fee430BB4AABAcD8CB40AB6e8E61B

Overview

S Balance

Sonic LogoSonic LogoSonic Logo0 S

S Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Cross-Chain Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AccountValuesRouter

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 89999 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

import {IAccountValuesLens} from "./interfaces/IAccountValuesLens.sol";
import {IPositionsManager} from "./interfaces/IPositionsManager.sol";
import {IConfigRegistry} from "./interfaces/IConfigRegistry.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {Initializable} from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import {UUPSUpgradeable} from "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol";
import {
    Ownable2StepUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/Ownable2StepUpgradeable.sol";
import {Constants} from "./utils/Constants.sol";
import {IOracleUSD} from "./interfaces/IOracleUSD.sol";
import {IIRM} from "./interfaces/IIRM.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/// AccountValuesRouter routes per-account valuation to custom plugins while
/// enforcing safety rails. Intended to be set as PositionsManager.valuesLens.
/// If no external default lens is configured, it falls back to internal
/// AccountValuesSimple logic.
contract AccountValuesRouter is
    Initializable,
    UUPSUpgradeable,
    Ownable2StepUpgradeable,
    IAccountValuesLens
{
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }
    // Use shared constants for consistency

    // -------- Errors --------
    error Unauthorized();
    error NotGuardian();
    error ZeroAddress();
    error PluginNotAllowed();
    error InvalidPlugin();
    error InvalidTarget();

    // -------- Roles --------
    address public guardian;

    // -------- Config --------
    bool public pluginsPaused; // global kill-switch for custom plugins

    // -------- Mappings --------
    mapping(address => address) public customLensOf; // user => plugin lens
    mapping(address => bool) public pluginAllowed; // implementation allowlist

    // -------- Events --------
    event OwnerSet(address indexed owner);
    event GuardianSet(address indexed guardian);
    event PluginsPaused(bool paused);
    event PluginAllowed(address indexed plugin, bool allowed);
    event CustomLensSet(address indexed user, address indexed plugin);
    event CustomLensCleared(address indexed user);
    event PluginQueryFailed(address indexed plugin, address indexed user);

    modifier onlyGuardianOrOwner() {
        _onlyGuardianOrOwner();
        _;
    }

    function _onlyGuardianOrOwner() internal view {
        if (msg.sender != guardian && msg.sender != owner()) revert NotGuardian();
    }

    // Inline self-call allowance removed (no longer needed with AccessManager ownership)

    function initialize(address _owner) external initializer {
        if (_owner == address(0)) revert ZeroAddress();
        __Ownable_init(_owner);
        __Ownable2Step_init();
        guardian = _owner;
        emit OwnerSet(_owner);
        emit GuardianSet(_owner);
    }

    // UUPS upgrade authorization: owner-gated
    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    // -------- Admin --------
    function setOwner(address o) external onlyOwner {
        if (o == address(0)) revert ZeroAddress();
        transferOwnership(o);
        emit OwnerSet(o);
    }

    function setGuardian(address g) external onlyOwner {
        if (g == address(0)) revert ZeroAddress();
        guardian = g;
        emit GuardianSet(g);
    }

    function pausePlugins(bool paused) external onlyGuardianOrOwner {
        pluginsPaused = paused;
        emit PluginsPaused(paused);
    }

    // -------- Admin controls (OZ AccessManager will call as owner) --------
    function setPluginAllowed(address plugin, bool allowed) external onlyOwner {
        pluginAllowed[plugin] = allowed;
        emit PluginAllowed(plugin, allowed);
    }

    function setCustomLens(address user, address plugin) external onlyOwner {
        if (user == address(0) || plugin == address(0)) revert ZeroAddress();
        if (!pluginAllowed[plugin]) revert PluginNotAllowed();
        customLensOf[user] = plugin;
        emit CustomLensSet(user, plugin);
    }

    function clearCustomLens(address user) external onlyOwner {
        delete customLensOf[user];
        emit CustomLensCleared(user);
    }

    // -------- Views --------
    function hasActiveCustomLens(address user) public view returns (bool) {
        address p = customLensOf[user];
        return (!pluginsPaused) && p != address(0) && pluginAllowed[p];
    }

    function accountValues(
        address pm,
        address user
    )
        external
        view
        override
        returns (uint256 collUSD, uint256 debtUSD, uint256 collUSDNoLTV)
    {
        return _computeAccountValues(pm, user);
    }

    function _baselineAccountValues(
        address pmAddr,
        address user
    )
        internal
        view
        returns (uint256 collUSD, uint256 debtUSD, uint256 collUSDNoLTV)
    {
        IPositionsManager _pm = IPositionsManager(pmAddr);
        IConfigRegistry cfg = _pm.config();

        // Collateral
        address[] memory collAssets = _pm.userCollateralAssets(user);
        for (uint256 i = 0; i < collAssets.length; i++) {
            address a = collAssets[i];
            (uint256 avail, uint256 hold) = _pm.getBalance(user, a);
            uint256 units = avail + hold;
            if (units == 0) continue;

            uint256 px = IOracleUSD(cfg.oracleRouter()).priceUSD(a);
            uint256 scale = 10 ** uint256(IERC20Metadata(a).decimals());
            uint256 valueUSD = (units * px) / scale;
            collUSDNoLTV += valueUSD;

            uint16 ltvBps = cfg.getAssetCfg(a).ltvBps;
            collUSD += (valueUSD * ltvBps) / Constants.BPS;
        }

        // Debt
        address[] memory debtAssets = _pm.userDebtAssets(user);
        for (uint256 j = 0; j < debtAssets.length; j++) {
            address a = debtAssets[j];
            (uint256 principal, uint256 idxOpen) = _pm.debt(user, a);
            if (principal == 0) continue;
            if (idxOpen == 0) idxOpen = Constants.WAD;
            uint256 idxNow = _previewBorrowIndexWad(pmAddr, a);
            uint256 principalAccrued = Math.mulDiv(principal, idxNow, idxOpen, Math.Rounding.Ceil);

            uint256 px = IOracleUSD(cfg.oracleRouter()).priceUSD(a);
            uint256 scale2 = 10 ** uint256(IERC20Metadata(a).decimals());
            debtUSD += Math.mulDiv(principalAccrued, px, scale2, Math.Rounding.Ceil);
        }
    }

