Overview
S Balance
0 S
S Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0x646F91Ab...6DDf25730 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
Unitroller
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import "./ErrorReporter.sol"; import "./ComptrollerStorage.sol"; /** * @title ComptrollerCore * @dev Storage for the comptroller is at this address, while execution is delegated to the `comptrollerImplementation`. * CTokens should reference this contract as their comptroller. */ contract Unitroller is UnitrollerAdminStorage, ComptrollerErrorReporter { /** * @notice Emitted when pendingComptrollerImplementation is changed */ event NewPendingImplementation(address oldPendingImplementation, address newPendingImplementation); /** * @notice Emitted when pendingComptrollerImplementation is accepted, which means comptroller implementation is updated */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); constructor() public { // Set admin to caller admin = msg.sender; } /** * Admin Functions ** */ function _setPendingImplementation(address newPendingImplementation) public returns (uint256) { if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_IMPLEMENTATION_OWNER_CHECK); } address oldPendingImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = newPendingImplementation; emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint256(Error.NO_ERROR); } /** * @notice Accepts new implementation of comptroller. msg.sender must be pendingImplementation * @dev Admin function for new implementation to accept it's role as implementation * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptImplementation() public returns (uint256) { // Check caller is pendingImplementation and pendingImplementation ≠ address(0) if (msg.sender != pendingComptrollerImplementation || pendingComptrollerImplementation == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK); } // Save current values for inclusion in log address oldImplementation = comptrollerImplementation; address oldPendingImplementation = pendingComptrollerImplementation; comptrollerImplementation = pendingComptrollerImplementation; pendingComptrollerImplementation = address(0); emit NewImplementation(oldImplementation, comptrollerImplementation); emit NewPendingImplementation(oldPendingImplementation, pendingComptrollerImplementation); return uint256(Error.NO_ERROR); } /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address newPendingAdmin) public returns (uint256) { // Check caller = admin if (msg.sender != admin) { return fail(Error.UNAUTHORIZED, FailureInfo.SET_PENDING_ADMIN_OWNER_CHECK); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return uint256(Error.NO_ERROR); } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() public returns (uint256) { // Check caller is pendingAdmin and pendingAdmin ≠ address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { return fail(Error.UNAUTHORIZED, FailureInfo.ACCEPT_ADMIN_PENDING_ADMIN_CHECK); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = address(0); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return uint256(Error.NO_ERROR); } /** * @dev Delegates execution to an implementation contract. * It returns to the external caller whatever the implementation returns * or forwards reverts. */ fallback() external payable { // delegate all other functions to current implementation (bool success,) = comptrollerImplementation.delegatecall(msg.data); assembly { let free_mem_ptr := mload(0x40) returndatacopy(free_mem_ptr, 0, returndatasize()) switch success case 0 { revert(free_mem_ptr, returndatasize()) } default { return(free_mem_ptr, returndatasize()) } } } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; contract ComptrollerErrorReporter { enum Error { NO_ERROR, UNAUTHORIZED, COMPTROLLER_MISMATCH, INSUFFICIENT_SHORTFALL, INSUFFICIENT_LIQUIDITY, INVALID_CLOSE_FACTOR, INVALID_COLLATERAL_FACTOR, INVALID_LIQUIDATION_INCENTIVE, MARKET_NOT_ENTERED, // no longer possible MARKET_NOT_LISTED, MARKET_ALREADY_LISTED, MATH_ERROR, NONZERO_BORROW_BALANCE, PRICE_ERROR, REJECTION, SNAPSHOT_ERROR, TOO_MANY_ASSETS, TOO_MUCH_REPAY } enum FailureInfo { ACCEPT_ADMIN_PENDING_ADMIN_CHECK, ACCEPT_PENDING_IMPLEMENTATION_ADDRESS_CHECK, EXIT_MARKET_BALANCE_OWED, EXIT_MARKET_REJECTION, SET_CLOSE_FACTOR_OWNER_CHECK, SET_CLOSE_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_OWNER_CHECK, SET_COLLATERAL_FACTOR_NO_EXISTS, SET_COLLATERAL_FACTOR_VALIDATION, SET_COLLATERAL_FACTOR_WITHOUT_PRICE, SET_IMPLEMENTATION_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_OWNER_CHECK, SET_LIQUIDATION_INCENTIVE_VALIDATION, SET_MAX_ASSETS_OWNER_CHECK, SET_PENDING_ADMIN_OWNER_CHECK, SET_PENDING_IMPLEMENTATION_OWNER_CHECK, SET_PRICE_ORACLE_OWNER_CHECK, SUPPORT_MARKET_EXISTS, SUPPORT_MARKET_OWNER_CHECK, SET_PAUSE_GUARDIAN_OWNER_CHECK } /** * @dev `error` corresponds to enum Error; `info` corresponds to enum FailureInfo, and `detail` is an arbitrary * contract-specific code that enables us to report opaque error codes from upgradeable contracts. * */ event Failure(uint256 error, uint256 info, uint256 detail); /** * @dev use this when reporting a known error from the money market or a non-upgradeable collaborator */ function fail(Error err, FailureInfo info) internal returns (uint256) { emit Failure(uint256(err), uint256(info), 0); return uint256(err); } /** * @dev use this when reporting an opaque error from an upgradeable collaborator contract */ function failOpaque(Error err, FailureInfo info, uint256 opaqueError) internal returns (uint256) { emit Failure(uint256(err), uint256(info), opaqueError); return uint256(err); } } contract TokenErrorReporter { uint256 public constant NO_ERROR = 0; // support legacy return codes error TransferComptrollerRejection(uint256 errorCode); error TransferNotAllowed(); error TransferNotEnough(); error TransferTooMuch(); error MintComptrollerRejection(uint256 errorCode); error MintFreshnessCheck(); error RedeemComptrollerRejection(uint256 errorCode); error RedeemFreshnessCheck(); error RedeemTransferOutNotPossible(); error BorrowComptrollerRejection(uint256 errorCode); error BorrowFreshnessCheck(); error BorrowCashNotAvailable(); error RepayBorrowComptrollerRejection(uint256 errorCode); error RepayBorrowFreshnessCheck(); error LiquidateComptrollerRejection(uint256 errorCode); error LiquidateFreshnessCheck(); error LiquidateCollateralFreshnessCheck(); error LiquidateAccrueBorrowInterestFailed(uint256 errorCode); error LiquidateAccrueCollateralInterestFailed(uint256 errorCode); error LiquidateLiquidatorIsBorrower(); error LiquidateCloseAmountIsZero(); error LiquidateCloseAmountIsUintMax(); error LiquidateRepayBorrowFreshFailed(uint256 errorCode); error LiquidateSeizeComptrollerRejection(uint256 errorCode); error LiquidateSeizeLiquidatorIsBorrower(); error AcceptAdminPendingAdminCheck(); error SetComptrollerOwnerCheck(); error SetPendingAdminOwnerCheck(); error SetReserveFactorAdminCheck(); error SetReserveFactorFreshCheck(); error SetReserveFactorBoundsCheck(); error AddReservesFactorFreshCheck(uint256 actualAddAmount); error ReduceReservesAdminCheck(); error ReduceReservesFreshCheck(); error ReduceReservesCashNotAvailable(); error ReduceReservesCashValidation(); error SetInterestRateModelOwnerCheck(); error SetInterestRateModelFreshCheck(); error SetProtocolSeizeShareOwnerCheck(); error SetProtocolSeizeShareFreshCheck(); error EnterMarketComptrollerRejection(uint256 errorCode); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import "./CToken.sol"; import "./PriceOracle.sol"; import "./Rewards/IRewardDistributor.sol"; contract UnitrollerAdminStorage { /** * @notice Administrator for this contract */ address public admin; /** * @notice Pending administrator for this contract */ address public pendingAdmin; /** * @notice Active brains of Unitroller */ address public comptrollerImplementation; /** * @notice Pending brains of Unitroller */ address public pendingComptrollerImplementation; } contract ComptrollerV1Storage is UnitrollerAdminStorage { /** * @notice Oracle which gives the price of any given asset */ PriceOracle public oracle; /** * @notice Multiplier used to calculate the maximum repayAmount when liquidating a borrow */ uint256 public closeFactorMantissa; /** * @notice Multiplier representing the discount on collateral that a liquidator receives */ uint256 public liquidationIncentiveMantissa; /** * @notice Max number of assets a single account can participate in (borrow or use as collateral) */ uint256 public maxAssets; /** * @notice Per-account mapping of "assets you are in", capped by maxAssets */ mapping(address => CToken[]) public accountAssets; struct Market { // Whether or not this market is listed bool isListed; // Multiplier