More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
4958478 | 23 hrs ago | Contract Creation | 0 S |
Loading...
Loading
Minimal Proxy Contract for 0x7ea3097e2af59ea705398544e0f58eddb7bd1852
Contract Name:
Vyper_contract
Compiler Version
vyper:0.3.1
Contract Source Code (Vyper language format)
# @version 0.3.1 # (c) Curve.Fi, 2021 # Pool for two crypto assets # Universal implementation which can use both ETH and ERC20s from vyper.interfaces import ERC20 interface Factory: def admin() -> address: view def fee_receiver() -> address: view interface CurveToken: def totalSupply() -> uint256: view def mint(_to: address, _value: uint256) -> bool: nonpayable def mint_relative(_to: address, frac: uint256) -> uint256: nonpayable def burnFrom(_to: address, _value: uint256) -> bool: nonpayable interface WETH: def deposit(): payable def withdraw(_amount: uint256): nonpayable # Events event TokenExchange: buyer: indexed(address) sold_id: uint256 tokens_sold: uint256 bought_id: uint256 tokens_bought: uint256 event AddLiquidity: provider: indexed(address) token_amounts: uint256[N_COINS] fee: uint256 token_supply: uint256 event RemoveLiquidity: provider: indexed(address) token_amounts: uint256[N_COINS] token_supply: uint256 event RemoveLiquidityOne: provider: indexed(address) token_amount: uint256 coin_index: uint256 coin_amount: uint256 event CommitNewParameters: deadline: indexed(uint256) admin_fee: uint256 mid_fee: uint256 out_fee: uint256 fee_gamma: uint256 allowed_extra_profit: uint256 adjustment_step: uint256 ma_half_time: uint256 event NewParameters: admin_fee: uint256 mid_fee: uint256 out_fee: uint256 fee_gamma: uint256 allowed_extra_profit: uint256 adjustment_step: uint256 ma_half_time: uint256 event RampAgamma: initial_A: uint256 future_A: uint256 initial_gamma: uint256 future_gamma: uint256 initial_time: uint256 future_time: uint256 event StopRampA: current_A: uint256 current_gamma: uint256 time: uint256 event ClaimAdminFee: admin: indexed(address) tokens: uint256 ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400 MIN_RAMP_TIME: constant(uint256) = 86400 MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9 MIN_FEE: constant(uint256) = 5 * 10 ** 5 # 0.5 bps MAX_FEE: constant(uint256) = 10 * 10 ** 9 DONATE_FEE: constant(uint256) = 10 * 10 ** 9 MAX_A_CHANGE: constant(uint256) = 10 NOISE_FEE: constant(uint256) = 10**5 # 0.1 bps MIN_GAMMA: constant(uint256) = 10**10 MAX_GAMMA: constant(uint256) = 2 * 10**16 MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10 MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 100000 EXP_PRECISION: constant(uint256) = 10**10 N_COINS: constant(int128) = 2 PRECISION: constant(uint256) = 10 ** 18 # The precision to convert to A_MULTIPLIER: constant(uint256) = 10000 # Implementation can be changed by changing this constant WETH20: immutable(address) token: public(address) coins: public(address[N_COINS]) price_scale: public(uint256) # Internal price scale _price_oracle: uint256 # Price target given by MA last_prices: public(uint256) last_prices_timestamp: public(uint256) initial_A_gamma: public(uint256) future_A_gamma: public(uint256) initial_A_gamma_time: public(uint256) future_A_gamma_time: public(uint256) allowed_extra_profit: public(uint256) # 2 * 10**12 - recommended value future_allowed_extra_profit: public(uint256) fee_gamma: public(uint256) future_fee_gamma: public(uint256) adjustment_step: public(uint256) future_adjustment_step: public(uint256) ma_half_time: public(uint256) future_ma_half_time: public(uint256) mid_fee: public(uint256) out_fee: public(uint256) admin_fee: public(uint256) future_mid_fee: public(uint256) future_out_fee: public(uint256) future_admin_fee: public(uint256) balances: public(uint256[N_COINS]) D: public(uint256) factory: public(address) xcp_profit: public(uint256) xcp_profit_a: public(uint256) # Full profit at last claim of admin fees virtual_price: public(uint256) # Cached (fast to read) virtual price also used internally not_adjusted: bool admin_actions_deadline: public(uint256) # This must be changed for different N_COINS # For example: # N_COINS = 3 -> 1 (10**18 -> 10**18) # N_COINS = 4 -> 10**8 (10**18 -> 10**10) # PRICE_PRECISION_MUL: constant(uint256) = 1 PRECISIONS: uint256 # packed @external def __init__(_weth: address): WETH20 = _weth self.mid_fee = 22022022 @payable @external def __default__(): pass # Internal Functions @internal @view def _get_precisions() -> uint256[2]: p0: uint256 = self.PRECISIONS p1: uint256 = 10 ** shift(p0, -8) p0 = 10 ** bitwise_and(p0, 255) return [p0, p1] @internal @view def xp() -> uint256[N_COINS]: precisions: uint256[2] = self._get_precisions() return [self.balances[0] * precisions[0], self.balances[1] * precisions[1] * self.price_scale / PRECISION] @view @internal def _A_gamma() -> uint256[2]: t1: uint256 = self.future_A_gamma_time A_gamma_1: uint256 = self.future_A_gamma gamma1: uint256 = bitwise_and(A_gamma_1, 2**128-1) A1: uint256 = shift(A_gamma_1, -128) if block.timestamp < t1: # handle ramping up and down of A A_gamma_0: uint256 = self.initial_A_gamma t0: uint256 = self.initial_A_gamma_time # Less readable but more compact way of writing and converting to uint256 # gamma0: uint256 = bitwise_and(A_gamma_0, 2**128-1) # A0: uint256 = shift(A_gamma_0, -128) # A1 = A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0) # gamma1 = gamma0 + (gamma1 - gamma0) * (block.timestamp - t0) / (t1 - t0) t1 -= t0 t0 = block.timestamp - t0 t2: uint256 = t1 - t0 A1 = (shift(A_gamma_0, -128) * t2 + A1 * t0) / t1 gamma1 = (bitwise_and(A_gamma_0, 2**128-1) * t2 + gamma1 * t0) / t1 return [A1, gamma1] @internal @view def _fee(xp: uint256[N_COINS]) -> uint256: """ f = fee_gamma / (fee_gamma + (1 - K)) where K = prod(x) / (sum(x) / N)**N (all normalized to 1e18) """ fee_gamma: uint256 = self.fee_gamma f: uint256 = xp[0] + xp[1] # sum f = fee_gamma * 10**18 / ( fee_gamma + 10**18 - (10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f ) return (self.mid_fee * f + self.out_fee * (10**18 - f)) / 10**18 ### Math functions @internal @pure def geometric_mean(unsorted_x: uint256[N_COINS], sort: bool) -> uint256: """ (x[0] * x[1] * ...) ** (1/N) """ x: uint256[N_COINS] = unsorted_x if sort and x[0] < x[1]: x = [unsorted_x[1], unsorted_x[0]] D: uint256 = x[0] diff: uint256 = 0 for i in range(255): D_prev: uint256 = D # tmp: uint256 = 10**18 # for _x in x: # tmp = tmp * _x / D # D = D * ((N_COINS - 1) * 10**18 + tmp) / (N_COINS * 10**18) # line below makes it for 2 coins D = (D + x[0] * x[1] / D) / N_COINS if D > D_prev: diff = D - D_prev else: diff = D_prev - D if diff <= 1 or diff * 10**18 < D: return D raise "Did not converge" @internal @view def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS]) -> uint256: """ Finding the invariant using Newton method. ANN is higher by the factor A_MULTIPLIER ANN is already A * N**N Currently uses 60k gas """ # Safety checks assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma # Initial value of invariant D is that for constant-product invariant x: uint256[N_COINS] = x_unsorted if x[0] < x[1]: x = [x_unsorted[1], x_unsorted[0]] assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1 # dev: unsafe values x[0] assert x[1] * 10**18 / x[0] > 10**14-1 # dev: unsafe values x[i] (input) D: uint256 = N_COINS * self.geometric_mean(x, False) S: uint256 = x[0] + x[1] for i in range(255): D_prev: uint256 = D # K0: uint256 = 10**18 # for _x in x: # K0 = K0 * _x * N_COINS / D # collapsed for 2 coins K0: uint256 = (10**18 * N_COINS**2) * x[0] / D * x[1] / D _g1k0: uint256 = gamma + 10**18 if _g1k0 > K0: _g1k0 = _g1k0 - K0 + 1 else: _g1k0 = K0 - _g1k0 + 1 # D / (A * N**N) * _g1k0**2 / gamma**2 mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN # 2*N*K0 / _g1k0 mul2: uint256 = (2 * 10**18) * N_COINS * K0 / _g1k0 neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18 # D -= f / fprime D_plus: uint256 = D * (neg_fprime + S) / neg_fprime D_minus: uint256 = D*D / neg_fprime if 10**18 > K0: D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0 else: D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0 if D_plus > D_minus: D = D_plus - D_minus else: D = (D_minus - D_plus) / 2 diff: uint256 = 0 if D > D_prev: diff = D - D_prev else: diff = D_prev - D if diff * 10**14 < max(10**16, D): # Could reduce precision for gas efficiency here # Test that we are safe with the next newton_y for _x in x: frac: uint256 = _x * 10**18 / D assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe values x[i] return D raise "Did not converge" @internal @pure def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256: """ Calculating x[i] given other balances x[0..N_COINS-1] and invariant D ANN = A * N**N """ # Safety checks assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D x_j: uint256 = x[1 - i] y: uint256 = D**2 / (x_j * N_COINS**2) K0_i: uint256 = (10**18 * N_COINS) * x_j / D # S_i = x_j # frac = x_j * 1e18 / D => frac = K0_i / N_COINS assert (K0_i > 10**16*N_COINS - 1) and (K0_i < 10**20*N_COINS + 1) # dev: unsafe values x[i] # x_sorted: uint256[N_COINS] = x # x_sorted[i] = 0 # x_sorted = self.sort(x_sorted) # From high to low # x[not i] instead of x_sorted since x_soted has only 1 element convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100) for j in range(255): y_prev: uint256 = y K0: uint256 = K0_i * y * N_COINS / D S: uint256 = x_j + y _g1k0: uint256 = gamma + 10**18 if _g1k0 > K0: _g1k0 = _g1k0 - K0 + 1 else: _g1k0 = K0 - _g1k0 + 1 # D / (A * N**N) * _g1k0**2 / gamma**2 mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN # 2*K0 / _g1k0 mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0 yfprime: uint256 = 10**18 * y + S * mul2 + mul1 _dyfprime: uint256 = D * mul2 if yfprime < _dyfprime: y = y_prev / 2 continue else: yfprime -= _dyfprime fprime: uint256 = yfprime / y # y -= f / f_prime; y = (y * fprime - f) / fprime # y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0 y_minus: uint256 = mul1 / fprime y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0 y_minus += 10**18 * S / fprime if y_plus < y_minus: y = y_prev / 2 else: y = y_plus - y_minus diff: uint256 = 0 if y > y_prev: diff = y - y_prev else: diff = y_prev - y if diff < max(convergence_limit, y / 10**14): frac: uint256 = y * 10**18 / D assert (frac > 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y return y raise "Did not converge" @internal @pure def halfpow(power: uint256) -> uint256: """ 1e18 * 0.5 ** (power/1e18) Inspired by: https://github.com/balancer-labs/balancer-core/blob/master/contracts/BNum.sol#L128 """ intpow: uint256 = power / 10**18 otherpow: uint256 = power - intpow * 10**18 if intpow > 59: return 0 result: uint256 = 10**18 / (2**intpow) if otherpow == 0: return result term: uint256 = 10**18 x: uint256 = 5 * 10**17 S: uint256 = 10**18 neg: bool = False for i in range(1, 256): K: uint256 = i * 10**18 c: uint256 = K - 10**18 if otherpow > c: c = otherpow - c neg = not neg else: c -= otherpow term = term * (c * x / 10**18) / K if neg: S -= term else: S += term if term < EXP_PRECISION: return result * S / 10**18 raise "Did not converge" ### end of Math functions @internal @view def get_xcp(D: uint256) -> uint256: x: uint256[N_COINS] = [D / N_COINS, D * PRECISION / (self.price_scale * N_COINS)] return self.geometric_mean(x, True) @internal def _claim_admin_fees(): A_gamma: uint256[2] = self._A_gamma() xcp_profit: uint256 = self.xcp_profit xcp_profit_a: uint256 = self.xcp_profit_a # Gulp here for i in range(N_COINS): coin: address = self.coins[i] if coin == WETH20: self.balances[i] = self.balance else: self.balances[i] = ERC20(coin).balanceOf(self) vprice: uint256 = self.virtual_price if xcp_profit > xcp_profit_a: fees: uint256 = (xcp_profit - xcp_profit_a) * self.admin_fee / (2 * 10**10) if fees > 0: receiver: address = Factory(self.factory).fee_receiver() if receiver != ZERO_ADDRESS: frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18 claimed: uint256 = CurveToken(self.token).mint_relative(receiver, frac) xcp_profit -= fees*2 self.xcp_profit = xcp_profit log ClaimAdminFee(receiver, claimed) total_supply: uint256 = CurveToken(self.token).totalSupply() # Recalculate D b/c we gulped D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], self.xp()) self.D = D self.virtual_price = 10**18 * self.get_xcp(D) / total_supply if xcp_profit > xcp_profit_a: self.xcp_profit_a = xcp_profit @internal @view def internal_price_oracle() -> uint256: price_oracle: uint256 = self._price_oracle last_prices_timestamp: uint256 = self.last_prices_timestamp if last_prices_timestamp < block.timestamp: ma_half_time: uint256 = self.ma_half_time last_prices: uint256 = self.last_prices alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time) return (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18 else: return price_oracle @internal def tweak_price(A_gamma: uint256[2],_xp: uint256[N_COINS], p_i: uint256, new_D: uint256): price_oracle: uint256 = self._price_oracle last_prices: uint256 = self.last_prices price_scale: uint256 = self.price_scale last_prices_timestamp: uint256 = self.last_prices_timestamp p_new: uint256 = 0 if last_prices_timestamp < block.timestamp: # MA update required ma_half_time: uint256 = self.ma_half_time alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time) price_oracle = (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18 self._price_oracle = price_oracle self.last_prices_timestamp = block.timestamp D_unadjusted: uint256 = new_D # Withdrawal methods know new D already if new_D == 0: # We will need this a few times (35k gas) D_unadjusted = self.newton_D(A_gamma[0], A_gamma[1], _xp) if p_i > 0: last_prices = p_i else: # calculate real prices __xp: uint256[N_COINS] = _xp dx_price: uint256 = __xp[0] / 10**6 __xp[0] += dx_price last_prices = price_scale * dx_price / (_xp[1] - self.newton_y(A_gamma[0], A_gamma[1], __xp, D_unadjusted, 1)) self.last_prices = last_prices total_supply: uint256 = CurveToken(self.token).totalSupply() old_xcp_profit: uint256 = self.xcp_profit old_virtual_price: uint256 = self.virtual_price # Update profit numbers without price adjustment first xp: uint256[N_COINS] = [D_unadjusted / N_COINS, D_unadjusted * PRECISION / (N_COINS * price_scale)] xcp_profit: uint256 = 10**18 virtual_price: uint256 = 10**18 if old_virtual_price > 0: xcp: uint256 = self.geometric_mean(xp, True) virtual_price = 10**18 * xcp / total_supply xcp_profit = old_xcp_profit * virtual_price / old_virtual_price t: uint256 = self.future_A_gamma_time if virtual_price < old_virtual_price and t == 0: raise "Loss" if t == 1: self.future_A_gamma_time = 0 self.xcp_profit = xcp_profit norm: uint256 = price_oracle * 10**18 / price_scale if norm > 10**18: norm -= 10**18 else: norm = 10**18 - norm adjustment_step: uint256 = max(self.adjustment_step, norm / 5) needs_adjustment: bool = self.not_adjusted # if not needs_adjustment and (virtual_price-10**18 > (xcp_profit-10**18)/2 + self.allowed_extra_profit): # (re-arrange for gas efficiency) if not needs_adjustment and (virtual_price * 2 - 10**18 > xcp_profit + 2*self.allowed_extra_profit) and (norm > adjustment_step) and (old_virtual_price > 0): needs_adjustment = True self.not_adjusted = True if needs_adjustment: if norm > adjustment_step and old_virtual_price > 0: p_new = (price_scale * (norm - adjustment_step) + adjustment_step * price_oracle) / norm # Calculate balances*prices xp = [_xp[0], _xp[1] * p_new / price_scale] # Calculate "extended constant product" invariant xCP and virtual price D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp) xp = [D / N_COINS, D * PRECISION / (N_COINS * p_new)] # We reuse old_virtual_price here but it's not old anymore old_virtual_price = 10**18 * self.geometric_mean(xp, True) / total_supply # Proceed if we've got enough profit # if (old_virtual_price > 10**18) and (2 * (old_virtual_price - 10**18) > xcp_profit - 10**18): if (old_virtual_price > 10**18) and (2 * old_virtual_price - 10**18 > xcp_profit): self.price_scale = p_new self.D = D self.virtual_price = old_virtual_price return else: self.not_adjusted = False # Can instead do another flag variable if we want to save