    /// @notice Preview the current borrow index for `asset` as of now (view-only).
    function previewBorrowIndexWad(
        address pmAddr,
        address asset
    )
        public
        view
        returns (uint256 idxNow)
    {
        return _previewBorrowIndexWad(pmAddr, asset);
    }

    function _previewBorrowIndexWad(
        address pmAddr,
        address asset
    )
        internal
        view
        virtual
        returns (uint256)
    {
        IPositionsManager _pm = IPositionsManager(pmAddr);
        IConfigRegistry cfg = _pm.config();

        uint256 WAD = Constants.WAD;
        (
            uint256 borrowIndexWad,
            uint256 lastAccrual,
            uint256 cash,
            uint256 borrows,,,,,
            uint256 idlePrincipal,,,,,
        ) = _pm.astate(asset);

        // If never initialized, treat as 1.0
        uint256 baseIdx = borrowIndexWad == 0 ? WAD : borrowIndexWad;
        uint256 last = lastAccrual;

        // No accrual history or same timestamp return stored index
        if (last == 0 || block.timestamp == last) return baseIdx;
        if (borrows == 0) return baseIdx;

        IConfigRegistry.AssetCfg memory c = cfg.getAssetCfg(asset);

        // Utilization at last accrual snapshot (consistent with your accrue())
        uint256 denom = cash + borrows + idlePrincipal;
        if (denom == 0) return baseIdx;

        uint256 utilWad = Math.mulDiv(borrows, WAD, denom);
        uint256 aprWad = IIRM(c.irm).borrowAPR(asset, utilWad);

        uint256 dt = block.timestamp - last;
        uint256 interestWad = Math.mulDiv(aprWad, dt, 365 days);
        uint256 factorWad = WAD + interestWad;

        return Math.mulDiv(baseIdx, factorWad, WAD);
    }

    function _computeAccountValues(
        address pm,
        address user
    )
        internal
        view
        returns (uint256 collUSD, uint256 debtUSD, uint256 collUSDNoLTV)
    {
        // Baseline from default implementation or internal fallback
        (uint256 baseColl, uint256 baseDebt, uint256 baseRaw) = _baselineAccountValues(pm, user);

        if (!hasActiveCustomLens(user)) {
            return (baseColl, baseDebt, baseRaw);
        }

        address plugin = customLensOf[user];
        // Defensive: staticcall to prevent state changes and reentrancy
        (bool ok, bytes memory data) = plugin.staticcall(
            abi.encodeWithSelector(IAccountValuesLens.accountValues.selector, pm, user)
        );
        if (!ok || data.length == 0) {
            // note: cannot emit from view; silently fall back
            return (baseColl, baseDebt, baseRaw);
        }

        (uint256 pColl, uint256 pDebt, uint256 pRaw) = abi.decode(data, (uint256, uint256, uint256));

        // Safety rails:
        // - Disallow plugins from inflating raw collateral beyond default valuation
        if (pRaw > baseRaw) pRaw = baseRaw;
        // - Ensure effective collateral never exceeds raw collateral (allows up to 100% LTV)
        if (pColl > pRaw) pColl = pRaw;
        // - Disallow plugins from understating debt
        if (pDebt < baseDebt) pDebt = baseDebt;

        return (pColl, pDebt, pRaw);
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

interface IAccountValuesLens {
    function accountValues(
        address pm,
        address user
    )
        external
        view
        returns (uint256 collUSD, uint256 debtUSD, uint256 collUSDNoLTV);
    function previewBorrowIndexWad(
        address pmAddr,
        address asset
    )
        external
        view
        returns (uint256 idxNow);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

import {IPMViews} from "./IPMViews.sol";

interface IPositionsManager is IPMViews {
    /*//////////////////////////////////////////////////////////////
                                ERRORS
    //////////////////////////////////////////////////////////////*/

    error ftPositionManagerOnlyOwner();
    error ftPositionManagerOnlyMetaActions();
    error ftPositionManagerOnlyEngine();
    error ftPositionManagerLensZero();
    error ftPositionManagerZeroAdmin();
    error ftPositionManagerZeroAddress();
    error ftPositionManagerAssetDisabled();
    error ftPositionManagerSupplyCap();
    error ftPositionManagerInsufficientLiquidity();
    error ftPositionManagerHealthFactor();
    error ftPositionManagerNoDebt();
    error ftPositionManagerBorrowPaused();
    error ftPositionManagerDepositPaused();
    error ftPositionManagerWithdrawPaused();
    error ftPositionManagerBorrowCap();
    error ftPositionManagerAccountDebtCap();
    error ftPositionManagerAmountZero();
    error ftPositionManagerInsufficientCash();
    error ftPositionManagerNoSupplierInterest();
    error ftPositionManagerExceedsSupplierInterest();
    error ftPositionManagerIdleNotEnabled();
    error ftPositionManagerIdlePoolZero();
    error ftPositionManagerIdleATokenZero();
    error ftPositionManagerIdleLossExceedsReserves();
    error ftPositionManagerIdleNothingToRebalance();
    error ftPositionManagerIdleMinRebalance();

    // ========= User actions =========
    function deposit(address asset, uint256 amt) external;
    function withdraw(address asset, uint256 amt) external;
    function borrow(address asset, uint256 amt) external;
    function repay(address asset, uint256 amt) external;
    function metaDeposit(address user, address asset, uint256 amount) external;
    function metaWithdraw(address user, address asset, uint256 amount) external;
    function metaBorrow(address user, address asset, uint256 amount) external;
    function metaRepay(address user, address asset, uint256 amount) external;

    // ========= Views =========
    function getBalance(
        address user,
        address token
    )
        external
        view
        returns (uint256 avail, uint256 hold);

    function userCollateralAssets(address user) external view returns (address[] memory);
    function userDebtAssets(address user) external view returns (address[] memory);
    function setValuesLens(address lens) external;
    function setAccountBorrowCap(address user, address asset, uint256 capUnits) external;
    function settleSupplyInterestWithFT(
        address asset,
        uint256 expectedOutAsset,
        uint256 ftAmountIn
    )
        external;
    function rebalanceIdle(address asset) external;
    function setCaps(address asset, uint256 supplyCap_, uint256 borrowCap_) external;
    function harvestIdle(address asset) external;
    function setDepositPaused(address asset, bool paused) external;
    function setWithdrawPaused(address asset, bool paused) external;
    function setBorrowPaused(address asset, bool paused) external;
    function depositFor(address beneficiary, address asset, uint256 amount) external;
    function repayFor(address borrower, address asset, uint256 amount) external;
    /// @notice Borrow tokens to a callback target, run arbitrary logic (e.g., swap), then
    ///         credit any received `collateralAsset` to the caller and enforce final HF.
    ///         Optionally pulls an initial margin deposit from the caller before the flow.
    /// @param borrowAsset The asset to borrow upfront.
    /// @param borrowAmount The amount to borrow.
    /// @param collateralAsset The asset expected to be deposited after the callback.
    /// @param minCollateralAmount Minimum amount of `collateralAsset` that must be received by PM and credited.
    /// @param callbackTarget The contract to receive the borrowed tokens and execute `callbackData`.
    /// @param callbackData Calldata to execute on `callbackTarget`.
    function borrowAndDepositVia(
        address borrowAsset,
        uint256 borrowAmount,
        address collateralAsset,
        uint256 minCollateralAmount,
        address callbackTarget,
        bytes calldata callbackData
    )
        external;
    function debitAvail(address user, address asset, uint128 amt) external;
    function credit(address user, address asset, uint128 amt) external;
    function skim(address asset) external;
    function withdrawReserves(address asset, address to) external;
    function FT() external view returns (address);