representing the most one can borrow against their collateral in this market. // For instance, 0.9 to allow borrowing 90% of collateral value. // Must be between 0 and 1, and stored as a mantissa. uint256 collateralFactorMantissa; // Per-market mapping of "accounts in this asset" mapping(address => bool) accountMembership; } /** * @notice Official mapping of cTokens -> Market metadata * @dev Used e.g. to determine if a market is supported */ mapping(address => Market) public markets; /** * @notice The Pause Guardian can pause certain actions as a safety mechanism. * Actions which allow users to remove their own assets cannot be paused. * Liquidation / seizing / transfer can only be paused globally, not by market. */ address public pauseGuardian; bool public _mintGuardianPaused; bool public _borrowGuardianPaused; bool public transferGuardianPaused; bool public seizeGuardianPaused; mapping(address => bool) public mintGuardianPaused; mapping(address => bool) public borrowGuardianPaused; /// @notice A list of all markets CToken[] public allMarkets; // @notice The borrowCapGuardian can set borrowCaps to any number for any market. Lowering the borrow cap could disable borrowing on the given market. address public borrowCapGuardian; // @notice Borrow caps enforced by borrowAllowed for each cToken address. Defaults to zero which corresponds to unlimited borrowing. mapping(address => uint256) public borrowCaps; } contract ComptrollerV2Storage is ComptrollerV1Storage { // @notice The supplyCapGuardian can set supplyCaps to any number for any market. Lowering the supply cap could disable supplying on the given market. address public supplyCapGuardian; // @notice Supply caps enforced by supplyAllowed for each cToken address. Defaults to zero which corresponds to unlimited supplying. mapping(address => uint256) public supplyCaps; // @notice The reward distributor for the comptroller IRewardDistributor public rewardDistributor; }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import "./ComptrollerInterface.sol"; import "./CTokenInterfaces.sol"; import "./ErrorReporter.sol"; import "./EIP20Interface.sol"; import "./InterestRateModel.sol"; import "./ExponentialNoError.sol"; /** * @title Mach's CToken Contract * @notice Abstract base for CTokens * @author Mach */ abstract contract CToken is CTokenInterface, ExponentialNoError, TokenErrorReporter { /** * @notice Initialize the money market * @param comptroller_ The address of the Comptroller * @param interestRateModel_ The address of the interest rate model * @param initialExchangeRateMantissa_ The initial exchange rate, scaled by 1e18 * @param name_ EIP-20 name of this token * @param symbol_ EIP-20 symbol of this token * @param decimals_ EIP-20 decimal precision of this token */ function initialize( ComptrollerInterface comptroller_, InterestRateModel interestRateModel_, uint256 initialExchangeRateMantissa_, string memory name_, string memory symbol_, uint8 decimals_ ) public { require(msg.sender == admin, "only admin may initialize the market"); require(accrualBlockTimestamp == 0 && borrowIndex == 0, "market may only be initialized once"); // Set initial exchange rate initialExchangeRateMantissa = initialExchangeRateMantissa_; require(initialExchangeRateMantissa > 0, "initial exchange rate must be greater than zero."); // Set the comptroller uint256 err = _setComptroller(comptroller_); require(err == NO_ERROR, "setting comptroller failed"); // Initialize block timestamp and borrow index (block timestamp mocks depend on comptroller being set) accrualBlockTimestamp = getBlockTimestamp(); borrowIndex = mantissaOne; // Set the interest rate model (depends on block timestamp / borrow index) err = _setInterestRateModelFresh(interestRateModel_); require(err == NO_ERROR, "setting interest rate model failed"); name = name_; symbol = symbol_; decimals = decimals_; // The counter starts true to prevent changing it from zero to non-zero (i.e. smaller cost/refund) _notEntered = true; } /** * @notice Transfer `tokens` tokens from `src` to `dst` by `spender` * @dev Called by both `transfer` and `transferFrom` internally * @param spender The address of the account performing the transfer * @param src The address of the source account * @param dst The address of the destination account * @param tokens The number of tokens to transfer * @return 0 