bytespace self.D = D_unadjusted self.virtual_price = virtual_price self._claim_admin_fees() return # If we are here, the price_scale adjustment did not happen # Still need to update the profit counter and D self.D = D_unadjusted self.virtual_price = virtual_price # norm appeared < adjustment_step after if needs_adjustment: self.not_adjusted = False self._claim_admin_fees() @internal def _exchange(sender: address, mvalue: uint256, i: uint256, j: uint256, dx: uint256, min_dy: uint256, use_eth: bool, receiver: address, callbacker: address, callback_sig: bytes32) -> uint256: assert i != j # dev: coin index out of range assert i < N_COINS # dev: coin index out of range assert j < N_COINS # dev: coin index out of range assert dx > 0 # dev: do not exchange 0 coins A_gamma: uint256[2] = self._A_gamma() xp: uint256[N_COINS] = self.balances p: uint256 = 0 dy: uint256 = 0 in_coin: address = self.coins[i] out_coin: address = self.coins[j] y: uint256 = xp[j] x0: uint256 = xp[i] xp[i] = x0 + dx self.balances[i] = xp[i] price_scale: uint256 = self.price_scale precisions: uint256[2] = self._get_precisions() xp = [xp[0] * precisions[0], xp[1] * price_scale * precisions[1] / PRECISION] prec_i: uint256 = precisions[0] prec_j: uint256 = precisions[1] if i == 1: prec_i = precisions[1] prec_j = precisions[0] # In case ramp is happening t: uint256 = self.future_A_gamma_time if t > 0: x0 *= prec_i if i > 0: x0 = x0 * price_scale / PRECISION x1: uint256 = xp[i] # Back up old value in xp xp[i] = x0 self.D = self.newton_D(A_gamma[0], A_gamma[1], xp) xp[i] = x1 # And restore if block.timestamp >= t: self.future_A_gamma_time = 1 dy = xp[j] - self.newton_y(A_gamma[0], A_gamma[1], xp, self.D, j) # Not defining new "y" here to have less variables / make subsequent calls cheaper xp[j] -= dy dy -= 1 if j > 0: dy = dy * PRECISION / price_scale dy /= prec_j dy -= self._fee(xp) * dy / 10**10 assert dy >= min_dy, "Slippage" y -= dy self.balances[j] = y # Do transfers in and out together # XXX coin vs ETH if use_eth and in_coin == WETH20: assert mvalue == dx # dev: incorrect eth amount else: assert mvalue == 0 # dev: nonzero eth amount if callback_sig == EMPTY_BYTES32: response: Bytes[32] = raw_call( in_coin, _abi_encode( sender, self, dx, method_id=method_id("transferFrom(address,address,uint256)") ), max_outsize=32, ) if len(response) != 0: assert convert(response, bool) # dev: failed transfer else: b: uint256 = ERC20(in_coin).balanceOf(self) raw_call( callbacker, concat(slice(callback_sig, 0, 4), _abi_encode(sender, receiver, in_coin, dx, dy)) ) assert ERC20(in_coin).balanceOf(self) - b == dx # dev: callback didn't give us coins if in_coin == WETH20: WETH(WETH20).withdraw(dx) if use_eth and out_coin == WETH20: raw_call(receiver, b"", value=dy) else: if out_coin == WETH20: WETH(WETH20).deposit(value=dy) response: Bytes[32] = raw_call( out_coin, _abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")), max_outsize=32, ) if len(response) != 0: assert convert(response, bool) y *= prec_j if j > 0: y = y * price_scale / PRECISION xp[j] = y # Calculate price if dx > 10**5 and dy > 10**5: _dx: uint256 = dx * prec_i _dy: uint256 = dy * prec_j if i == 0: p = _dx * 10**18 / _dy else: # j == 0 p = _dy * 10**18 / _dx self.tweak_price(A_gamma, xp, p, 0) log TokenExchange(sender, i, dx, j, dy) return dy @view @internal def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256: # fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts) fee: uint256 = self._fee(xp) * N_COINS / (4 * (N_COINS-1)) S: uint256 = 0 for _x in amounts: S += _x avg: uint256 = S / N_COINS Sdiff: uint256 = 0 for _x in amounts: if _x > avg: Sdiff += _x - avg else: Sdiff += avg - _x return fee * Sdiff / S + NOISE_FEE @internal @view def _calc_withdraw_one_coin(A_gamma: uint256[2], token_amount: uint256, i: uint256, update_D: bool, calc_price: bool) -> (uint256, uint256, uint256, uint256[N_COINS]): token_supply: uint256 = CurveToken(self.token).totalSupply() assert token_amount <= token_supply # dev: token amount more than supply assert i < N_COINS # dev: coin out of range xx: uint256[N_COINS] = self.balances D0: uint256 = 0 precisions: uint256[2] = self._get_precisions() price_scale_i: uint256 = self.price_scale * precisions[1] xp: uint256[N_COINS] = [xx[0] * precisions[0], xx[1] * price_scale_i / PRECISION] if i == 0: price_scale_i = PRECISION * precisions[0] if update_D: D0 = self.newton_D(A_gamma[0], A_gamma[1], xp) else: D0 = self.D D: uint256 = D0 # Charge the fee on D, not on y, e.g. reducing invariant LESS than charging the user fee: uint256 = self._fee(xp) dD: uint256 = token_amount * D / token_supply D -= (dD - (fee * dD / (2 * 10**10) + 1)) y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, i) dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i xp[i] = y # Price calc p: uint256 = 0 if calc_price and dy > 10**5 and token_amount > 10**5: # p_i = dD / D0 * sum'(p_k * x_k) / (dy - dD / D0 * y0) S: uint256 = 0 precision: uint256 = precisions[0] if i == 1: S = xx[0] * precisions[0] precision = precisions[1] else: S = xx[1] * precisions[1] S = S * dD / D0 p = S * PRECISION / (dy * precision - dD * xx[i] * precision / D0) if i == 0: p = (10**18)**2 / p return dy, p, D, xp @internal @pure def sqrt_int(x: uint256) -> uint256: """ Originating from: https://github.com/vyperlang/vyper/issues/1266 """ if x == 0: return 0 z: uint256 = (x + 10**18) / 2 y: uint256 = x for i in range(256): if z == y: return y y = z z = (x * 10**18 / z + z) / 2 raise "Did not converge" # External Functions @payable @external def donate(i: uint256, j: uint256, dx: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256: """ Donates to the Curve pool, by setting the fees to 100%. """ assert msg.sender == Factory(self.factory).admin() # dev: only owner # Save the old fee values _old_mid_fee: uint256 = self.mid_fee _old_out_fee: uint256 = self.out_fee # Set the fees to 100% self.mid_fee = DONATE_FEE - 2 self.out_fee = DONATE_FEE - 1 # Execute exchange dy: uint256 = self._exchange(msg.sender, msg.value, i, j, dx, 0, use_eth, receiver, ZERO_ADDRESS, EMPTY_BYTES32) # Reset the fees self.mid_fee = _old_mid_fee self.out_fee = _old_out_fee return dy @payable @external @nonreentrant('lock') def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256: """ Exchange using WETH by default """ return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, use_eth, receiver, ZERO_ADDRESS, EMPTY_BYTES32) @payable @external @nonreentrant('lock') def exchange_underlying(i: uint256, j: uint256, dx: uint256, min_dy: uint256, receiver: address = msg.sender) -> uint256: """ Exchange using ETH """ return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, True, receiver, ZERO_ADDRESS, EMPTY_BYTES32) @payable @external @nonreentrant('lock') def exchange_extended(i: uint256, j: uint256, dx: uint256, min_dy: uint256, use_eth: bool, sender: address, receiver: address, cb: bytes32) -> uint256: assert cb != EMPTY_BYTES32 # dev: No callback specified return self._exchange(sender, msg.value, i, j, dx, min_dy, use_eth, receiver, msg.sender, cb) @payable @external @nonreentrant('lock') def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256: assert amounts[0] > 0 or amounts[1] > 0 # dev: no coins to add A_gamma: uint256[2] = self._A_gamma() xp: uint256[N_COINS] = self.balances amountsp: uint256[N_COINS] = empty(uint256[N_COINS]) xx: uint256[N_COINS] = empty(uint256[N_COINS]) d_token: uint256 = 0 d_token_fee: uint256 = 0 old_D: uint256 = 0 xp_old: uint256[N_COINS] = xp for i in range(N_COINS): bal: uint256 = xp[i] + amounts[i] xp[i] = bal self.balances[i] = bal xx = xp precisions: uint256[2] = self._get_precisions() price_scale: uint256 = self.price_scale * precisions[1] xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION] xp_old = [xp_old[0] * precisions[0], xp_old[1] * price_scale / PRECISION] if not use_eth: assert msg.value == 0 # dev: nonzero eth amount for i in range(N_COINS): coin: address = self.coins[i] if use_eth and coin == WETH20: assert msg.value == amounts[i] # dev: incorrect eth amount if amounts[i] > 0: if (not use_eth) or (coin != WETH20): response: Bytes[32] = raw_call( coin, _abi_encode( msg.sender, self, amounts[i], method_id=method_id("transferFrom(address,address,uint256)"), ), max_outsize=32, ) if len(response) != 0: assert convert(response, bool) # dev: failed transfer if coin == WETH20: WETH(WETH20).withdraw(amounts[i]) amountsp[i] = xp[i] - xp_old[i] t: uint256 = self.future_A_gamma_time if t > 0: old_D = self.newton_D(A_gamma[0], A_gamma[1], xp_old) if block.timestamp >= t: self.future_A_gamma_time = 1 else: old_D = self.D D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp) lp_token: address = self.token token_supply: uint256 = CurveToken(lp_token).totalSupply() if old_D > 0: d_token = token_supply * D / old_D - token_supply else: d_token = self.get_xcp(D) # making initial virtual price equal to 1 assert d_token > 0 # dev: nothing minted if old_D > 0: d_token_fee = self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1 d_token -= d_token_fee token_supply += d_token CurveToken(lp_token).mint(receiver, d_token) # Calculate price # p_i * (dx_i - dtoken / token_supply * xx_i) = sum{k!=i}(p_k * (dtoken / token_supply * xx_k - dx_k)) # Simplified for 2 coins p: uint256 = 0 if d_token > 10**5: if amounts[0] == 0 or amounts[1] == 0: S: uint256 = 0 precision: uint256 = 0 ix: uint256 = 0 if amounts[0] == 0: S = xx[0] * precisions[0] precision = precisions[1] ix = 1 else: S = xx[1] * precisions[1] precision = precisions[0] S = S * d_token / token_supply p = S * PRECISION / (amounts[ix] * precision - d_token * xx[ix] * precision / token_supply) if ix == 0: p = (10**18)**2 / p self.tweak_price(A_gamma, xp, p, D) else: self.D = D self.virtual_price = 10**18 self.xcp_profit = 10**18 CurveToken(lp_token).mint(receiver, d_token) assert d_token >= min_mint_amount, "Slippage" log AddLiquidity(receiver, amounts, d_token_fee, token_supply) return d_token @external @nonreentrant('lock') def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS], use_eth: bool = False, receiver: address = msg.sender): """ This withdrawal method is very safe, does no complex math """ lp_token: address = self.token total_supply: uint256 = CurveToken(lp_token).totalSupply() CurveToken(lp_token).burnFrom(msg.sender, _amount) balances: uint256[N_COINS] = self.balances amount: uint256 = _amount - 1 # Make rounding errors favoring other LPs a tiny bit for i in range(N_COINS): d_balance: uint256 = balances[i] * amount / total_supply assert d_balance >= min_amounts[i] self.balances[i] = balances[i] - d_balance balances[i] = d_balance # now it's the amounts going out coin: address = self.coins[i] if use_eth and coin == WETH20: raw_call(receiver, b"", value=d_balance) else: if coin == WETH20: WETH(WETH20).deposit(value=d_balance) response: Bytes[32] = raw_call( coin, _abi_encode(receiver, d_balance, method_id=method_id("transfer(address,uint256)")), max_outsize=32, ) if len(response) != 0: assert convert(response, bool) D: uint256 = self.D self.D = D - D * amount / total_supply log RemoveLiquidity(msg.sender, balances, total_supply - _amount) @external @nonreentrant('lock') def remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256, use_eth: bool = False, receiver: address = msg.sender) -> uint256: A_gamma: uint256[2] = self._A_gamma() dy: uint256 = 0 D: uint256 = 0 p: uint256 = 0 xp: uint256[N_COINS] = empty(uint256[N_COINS]) future_A_gamma_time: uint256 = self.future_A_gamma_time dy, p, D, xp = self._calc_withdraw_one_coin(A_gamma, token_amount, i, (future_A_gamma_time > 0), True) assert dy >= min_amount, "Slippage" if block.timestamp >= future_A_gamma_time: self.future_A_gamma_time = 1 self.balances[i] -= dy CurveToken(self.token).burnFrom(msg.sender, token_amount) coin: address = self.coins[i] if use_eth and coin == WETH20: raw_call(receiver, b"", value=dy) else: if coin == WETH20: WETH(WETH20).deposit(value=dy) response: Bytes[32] = raw_call( coin, _abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")), max_outsize=32, ) if len(response) != 0: assert convert(response, bool) self.tweak_price(A_gamma, xp, p, D) log RemoveLiquidityOne(msg.sender, token_amount, i, dy) return dy @external @nonreentrant('lock') def claim_admin_fees(): self._claim_admin_fees() # Admin parameters @external def ramp_A_gamma(future_A: uint256, future_gamma: uint256, future_time: uint256): assert msg.sender == Factory(self.factory).admin() # dev: only owner assert block.timestamp > self.initial_A_gamma_time + (MIN_RAMP_TIME-1) assert future_time > block.timestamp + (MIN_RAMP_TIME-1) # dev: insufficient time A_gamma: uint256[2] = self._A_gamma() initial_A_gamma: uint256 = shift(A_gamma[0], 128) initial_A_gamma = bitwise_or(initial_A_gamma, A_gamma[1]) assert future_A > MIN_A-1 assert future_A < MAX_A+1 assert future_gamma > MIN_GAMMA-1 assert future_gamma < MAX_GAMMA+1 ratio: uint256 = 10**18 * future_A / A_gamma[0] assert ratio < 10**18 * MAX_A_CHANGE + 1 assert ratio > 10**18 / MAX_A_CHANGE - 1 ratio = 10**18 * future_gamma / A_gamma[1] assert ratio < 10**18 * MAX_A_CHANGE + 1 assert ratio > 10**18 / MAX_A_CHANGE - 1 self.initial_A_gamma = initial_A_gamma self.initial_A_gamma_time = block.timestamp future_A_gamma: uint256 = shift(future_A, 128) future_A_gamma = bitwise_or(future_A_gamma, future_gamma) self.future_A_gamma_time = future_time self.future_A_gamma = future_A_gamma log RampAgamma(A_gamma[0], future_A, A_gamma[1], future_gamma, block.timestamp, future_time) @external def stop_ramp_A_gamma(): assert msg.sender == Factory(self.factory).admin() # dev: only owner A_gamma: uint256[2] = self._A_gamma() current_A_gamma: uint256 = shift(A_gamma[0], 128) current_A_gamma = bitwise_or(current_A_gamma, A_gamma[1]) self.initial_A_gamma = current_A_gamma self.future_A_gamma = current_A_gamma self.initial_A_gamma_time = block.timestamp self.future_A_gamma_time = block.timestamp # now (block.timestamp < t1) is always False, so we return saved A log StopRampA(A_gamma[0], A_gamma[1], block.timestamp) @external def commit_new_parameters( _new_mid_fee: uint256, _new_out_fee: uint256, _new_admin_fee: uint256, _new_fee_gamma: uint256, _new_allowed_extra_profit: uint256, _new_adjustment_step: uint256, _new_ma_half_time: uint256, ): assert msg.sender == Factory(self.factory).admin() # dev: only owner assert self.admin_actions_deadline == 0 # dev: active action new_mid_fee: uint256 = _new_mid_fee new_out_fee: uint256 = _new_out_fee new_admin_fee: uint256 = _new_admin_fee new_fee_gamma: uint256 = _new_fee_gamma new_allowed_extra_profit: uint256 = _new_allowed_extra_profit new_adjustment_step: uint256 = _new_adjustment_step new_ma_half_time: uint256 = _new_ma_half_time # Fees if new_out_fee < MAX_FEE+1: assert new_out_fee > MIN_FEE-1 # dev: fee is out of range else: new_out_fee = self.out_fee if new_mid_fee > MAX_FEE: new_mid_fee = self.mid_fee assert new_mid_fee <= new_out_fee # dev: mid-fee is too high if new_admin_fee > MAX_ADMIN_FEE: new_admin_fee = self.admin_fee # AMM parameters if new_fee_gamma < 10**18: assert new_fee_gamma > 0 # dev: fee_gamma out of range [1 .. 10**18] else: new_fee_gamma = self.fee_gamma if new_allowed_extra_profit > 10**18: new_allowed_extra_profit = self.allowed_extra_profit if new_adjustment_step > 10**18: new_adjustment_step = self.adjustment_step # MA if new_ma_half_time < 7*86400: assert new_ma_half_time > 0 # dev: MA time should be longer than 1 second else: new_ma_half_time = self.ma_half_time _deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY self.admin_actions_deadline = _deadline self.future_admin_fee = new_admin_fee self.future_mid_fee = new_mid_fee self.future_out_fee = new_out_fee self.future_fee_gamma = new_fee_gamma self.future_allowed_extra_profit = new_allowed_extra_profit self.future_adjustment_step = new_adjustment_step self.future_ma_half_time = new_ma_half_time log CommitNewParameters(_deadline, new_admin_fee, new_mid_fee, new_out_fee, new_fee_gamma, new_allowed_extra_profit, new_adjustment_step, new_ma_half_time) @external @nonreentrant('lock') def apply_new_parameters(): assert msg.sender == Factory(self.factory).admin() # dev: only owner assert block.timestamp >= self.admin_actions_deadline # dev: insufficient time assert self.admin_actions_deadline != 0 # dev: no active action self.admin_actions_deadline = 0 admin_fee: uint256 = self.future_admin_fee if self.admin_fee != admin_fee: self._claim_admin_fees() self.admin_fee = admin_fee mid_fee: uint256 = self.future_mid_fee self.mid_fee = mid_fee out_fee: uint256 = self.future_out_fee self.out_fee = out_fee fee_gamma: uint256 = self.future_fee_gamma self.fee_gamma = fee_gamma allowed_extra_profit: uint256 = self.future_allowed_extra_profit self.allowed_extra_profit = allowed_extra_profit adjustment_step: uint256 = self.future_adjustment_step self.adjustment_step = adjustment_step ma_half_time: uint256 = self.future_ma_half_time self.ma_half_time = ma_half_time log NewParameters(admin_fee, mid_fee, out_fee, fee_gamma, allowed_extra_profit, adjustment_step, ma_half_time) @external def revert_new_parameters(): assert msg.sender == Factory(self.factory).admin() # dev: only owner self.admin_actions_deadline = 0 # View Methods @external @view def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256: assert i != j # dev: same input and output coin assert i < N_COINS # dev: coin index out of range assert j < N_COINS # dev: coin index out of range precisions: uint256[2] = self._get_precisions() price_scale: uint256 = self.price_scale * precisions[1] xp: uint256[N_COINS] = self.balances A_gamma: uint256[2] = self._A_gamma() D: uint256 = self.D if self.future_A_gamma_time > 0: D = self.newton_D(A_gamma[0], A_gamma[1], self.xp()) xp[i] += dx xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION] y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, j) dy: uint256 = xp[j] - y - 1 xp[j] = y if j > 0: dy = dy * PRECISION / price_scale else: dy /= precisions[0] dy -= self._fee(xp) * dy / 10**10 return dy @view @external def calc_token_amount(amounts: uint256[N_COINS]) -> uint256: token_supply: uint256 = CurveToken(self.token).totalSupply() precisions: uint256[2] = self._get_precisions() price_scale: uint256 = self.price_scale * precisions[1] A_gamma: uint256[2] = self._A_gamma() xp: uint256[N_COINS] = self.xp() amountsp: uint256[N_COINS] = [ amounts[0] * precisions[0], amounts[1] * price_scale / PRECISION] D0: uint256 = self.D if self.future_A_gamma_time > 0: D0 = self.newton_D(A_gamma[0], A_gamma[1], xp) xp[0] += amountsp[0] xp[1] += amountsp[1] D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp) d_token: uint256 = token_supply * D / D0 - token_supply d_token -= self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1 return d_token @view @external def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256: return self._calc_withdraw_one_coin(self._A_gamma(), token_amount, i, True, False)[0] @external @view def lp_price() -> uint256: """ Approximate LP token price """ return 2 * self.virtual_price * self.sqrt_int(self.internal_price_oracle()) / 10**18 @view @external def A() -> uint256: return self._A_gamma()[0] @view @external def gamma() -> uint256: return self._A_gamma()[1] @external @view def fee() -> uint256: return self._fee(self.xp()) @external @view def get_virtual_price() -> uint256: return 10**18 * self.get_xcp(self.D) / CurveToken(self.token).totalSupply() @external @view def price_oracle() -> uint256: return self.internal_price_oracle() # Initializer @external def initialize( A: uint256, gamma: uint256, mid_fee: uint256, out_fee: uint256, allowed_extra_profit: uint256, fee_gamma: uint256, adjustment_step: uint256, admin_fee: uint256, ma_half_time: uint256, initial_price: uint256, _token: address, _coins: address[N_COINS], _precisions: uint256, ): assert self.mid_fee == 0 # dev: check that we call it from factory self.factory = msg.sender # Pack A and gamma: # shifted A + gamma A_gamma: uint256 = shift(A, 128) A_gamma = bitwise_or(A_gamma, gamma) self.initial_A_gamma = A_gamma self.future_A_gamma = A_gamma self.mid_fee = mid_fee self.out_fee = out_fee self.allowed_extra_profit = allowed_extra_profit self.fee_gamma = fee_gamma self.adjustment_step = adjustment_step self.admin_fee = admin_fee self.price_scale = initial_price self._price_oracle = initial_price self.last_prices = initial_price self.last_prices_timestamp = block.timestamp self.ma_half_time = ma_half_time self.xcp_profit_a = 10**18 self.token = _token self.coins = _coins self.PRECISIONS = _precisions
[{"name":"TokenExchange","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"uint256","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"uint256","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"AddLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fee","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityOne","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amount","type":"uint256","indexed":false},{"name":"coin_index","type":"uint256","indexed":false},{"name":"coin_amount","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"CommitNewParameters","inputs":[{"name":"deadline","type":"uint256","indexed":true},{"name":"admin_fee","type":"uint256","indexed":false},{"name":"mid_fee","type":"uint256","indexed":false},{"name":"out_fee","type":"uint256","indexed":false},{"name":"fee_gamma","type":"uint256","indexed":false},{"name":"allowed_extra_profit","type":"uint256","indexed":false},{"name":"adjustment_step","