    /// @notice Engine-only hook to toggle the PositionsManager reentrancy guard.
    ///         Used by external engines that perform flash-style callbacks (e.g., RFQ)
    ///         to block reentrant user actions into PM during the callback window.
    /// @param locked When true, subsequent `nonReentrant` PM entrypoints will revert
    ///               until unlocked (or transaction end, since the guard is transient).
    function setEngineReentrancyLock(bool locked) external;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

interface IConfigRegistry {
    struct AssetCfg {
        address irm;
        uint16 ltvBps; // Loan-to-Value in bps
        uint16 reserveFactorBps; // Reserve Factor in bps
        bool enabled;
    }

    // ========== Idle/Aave configuration ==========
    struct IdleCfg {
        // 2 full slots of 256-bit fields for tight packing; small fields grouped last.
        uint256 cashBuffer; // keep at least this much underlying liquid in PM
        uint256 minRebalance; // min amount to move on a rebalance to avoid dust churn
        address aavePool; // Aave V3 Pool address
        address aToken; // corresponding aToken for the underlying asset
        uint16 maxDepositBps; // cap how much of on-hand cash can be deposited per rebalance (in bps of (cash - buffer))
        bool aaveEnabled; // enable supply-only strategy on Aave for this asset
    }

    event OwnerChanged(address indexed o);
    event GuardianChanged(address indexed g);
    event AssetSet(address indexed asset, AssetCfg cfg);
    event IdleCfgSet(address indexed asset, IdleCfg cfg);
    event OracleSet(address indexed router);
    event HFTargetSet(uint16 bps);
    event HFSafeSet(uint16 bps);
    event DelaySet(uint32 delaySec);
    event LtvChangeProposed(address indexed asset, uint16 oldLtv, uint16 newLtv, uint64 eta);
    event LtvChangeExecuted(address indexed asset, uint16 newLtv);
    event OracleChangeProposed(address indexed next, uint64 eta);
    event OracleChangeExecuted(address indexed next);

    function getAssetCfg(address asset) external view returns (AssetCfg memory);
    function getIdleCfg(address asset) external view returns (IdleCfg memory);
    function oracleRouter() external view returns (address);
    function hfTargetBps() external view returns (uint16);
    function hfSafeBps() external view returns (uint16);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reinitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Pointer to storage slot. Allows integrators to override it with a custom storage location.
     *
     * NOTE: Consider following the ERC-7201 formula to derive storage locations.
     */
    function _initializableStorageSlot() internal pure virtual returns (bytes32) {
        return INITIALIZABLE_STORAGE;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        bytes32 slot = _initializableStorageSlot();
        assembly {
            $.slot := slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.22;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {OwnableUpgradeable} from "./OwnableUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2StepUpgradeable is Initializable, OwnableUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable2Step
    struct Ownable2StepStorage {
        address _pendingOwner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable2Step")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant Ownable2StepStorageLocation = 0x237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00;

    function _getOwnable2StepStorage() private pure returns (Ownable2StepStorage storage $) {
        assembly {
            $.slot := Ownable2StepStorageLocation
        }
    }

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    function __Ownable2Step_init() internal onlyInitializing {
    }

    function __Ownable2Step_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        return $._pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        $._pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        Ownable2StepStorage storage $ = _getOwnable2StepStorage();
        delete $._pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 9 of 25 : Constants.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

library Constants {
    uint256 constant WAD = 1e18;
    uint256 constant BPS = 1e4;
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

interface IOracleUSD {
    function priceUSD(address asset) external view returns (uint256);
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

interface IIRM {
    /// @notice Return borrow APR (WAD, 1e18 = 100%) for `asset` at utilization `utilWad` (0..1e18)
    function borrowAPR(address asset, uint256 utilWad) external view returns (uint256 aprWad);
}

File 12 of 25 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;

import {IConfigRegistry} from "./IConfigRegistry.sol";
import {IAccountValuesLens} from "./IAccountValuesLens.sol";

// Minimal view interface into PositionsManager used by the lens
interface IPMViews {
    struct Balance {
        uint256 avail;
        uint256 hold;
    }
    function debt(
        address user,
        address asset
    )
        external
        view
        returns (uint256 principal, uint256 indexAtOpenWad);
    function userSupplyIndexWad(
        address user,
        address asset
    )
        external
        view
        returns (uint256, uint256, uint256);
    function config() external view returns (IConfigRegistry);
    function engines(address m) external view returns (bool);
    function valuesLens() external view returns (IAccountValuesLens);
    function withdrawPaused(address asset) external view returns (bool);
    function supplyCap(address asset) external view returns (uint256);
    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function admin() external view returns (address);
    function astate(address asset)
        external
        view
        returns (
            uint256 borrowIndexWad,
            uint256 lastAccrual,
            uint256 cash,
            uint256 borrows,
            uint256 reserves,
            uint256 supplyIndexWad,
            uint256 totalSupplied,
            uint256 supplierInterestAccrued,
            uint256 idlePrincipal,
            uint256 supplyIndexSettledWad,
            uint256 lastSettle,
            uint256 pendingSupplyIndexSettledWad,
            uint256 pendingTotalInterestSettled,
            uint256 ftProductIndexWad
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 15 of 25 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/draft-IERC1822.sol)

pragma solidity >=0.4.16;