if the transfer succeeded, else revert */ function transferTokens(address spender, address src, address dst, uint256 tokens) internal returns (uint256) { /* Fail if transfer not allowed */ uint256 allowed = comptroller.transferAllowed(address(this), src, dst, tokens); if (allowed != 0) { revert TransferComptrollerRejection(allowed); } /* Do not allow self-transfers */ if (src == dst) { revert TransferNotAllowed(); } /* Get the allowance, infinite for the account owner */ uint256 startingAllowance = 0; if (spender == src) { startingAllowance = type(uint256).max; } else { startingAllowance = transferAllowances[src][spender]; } /* Do the calculations, checking for {under,over}flow */ uint256 allowanceNew = startingAllowance - tokens; uint256 srcTokensNew = accountTokens[src] - tokens; uint256 dstTokensNew = accountTokens[dst] + tokens; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) accountTokens[src] = srcTokensNew; accountTokens[dst] = dstTokensNew; /* Eat some of the allowance (if necessary) */ if (startingAllowance != type(uint256).max) { transferAllowances[src][spender] = allowanceNew; } /* We emit a Transfer event */ emit Transfer(src, dst, tokens); // unused function // comptroller.transferVerify(address(this), src, dst, tokens); return NO_ERROR; } /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external override nonReentrant returns (bool) { return transferTokens(msg.sender, msg.sender, dst, amount) == NO_ERROR; } /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external override nonReentrant returns (bool) { return transferTokens(msg.sender, src, dst, amount) == NO_ERROR; } /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (uint256.max means infinite) * @return Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external override returns (bool) { address src = msg.sender; transferAllowances[src][spender] = amount; emit Approval(src, spender, amount); return true; } /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view override returns (uint256) { return transferAllowances[owner][spender]; } /** * @notice Get the token balance of the `owner` * @param owner The address of the account to query * @return The number of tokens owned by `owner` */ function balanceOf(address owner) external view override returns (uint256) { return accountTokens[owner]; } /** * @notice Get the underlying balance of the `owner` * @dev This also accrues interest in a transaction * @param owner The address of the account to query * @return The amount of underlying owned by `owner` */ function balanceOfUnderlying(address owner) external override returns (uint256) { Exp memory exchangeRate = Exp({mantissa: exchangeRateCurrent()}); return mul_ScalarTruncate(exchangeRate, accountTokens[owner]); } /** * @notice Get a snapshot of the account's balances, and the cached exchange rate * @dev This is used by comptroller to more efficiently perform liquidity checks. * @param account Address of the account to snapshot * @return (possible error, token balance, borrow balance, exchange rate mantissa) */ function getAccountSnapshot(address account) external view override returns (uint256, uint256, uint256, uint256) { return (NO_ERROR, accountTokens[account], borrowBalanceStoredInternal(account), exchangeRateStoredInternal()); } /** * @dev Function to simply retrieve block timestamp * This exists mainly for inheriting test contracts to stub this result. */ function getBlockTimestamp() internal view virtual returns (uint256) { return block.timestamp; } /** * @notice Returns the current per-block borrow interest rate for this cToken * @return The borrow interest rate per block, scaled by 1e18 */ function borrowRatePerTimestamp() external view override returns (uint256) { return interestRateModel.getBorrowRate(getCashPrior(), totalBorrows, totalReserves); } /** * @notice Returns the current per-block supply interest rate for this cToken * @return The supply interest rate per block, scaled by 1e18 */ function supplyRatePerTimestamp() external view override returns (uint256) { return interestRateModel.getSupplyRate(getCashPrior(), totalBorrows, totalReserves, reserveFactorMantissa); } /** * @notice Returns the current total borrows plus accrued interest * @return The total borrows with interest */ function totalBorrowsCurrent() external override nonReentrant returns (uint256) { accrueInterest(); return