type":"uint256","indexed":false},{"name":"ma_half_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"NewParameters","inputs":[{"name":"admin_fee","type":"uint256","indexed":false},{"name":"mid_fee","type":"uint256","indexed":false},{"name":"out_fee","type":"uint256","indexed":false},{"name":"fee_gamma","type":"uint256","indexed":false},{"name":"allowed_extra_profit","type":"uint256","indexed":false},{"name":"adjustment_step","type":"uint256","indexed":false},{"name":"ma_half_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RampAgamma","inputs":[{"name":"initial_A","type":"uint256","indexed":false},{"name":"future_A","type":"uint256","indexed":false},{"name":"initial_gamma","type":"uint256","indexed":false},{"name":"future_gamma","type":"uint256","indexed":false},{"name":"initial_time","type":"uint256","indexed":false},{"name":"future_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"StopRampA","inputs":[{"name":"current_A","type":"uint256","indexed":false},{"name":"current_gamma","type":"uint256","indexed":false},{"name":"time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"ClaimAdminFee","inputs":[{"name":"admin","type":"address","indexed":true},{"name":"tokens","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"stateMutability":"nonpayable","type":"constructor","inputs":[{"name":"_weth","type":"address"}],"outputs":[]},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"function","name":"donate","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"donate","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"donate","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_extended","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"sender","type":"address"},{"name":"receiver","type":"address"},{"name":"cb","type":"bytes32"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"},{"name":"use_eth","type":"bool"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"claim_admin_fees","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"ramp_A_gamma","inputs":[{"name":"future_A","type":"uint256"},{"name":"future_gamma","type":"uint256"},{"name":"future_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"stop_ramp_A_gamma","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"commit_new_parameters","inputs":[{"name":"_new_mid_fee","type":"uint256"},{"name":"_new_out_fee","type":"uint256"},{"name":"_new_admin_fee","type":"uint256"},{"name":"_new_fee_gamma","type":"uint256"},{"name":"_new_allowed_extra_profit","type":"uint256"},{"name":"_new_adjustment_step","type":"uint256"},{"name":"_new_ma_half_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"apply_new_parameters","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"revert_new_parameters","inputs":[],"outputs":[]},{"stateMutability":"view","type":"function","name":"get_dy","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_token_amount","inputs":[{"name":"amounts","type":"uint256[2]"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_withdraw_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"lp_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"price_oracle","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"initialize","inputs":[{"name":"A","type":"uint256"},{"name":"gamma","type":"uint256"},{"name":"mid_fee","type":"uint256"},{"name":"out_fee","type":"uint256"},{"name":"allowed_extra_profit","type":"uint256"},{"name":"fee_gamma","type":"uint256"},{"name":"adjustment_step","type":"uint256"},{"name":"admin_fee","type":"uint256"},{"name":"ma_half_time","type":"uint256"},{"name":"initial_price","type":"uint256"},{"name":"_token","type":"address"},{"name":"_coins","type":"address[2]"},{"name":"_precisions","type":"uint256"}],"outputs":[]},{"stateMutability":"view","type":"function","name":"token","inputs":[],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"coins","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"price_scale","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"last_prices","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"last_prices_timestamp","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_gamma_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_gamma_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"allowed_extra_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_allowed_extra_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_fee_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"adjustment_step","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_adjustment_step","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_half_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_ma_half_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"mid_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"out_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_mid_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_out_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"balances","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"D","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"factory","inputs":[],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"xcp_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"xcp_profit_a","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_actions_deadline","inputs":[],"outputs":[{"name":"","type":"uint256"}]}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.