/**
 * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.21;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 19 of 25 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (proxy/beacon/IBeacon.sol)

pragma solidity >=0.4.16;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 21 of 25 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1967.sol)

pragma solidity >=0.4.11;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                revert(add(returndata, 0x20), mload(returndata))
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 25 of 25 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 89999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none",
    "appendCBOR": false
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidPlugin","type":"error"},{"inputs":[],"name":"InvalidTarget","type":"error"},{"inputs":[],"name":"NotGuardian","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PluginNotAllowed","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"CustomLensCleared","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"plugin","type":"address"}],"name":"CustomLensSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"guardian","type":"address"}],"name":"GuardianSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"OwnerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"plugin","type":"address"},{"indexed":false,"internalType":"bool","name":"allowed","type":"bool"}],"name":"PluginAllowed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"plugin","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"}],"name":"PluginQueryFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PluginsPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pm","type":"address"},{"internalType":"address","name":"user","type":"address"}],"name":"accountValues","outputs":[{"internalType":"uint256","name":"collUSD","type":"uint256"},{"internalType":"uint256","name":"debtUSD","type":"uint256"},{"internalType":"uint256","name":"collUSDNoLTV","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"clearCustomLens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"customLensOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"guardian","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"hasActiveCustomLens","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"pausePlugins","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"pluginAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pluginsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pmAddr","type":"address"},{"internalType":"address","name":"asset","type":"address"}],"name":"previewBorrowIndexWad","outputs":[{"internalType":"uint256","name":"idxNow","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address","name":"plugin","type":"address"}],"name":"setCustomLens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"g","type":"address"}],"name":"setGuardian","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"o","type":"address"}],"name":"setOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"plugin","type":"address"},{"internalType":"bool","name":"allowed","type":"bool"}],"name":"setPluginAllowed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"}]

60a080604052346100c257306080525f516020612a9f5f395f51905f525460ff8160401c166100b3576002600160401b03196001600160401b03821601610060575b6040516129d890816100c78239608051818181610ce80152610e070152f35b6001600160401b0319166001600160401b039081175f516020612a9f5f395f51905f525581527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a15f80610041565b63f92ee8a960e01b5f5260045ffd5b5f80fdfe60806040526004361015610011575f80fd5b5f3560e01c806313af40351461137a5780631d6429b0146112cd57806326a149fb1461119357806331a259b214611148578063390f61d2146110eb578063452a93201461109b5780634f1ef28614610d6057806352d1902d14610ca35780635f09b24114610c51578063715018a614610b115780637169dd8e14610acf57806379ba509714610a2c5780638a0dac4a146109835780638da5cb5b1461091357806399665642146107db578063ad3cb1cc14610729578063b47f3d8c14610662578063c4d66de81461037b578063e30c39781461030b578063e63c31fe14610292578063f2fde38b146101775763f628031e1461010b575f80fd5b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6101576114c8565b165f526002602052602060ff60405f2054166040519015158152f35b5f80fd5b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6101c36114c8565b6101cb611625565b16807fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416177f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005573ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a3005b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6102de6114c8565b165f526001602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416604051908152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576103b26114c8565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460ff8160401c16159067ffffffffffffffff81168015908161065a575b6001149081610650575b159081610647575b5061061f578160017fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000008316177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00556105ca575b5073ffffffffffffffffffffffffffffffffffffffff82169182156105a25761048e906104816128c8565b6104896128c8565b612389565b6104966128c8565b817fffffffffffffffffffffffff00000000000000000000000000000000000000005f5416175f5560405191807f50146d0e3c60aa1d17a70635b05494f864e86144a2201275021014fbf08bafe25f80a27fe6c09ffe4572dc9ceaa5ddde4ae41befa655d6fdfe8052077af0970f700e942e5f80a261051157005b60207fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2917fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005560018152a1005b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005582610456565b7ff92ee8a9000000000000000000000000000000000000000000000000000000005f5260045ffd5b90501584610403565b303b1591506103fb565b8391506103f1565b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576106996114c8565b6024359081151580920361017357602073ffffffffffffffffffffffffffffffffffffffff7f31dbab748733ccbab48ba38a77c5907d06a98b8df743f96bfbea65c95ef37a08926106e8611625565b1692835f526002825260405f207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0081541660ff8316179055604051908152a2005b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576040805190610766818361150e565b6005825260208201917f352e302e3000000000000000000000000000000000000000000000000000000083527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8351948593602085525180918160208701528686015e5f85828601015201168101030190f35b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576108126114c8565b73ffffffffffffffffffffffffffffffffffffffff61082f6114eb565b91610838611625565b1690811580156108f5575b6105a25773ffffffffffffffffffffffffffffffffffffffff1690815f52600260205260ff60405f205416156108cd57805f52600160205260405f20827fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790557f91aafd3e6ea9248d9969fe357bb99822136e5a7b80c0de1e7ce728fdf5f114a65f80a3005b7ff61434e6000000000000000000000000000000000000000000000000000000005f5260045ffd5b5073ffffffffffffffffffffffffffffffffffffffff811615610843565b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416604051908152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6109cf6114c8565b6109d7611625565b1680156105a257807fffffffffffffffffffffffff00000000000000000000000000000000000000005f5416175f557fe6c09ffe4572dc9ceaa5ddde4ae41befa655d6fdfe8052077af0970f700e942e5f80a2005b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173573373ffffffffffffffffffffffffffffffffffffffff7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00541603610aa357610aa133612389565b005b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602060ff5f5460a01c166040519015158152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357610b47611625565b7fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0054167f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00555f73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300547fffffffffffffffffffffffff000000000000000000000000000000000000000081167f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576020610c9b610c8d6114c8565b610c956114eb565b90612096565b604051908152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163003610d385760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba000000000000000000000000000000000000000000000000000000005f5260045ffd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357610d926114c8565b6024359067ffffffffffffffff8211610173573660238301121561017357816004013590610dbf8261157c565b91610dcd604051938461150e565b8083526020830193366024838301011161017357815f9260246020930187378401015273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016803014908115611059575b50610d3857610e3f611625565b73ffffffffffffffffffffffffffffffffffffffff8116926040517f52d1902d000000000000000000000000000000000000000000000000000000008152602081600481885afa5f9181611025575b50610ebf57847f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b807f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc869203610ffa5750823b15610fcf57807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2825115610f9d575f8091610aa1945190845af4610f97611665565b9161293f565b50505034610fa757005b7fb398979f000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7faa1d49a4000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b9091506020813d602011611051575b816110416020938361150e565b8101031261017357519086610e8e565b3d9150611034565b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141584610e32565b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735760606111356111276114c8565b61112f6114eb565b90611694565b9060405192835260208301526040820152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735760206111896111846114c8565b6115b6565b6040519015158152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357600435801515809103610173575f5473ffffffffffffffffffffffffffffffffffffffff81163314158061128c575b61126457816020917fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000007f9cdc6dbf87939f112f36f7198bb42b984741f267ca9f3aac560b9790f06853479560a01b169116175f55604051908152a1005b7fef6d0f02000000000000000000000000000000000000000000000000000000005f5260045ffd5b5073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054163314156111f1565b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6113196114c8565b611321611625565b16805f52600160205260405f207fffffffffffffffffffffffff000000000000000000000000000000000000000081541690557f490ee6f822eaeb0f3135b137bf4056f94e41d0e7a9ccdc1a2b10a30a5cf4ee345f80a2005b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6113c66114c8565b6113ce611625565b1680156105a2576113dd611625565b807fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416177f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00558073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a37f50146d0e3c60aa1d17a70635b05494f864e86144a2201275021014fbf08bafe25f80a2005b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761154f57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161154f57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b73ffffffffffffffffffffffffffffffffffffffff165f52600160205273ffffffffffffffffffffffffffffffffffffffff60405f20541660ff5f5460a01c1615908161161b575b81611607575090565b90505f52600260205260ff60405f20541690565b80151591506115fe565b73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054163303610aa357565b3d1561168f573d906116768261157c565b91611684604051938461150e565b82523d5f602084013e565b606090565b91905f5f935f9273ffffffffffffffffffffffffffffffffffffffff821695604051927f79502c550000000000000000000000000000000000000000000000000000000084526020846004818b5afa9384156119cd575f94611f62575b50604051917f07e4e81b00000000000000000000000000000000000000000000000000000000835273ffffffffffffffffffffffffffffffffffffffff8416908160048501525f846024818d5afa9384156119cd575f94611f46575b505f9998979699965b8451881015611acf5799899a6117e7604073ffffffffffffffffffffffffffffffffffffffff6117898c9d9e9d8a612525565b5116809c8a83518095819482937fd4fac45d0000000000000000000000000000000000000000000000000000000084526004840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b03915afa80156119cd57611804915f905f92611a9e575b5061205c565b918215611a915773ffffffffffffffffffffffffffffffffffffffff8916926040517f55a29e91000000000000000000000000000000000000000000000000000000008152602081600481885afa9081156119cd578d905f92611a3a575b5073ffffffffffffffffffffffffffffffffffffffff91602460209260405194859384927ff4d057ff0000000000000000000000000000000000000000000000000000000084526004840152165afa9081156119cd578d905f92611a06575b50916020600493604051948580927f313ce5670000000000000000000000000000000000000000000000000000000082525afa9081156119cd5761192261192e9361191c60ff611927956080985f916119d8575b5016612595565b926125a3565b6125b6565b809461205c565b9b6024604051809681937ffb20974f00000000000000000000000000000000000000000000000000000000835260048301525afa80156119cd5761198c6119939361ffff6020612710946001985f9161199f575b50015116906125a3565b049061205c565b975b0196999897611756565b6119c0915060803d81116119c6575b6119b8818361150e565b810190611fef565b5f611982565b503d6119ae565b6040513d5f823e3d90fd5b6119f9915060203d81116119ff575b6119f1818361150e565b81019061257c565b5f611915565b503d6119e7565b9150506020813d8211611a32575b81611a216020938361150e565b8101031261017357518c60206118c1565b3d9150611a14565b9150506020813d8211611a89575b81611a556020938361150e565b810103126101735760208d6024611a8073ffffffffffffffffffffffffffffffffffffffff94611fbf565b93505090611862565b3d9150611a48565b9890995060019150611995565b9050611ac1915060403d8111611ac8575b611ab9818361150e565b810190612566565b905f6117fe565b503d611aaf565b92999198959793509550604051927f6c3a420a0000000000000000000000000000000000000000000000000000000084528860048501525f84602481895afa9384156119cd575f94611f22575b505f965b8451881015611dc75773ffffffffffffffffffffffffffffffffffffffff611b488987612525565b5116906040517fd449300d00000000000000000000000000000000000000000000000000000000815260408180611ba8868c6004840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b03818c5afa9081156119cd575f905f92611da6575b508d828215611d9857918573ffffffffffffffffffffffffffffffffffffffff96959492611bfb9415611d88575b90611bf591612096565b9061291f565b9160208c6004604051809781937f55a29e91000000000000000000000000000000000000000000000000000000008352165afa9384156119cd575f94611d37575b50602073ffffffffffffffffffffffffffffffffffffffff946024604051809781937ff4d057ff000000000000000000000000000000000000000000000000000000008352866004840152165afa9384156119cd575f94611d03575b506020600491604051928380927f313ce5670000000000000000000000000000000000000000000000000000000082525afa9283156119cd57600194611cee60ff611cfa96611cf4955f916119d8575016612595565b9161291f565b9061205c565b975b0196611b20565b9093506020813d8211611d2f575b81611d1e6020938361150e565b810103126101735751926020611c98565b3d9150611d11565b93506020843d8211611d80575b81611d516020938361150e565b81010312610173576020611d7973ffffffffffffffffffffffffffffffffffffffff95611fbf565b9450611c3c565b3d9150611d44565b670de0b6b3a76400009350611beb565b505050509760019150611cfc565b9050611dc0915060403d8111611ac857611ab9818361150e565b905f611bbd565b9650965096915096919250611ddb836115b6565b15611f1857915f9291839283526001602052611e6b611e9773ffffffffffffffffffffffffffffffffffffffff6040862054169360405192839160208301957f390f61d20000000000000000000000000000000000000000000000000000000087526024840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261150e565b51915afa92611ea4611665565b93158015611f0f575b611f085750606083805181010312610173576020830151906060604085015194015193828196808711611f00575b508510611ef8575b8111611ef0575b50929190565b93505f611eea565b849250611ee3565b95505f611edb565b9390925090565b50835115611ead565b5050509291929190565b611f3f9194503d805f833e611f37818361150e565b810190612498565b925f611b1c565b611f5b9194503d805f833e611f37818361150e565b925f61174d565b611f8591945060203d602011611f8c575b611f7d818361150e565b810190611f93565b925f6116f1565b503d611f73565b90816020910312610173575173ffffffffffffffffffffffffffffffffffffffff811681036101735790565b519073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b519061ffff8216820361017357565b908160809103126101735760405190608082019082821067ffffffffffffffff83111761154f5760609160405261202581611fbf565b835261203360208201611fe0565b602084015261204460408201611fe0565b60408401520151801515810361017357606082015290565b9190820180921161206957565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff16604051917f79502c55000000000000000000000000000000000000000000000000000000008352602083600481855afa9081156119cd5773ffffffffffffffffffffffffffffffffffffffff935f92612364575b506101c0906024604051809681937f31a42e1b00000000000000000000000000000000000000000000000000000000835216958660048301525afa9283156119cd575f5f925f915f935f9761230e575b50806123085750670de0b6b3a7640000955b841580156122ff575b6122f65783156122f657608073ffffffffffffffffffffffffffffffffffffffff926024604051809581937ffb20974f0000000000000000000000000000000000000000000000000000000083528b6004840152165afa9182156119cd5784905f936122cd575b506121e1906121e6939461205c565b61205c565b9182156122c55773ffffffffffffffffffffffffffffffffffffffff6122106020946044936125ed565b9251169460405195869384927f63679793000000000000000000000000000000000000000000000000000000008452600484015260248301525afa9182156119cd575f92612291575b5042034281116120695761226c916126bf565b670de0b6b3a76400000180670de0b6b3a7640000116120695761228e91612768565b90565b9091506020813d6020116122bd575b816122ad6020938361150e565b810103126101735751905f612259565b3d91506122a0565b505050505090565b6121e69350906122ee6121e19260803d6080116119c6576119b8818361150e565b9350906121d2565b50505050505090565b5084421461216b565b95612162565b965050925050506101c0833d821161235c575b8161232f6101c0938361150e565b8101031261017357825160208401519360408101519261010060608301519201519295939192955f612150565b3d9150612321565b6101c09192506123829060203d602011611f8c57611f7d818361150e565b9190612100565b7fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0054167f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005573ffffffffffffffffffffffffffffffffffffffff807f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054921691827fffffffffffffffffffffffff00000000000000000000000000000000000000008216177f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b6020818303126101735780519067ffffffffffffffff821161017357019080601f830112156101735781519167ffffffffffffffff831161154f578260051b90604051936124e9602084018661150e565b845260208085019282010192831161017357602001905b82821061250d5750505090565b6020809161251a84611fbf565b815201910190612500565b80518210156125395760209160051b010190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b9190826040910312610173576020825192015190565b90816020910312610173575160ff811681036101735790565b604d811161206957600a0a90565b8181029291811591840414171561206957565b81156125c0570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff670de0b6b3a7640000820991670de0b6b3a76400008202918280851094039380850394146126b3578382111561269b57670de0b6b3a7640000829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b50634e487b715f52156003026011186020526024601cfd5b509061228e92506125b6565b9190915f907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848209908481029283808410930392808403931461275957826301e13380111561274757507f98f5be4dd1e14769fbd6666224dc1eb80dd2e0a3d2c8b328f57e76b7ae10395793946301e13380910990828211900360f91b910360071c170290565b634e487b71905260116020526024601cfd5b5050506301e133809192500490565b9190915f907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84820990848102928380841093039280840393146127f85782670de0b6b3a7640000111561274757507faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106699394670de0b6b3a7640000910990828211900360ee1b910360121c170290565b505050670de0b6b3a76400009192500490565b90917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83830992808302928380861095039480860395146128bb57848311156128a35790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061228e92506125b6565b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c16156128f757565b7fd7e6bcf8000000000000000000000000000000000000000000000000000000005f5260045ffd5b9161292b81838561280b565b9181156125c05761228e930915159061205c565b9061297c575080511561295457602081519101fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b815115806129cf575b61298d575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b1561298556f0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00

Deployed Bytecode

0x60806040526004361015610011575f80fd5b5f3560e01c806313af40351461137a5780631d6429b0146112cd57806326a149fb1461119357806331a259b214611148578063390f61d2146110eb578063452a93201461109b5780634f1ef28614610d6057806352d1902d14610ca35780635f09b24114610c51578063715018a614610b115780637169dd8e14610acf57806379ba509714610a2c5780638a0dac4a146109835780638da5cb5b1461091357806399665642146107db578063ad3cb1cc14610729578063b47f3d8c14610662578063c4d66de81461037b578063e30c39781461030b578063e63c31fe14610292578063f2fde38b146101775763f628031e1461010b575f80fd5b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6101576114c8565b165f526002602052602060ff60405f2054166040519015158152f35b5f80fd5b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6101c36114c8565b6101cb611625565b16807fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416177f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005573ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a3005b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6102de6114c8565b165f526001602052602073ffffffffffffffffffffffffffffffffffffffff60405f205416604051908152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416604051908152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576103b26114c8565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460ff8160401c16159067ffffffffffffffff81168015908161065a575b6001149081610650575b159081610647575b5061061f578160017fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000008316177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00556105ca575b5073ffffffffffffffffffffffffffffffffffffffff82169182156105a25761048e906104816128c8565b6104896128c8565b612389565b6104966128c8565b817fffffffffffffffffffffffff00000000000000000000000000000000000000005f5416175f5560405191807f50146d0e3c60aa1d17a70635b05494f864e86144a2201275021014fbf08bafe25f80a27fe6c09ffe4572dc9ceaa5ddde4ae41befa655d6fdfe8052077af0970f700e942e5f80a261051157005b60207fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2917fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054167ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005560018152a1005b7fd92e233d000000000000000000000000000000000000000000000000000000005f5260045ffd5b7fffffffffffffffffffffffffffffffffffffffffffffff0000000000000000001668010000000000000001177ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005582610456565b7ff92ee8a9000000000000000000000000000000000000000000000000000000005f5260045ffd5b90501584610403565b303b1591506103fb565b8391506103f1565b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576106996114c8565b6024359081151580920361017357602073ffffffffffffffffffffffffffffffffffffffff7f31dbab748733ccbab48ba38a77c5907d06a98b8df743f96bfbea65c95ef37a08926106e8611625565b1692835f526002825260405f207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0081541660ff8316179055604051908152a2005b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576040805190610766818361150e565b6005825260208201917f352e302e3000000000000000000000000000000000000000000000000000000083527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8351948593602085525180918160208701528686015e5f85828601015201168101030190f35b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576108126114c8565b73ffffffffffffffffffffffffffffffffffffffff61082f6114eb565b91610838611625565b1690811580156108f5575b6105a25773ffffffffffffffffffffffffffffffffffffffff1690815f52600260205260ff60405f205416156108cd57805f52600160205260405f20827fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790557f91aafd3e6ea9248d9969fe357bb99822136e5a7b80c0de1e7ce728fdf5f114a65f80a3005b7ff61434e6000000000000000000000000000000000000000000000000000000005f5260045ffd5b5073ffffffffffffffffffffffffffffffffffffffff811615610843565b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005416604051908152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6109cf6114c8565b6109d7611625565b1680156105a257807fffffffffffffffffffffffff00000000000000000000000000000000000000005f5416175f557fe6c09ffe4572dc9ceaa5ddde4ae41befa655d6fdfe8052077af0970f700e942e5f80a2005b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173573373ffffffffffffffffffffffffffffffffffffffff7f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00541603610aa357610aa133612389565b005b7f118cdaa7000000000000000000000000000000000000000000000000000000005f523360045260245ffd5b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602060ff5f5460a01c166040519015158152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357610b47611625565b7fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0054167f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00555f73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300547fffffffffffffffffffffffff000000000000000000000000000000000000000081167f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610173576020610c9b610c8d6114c8565b610c956114eb565b90612096565b604051908152f35b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000198f37de4f9fee430bb4aabacd8cb40ab6e8e61b163003610d385760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b7fe07c8dba000000000000000000000000000000000000000000000000000000005f5260045ffd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357610d926114c8565b6024359067ffffffffffffffff8211610173573660238301121561017357816004013590610dbf8261157c565b91610dcd604051938461150e565b8083526020830193366024838301011161017357815f9260246020930187378401015273ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000198f37de4f9fee430bb4aabacd8cb40ab6e8e61b16803014908115611059575b50610d3857610e3f611625565b73ffffffffffffffffffffffffffffffffffffffff8116926040517f52d1902d000000000000000000000000000000000000000000000000000000008152602081600481885afa5f9181611025575b50610ebf57847f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b807f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc869203610ffa5750823b15610fcf57807fffffffffffffffffffffffff00000000000000000000000000000000000000007f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416177f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b5f80a2825115610f9d575f8091610aa1945190845af4610f97611665565b9161293f565b50505034610fa757005b7fb398979f000000000000000000000000000000000000000000000000000000005f5260045ffd5b7f4c9c8ce3000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b7faa1d49a4000000000000000000000000000000000000000000000000000000005f5260045260245ffd5b9091506020813d602011611051575b816110416020938361150e565b8101031261017357519086610e8e565b3d9150611034565b905073ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5416141584610e32565b34610173575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357602073ffffffffffffffffffffffffffffffffffffffff5f5416604051908152f35b346101735760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735760606111356111276114c8565b61112f6114eb565b90611694565b9060405192835260208301526040820152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735760206111896111846114c8565b6115b6565b6040519015158152f35b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017357600435801515809103610173575f5473ffffffffffffffffffffffffffffffffffffffff81163314158061128c575b61126457816020917fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff74ff00000000000000000000000000000000000000007f9cdc6dbf87939f112f36f7198bb42b984741f267ca9f3aac560b9790f06853479560a01b169116175f55604051908152a1005b7fef6d0f02000000000000000000000000000000000000000000000000000000005f5260045ffd5b5073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054163314156111f1565b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6113196114c8565b611321611625565b16805f52600160205260405f207fffffffffffffffffffffffff000000000000000000000000000000000000000081541690557f490ee6f822eaeb0f3135b137bf4056f94e41d0e7a9ccdc1a2b10a30a5cf4ee345f80a2005b346101735760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101735773ffffffffffffffffffffffffffffffffffffffff6113c66114c8565b6113ce611625565b1680156105a2576113dd611625565b807fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005416177f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c00558073ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227005f80a37f50146d0e3c60aa1d17a70635b05494f864e86144a2201275021014fbf08bafe25f80a2005b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b6024359073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761154f57604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b67ffffffffffffffff811161154f57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b73ffffffffffffffffffffffffffffffffffffffff165f52600160205273ffffffffffffffffffffffffffffffffffffffff60405f20541660ff5f5460a01c1615908161161b575b81611607575090565b90505f52600260205260ff60405f20541690565b80151591506115fe565b73ffffffffffffffffffffffffffffffffffffffff7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054163303610aa357565b3d1561168f573d906116768261157c565b91611684604051938461150e565b82523d5f602084013e565b606090565b91905f5f935f9273ffffffffffffffffffffffffffffffffffffffff821695604051927f79502c550000000000000000000000000000000000000000000000000000000084526020846004818b5afa9384156119cd575f94611f62575b50604051917f07e4e81b00000000000000000000000000000000000000000000000000000000835273ffffffffffffffffffffffffffffffffffffffff8416908160048501525f846024818d5afa9384156119cd575f94611f46575b505f9998979699965b8451881015611acf5799899a6117e7604073ffffffffffffffffffffffffffffffffffffffff6117898c9d9e9d8a612525565b5116809c8a83518095819482937fd4fac45d0000000000000000000000000000000000000000000000000000000084526004840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b03915afa80156119cd57611804915f905f92611a9e575b5061205c565b918215611a915773ffffffffffffffffffffffffffffffffffffffff8916926040517f55a29e91000000000000000000000000000000000000000000000000000000008152602081600481885afa9081156119cd578d905f92611a3a575b5073ffffffffffffffffffffffffffffffffffffffff91602460209260405194859384927ff4d057ff0000000000000000000000000000000000000000000000000000000084526004840152165afa9081156119cd578d905f92611a06575b50916020600493604051948580927f313ce5670000000000000000000000000000000000000000000000000000000082525afa9081156119cd5761192261192e9361191c60ff611927956080985f916119d8575b5016612595565b926125a3565b6125b6565b809461205c565b9b6024604051809681937ffb20974f00000000000000000000000000000000000000000000000000000000835260048301525afa80156119cd5761198c6119939361ffff6020612710946001985f9161199f575b50015116906125a3565b049061205c565b975b0196999897611756565b6119c0915060803d81116119c6575b6119b8818361150e565b810190611fef565b5f611982565b503d6119ae565b6040513d5f823e3d90fd5b6119f9915060203d81116119ff575b6119f1818361150e565b81019061257c565b5f611915565b503d6119e7565b9150506020813d8211611a32575b81611a216020938361150e565b8101031261017357518c60206118c1565b3d9150611a14565b9150506020813d8211611a89575b81611a556020938361150e565b810103126101735760208d6024611a8073ffffffffffffffffffffffffffffffffffffffff94611fbf565b93505090611862565b3d9150611a48565b9890995060019150611995565b9050611ac1915060403d8111611ac8575b611ab9818361150e565b810190612566565b905f6117fe565b503d611aaf565b92999198959793509550604051927f6c3a420a0000000000000000000000000000000000000000000000000000000084528860048501525f84602481895afa9384156119cd575f94611f22575b505f965b8451881015611dc75773ffffffffffffffffffffffffffffffffffffffff611b488987612525565b5116906040517fd449300d00000000000000000000000000000000000000000000000000000000815260408180611ba8868c6004840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b03818c5afa9081156119cd575f905f92611da6575b508d828215611d9857918573ffffffffffffffffffffffffffffffffffffffff96959492611bfb9415611d88575b90611bf591612096565b9061291f565b9160208c6004604051809781937f55a29e91000000000000000000000000000000000000000000000000000000008352165afa9384156119cd575f94611d37575b50602073ffffffffffffffffffffffffffffffffffffffff946024604051809781937ff4d057ff000000000000000000000000000000000000000000000000000000008352866004840152165afa9384156119cd575f94611d03575b506020600491604051928380927f313ce5670000000000000000000000000000000000000000000000000000000082525afa9283156119cd57600194611cee60ff611cfa96611cf4955f916119d8575016612595565b9161291f565b9061205c565b975b0196611b20565b9093506020813d8211611d2f575b81611d1e6020938361150e565b810103126101735751926020611c98565b3d9150611d11565b93506020843d8211611d80575b81611d516020938361150e565b81010312610173576020611d7973ffffffffffffffffffffffffffffffffffffffff95611fbf565b9450611c3c565b3d9150611d44565b670de0b6b3a76400009350611beb565b505050509760019150611cfc565b9050611dc0915060403d8111611ac857611ab9818361150e565b905f611bbd565b9650965096915096919250611ddb836115b6565b15611f1857915f9291839283526001602052611e6b611e9773ffffffffffffffffffffffffffffffffffffffff6040862054169360405192839160208301957f390f61d20000000000000000000000000000000000000000000000000000000087526024840190929173ffffffffffffffffffffffffffffffffffffffff60209181604085019616845216910152565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810183528261150e565b51915afa92611ea4611665565b93158015611f0f575b611f085750606083805181010312610173576020830151906060604085015194015193828196808711611f00575b508510611ef8575b8111611ef0575b50929190565b93505f611eea565b849250611ee3565b95505f611edb565b9390925090565b50835115611ead565b5050509291929190565b611f3f9194503d805f833e611f37818361150e565b810190612498565b925f611b1c565b611f5b9194503d805f833e611f37818361150e565b925f61174d565b611f8591945060203d602011611f8c575b611f7d818361150e565b810190611f93565b925f6116f1565b503d611f73565b90816020910312610173575173ffffffffffffffffffffffffffffffffffffffff811681036101735790565b519073ffffffffffffffffffffffffffffffffffffffff8216820361017357565b519061ffff8216820361017357565b908160809103126101735760405190608082019082821067ffffffffffffffff83111761154f5760609160405261202581611fbf565b835261203360208201611fe0565b602084015261204460408201611fe0565b60408401520151801515810361017357606082015290565b9190820180921161206957565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff16604051917f79502c55000000000000000000000000000000000000000000000000000000008352602083600481855afa9081156119cd5773ffffffffffffffffffffffffffffffffffffffff935f92612364575b506101c0906024604051809681937f31a42e1b00000000000000000000000000000000000000000000000000000000835216958660048301525afa9283156119cd575f5f925f915f935f9761230e575b50806123085750670de0b6b3a7640000955b841580156122ff575b6122f65783156122f657608073ffffffffffffffffffffffffffffffffffffffff926024604051809581937ffb20974f0000000000000000000000000000000000000000000000000000000083528b6004840152165afa9182156119cd5784905f936122cd575b506121e1906121e6939461205c565b61205c565b9182156122c55773ffffffffffffffffffffffffffffffffffffffff6122106020946044936125ed565b9251169460405195869384927f63679793000000000000000000000000000000000000000000000000000000008452600484015260248301525afa9182156119cd575f92612291575b5042034281116120695761226c916126bf565b670de0b6b3a76400000180670de0b6b3a7640000116120695761228e91612768565b90565b9091506020813d6020116122bd575b816122ad6020938361150e565b810103126101735751905f612259565b3d91506122a0565b505050505090565b6121e69350906122ee6121e19260803d6080116119c6576119b8818361150e565b9350906121d2565b50505050505090565b5084421461216b565b95612162565b965050925050506101c0833d821161235c575b8161232f6101c0938361150e565b8101031261017357825160208401519360408101519261010060608301519201519295939192955f612150565b3d9150612321565b6101c09192506123829060203d602011611f8c57611f7d818361150e565b9190612100565b7fffffffffffffffffffffffff00000000000000000000000000000000000000007f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c0054167f237e158222e3e6968b72b9db0d8043aacf074ad9f650f0d1606b4d82ee432c005573ffffffffffffffffffffffffffffffffffffffff807f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930054921691827fffffffffffffffffffffffff00000000000000000000000000000000000000008216177f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3565b6020818303126101735780519067ffffffffffffffff821161017357019080601f830112156101735781519167ffffffffffffffff831161154f578260051b90604051936124e9602084018661150e565b845260208085019282010192831161017357602001905b82821061250d5750505090565b6020809161251a84611fbf565b815201910190612500565b80518210156125395760209160051b010190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b9190826040910312610173576020825192015190565b90816020910312610173575160ff811681036101735790565b604d811161206957600a0a90565b8181029291811591840414171561206957565b81156125c0570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff670de0b6b3a7640000820991670de0b6b3a76400008202918280851094039380850394146126b3578382111561269b57670de0b6b3a7640000829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b50634e487b715f52156003026011186020526024601cfd5b509061228e92506125b6565b9190915f907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848209908481029283808410930392808403931461275957826301e13380111561274757507f98f5be4dd1e14769fbd6666224dc1eb80dd2e0a3d2c8b328f57e76b7ae10395793946301e13380910990828211900360f91b910360071c170290565b634e487b71905260116020526024601cfd5b5050506301e133809192500490565b9190915f907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84820990848102928380841093039280840393146127f85782670de0b6b3a7640000111561274757507faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106699394670de0b6b3a7640000910990828211900360ee1b910360121c170290565b505050670de0b6b3a76400009192500490565b90917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff83830992808302928380861095039480860395146128bb57848311156128a35790829109815f0382168092046002816003021880820260020302808202600203028082026002030280820260020302808202600203028091026002030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50509061228e92506125b6565b60ff7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005460401c16156128f757565b7fd7e6bcf8000000000000000000000000000000000000000000000000000000005f5260045ffd5b9161292b81838561280b565b9181156125c05761228e930915159061205c565b9061297c575080511561295457602081519101fd5b7fd6bda275000000000000000000000000000000000000000000000000000000005f5260045ffd5b815115806129cf575b61298d575090565b73ffffffffffffffffffffffffffffffffffffffff907f9996b315000000000000000000000000000000000000000000000000000000005f521660045260245ffd5b50803b1561298556

Block Transaction Gas Used Reward
view all blocks ##produced##

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.