totalBorrows; } /** * @notice Accrue interest to updated borrowIndex and then calculate account's borrow balance using the updated borrowIndex * @param account The address whose balance should be calculated after updating borrowIndex * @return The calculated balance */ function borrowBalanceCurrent(address account) external override nonReentrant returns (uint256) { accrueInterest(); return borrowBalanceStored(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return The calculated balance */ function borrowBalanceStored(address account) public view override returns (uint256) { return borrowBalanceStoredInternal(account); } /** * @notice Return the borrow balance of account based on stored data * @param account The address whose balance should be calculated * @return (error code, the calculated balance or 0 if error code is non-zero) */ function borrowBalanceStoredInternal(address account) internal view returns (uint256) { /* Get borrowBalance and borrowIndex */ BorrowSnapshot storage borrowSnapshot = accountBorrows[account]; /* If borrowBalance = 0 then borrowIndex is likely also 0. * Rather than failing the calculation with a division by 0, we immediately return 0 in this case. */ if (borrowSnapshot.principal == 0) { return 0; } /* Calculate new borrow balance using the interest index: * recentBorrowBalance = borrower.borrowBalance * market.borrowIndex / borrower.borrowIndex */ uint256 principalTimesIndex = borrowSnapshot.principal * borrowIndex; return principalTimesIndex / borrowSnapshot.interestIndex; } /** * @notice Accrue interest then return the up-to-date exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateCurrent() public override nonReentrant returns (uint256) { accrueInterest(); return exchangeRateStored(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return Calculated exchange rate scaled by 1e18 */ function exchangeRateStored() public view override returns (uint256) { return exchangeRateStoredInternal(); } /** * @notice Calculates the exchange rate from the underlying to the CToken * @dev This function does not accrue interest before calculating the exchange rate * @return calculated exchange rate scaled by 1e18 */ function exchangeRateStoredInternal() internal view virtual returns (uint256) { uint256 _totalSupply = totalSupply; if (_totalSupply == 0) { /* * If there are no tokens minted: * exchangeRate = initialExchangeRate */ return initialExchangeRateMantissa; } else { /* * Otherwise: * exchangeRate = (totalCash + totalBorrows - totalReserves) / totalSupply */ uint256 totalCash = getCashPrior(); uint256 cashPlusBorrowsMinusReserves = totalCash + totalBorrows - totalReserves; uint256 exchangeRate = (cashPlusBorrowsMinusReserves * expScale) / _totalSupply; return exchangeRate; } } /** * @notice Get cash balance of this cToken in the underlying asset * @return The quantity of underlying asset owned by this contract */ function getCash() external view override returns (uint256) { return getCashPrior(); } /** * @notice Applies accrued interest to total borrows and reserves * @dev This calculates interest accrued from the last checkpointed block * up to the current block and writes new checkpoint to storage. */ function accrueInterest() public virtual override returns (uint256) { /* Remember the initial block timestamp */ uint256 currentBlockTimestamp = getBlockTimestamp(); uint256 accrualBlockTimestampPrior = accrualBlockTimestamp; /* Short-circuit accumulating 0 interest */ if (accrualBlockTimestampPrior == currentBlockTimestamp) { return NO_ERROR; } /* Read the previous values out of storage */ uint256 cashPrior = getCashPrior(); uint256 borrowsPrior = totalBorrows; uint256 reservesPrior = totalReserves; uint256 borrowIndexPrior = borrowIndex; /* Calculate the current borrow interest rate */ uint256 borrowRateMantissa = interestRateModel.getBorrowRate(cashPrior, borrowsPrior, reservesPrior); require(borrowRateMantissa <= borrowRateMaxMantissa, "borrow rate is absurdly high"); /* Calculate the number of timestamps elapsed since the last accrual */ uint256 timestampDelta = currentBlockTimestamp - accrualBlockTimestampPrior; /* * Calculate the interest accumulated into borrows and reserves and the new index: * simpleInterestFactor = borrowRate * timestampDelta * interestAccumulated = simpleInterestFactor * totalBorrows * totalBorrowsNew = interestAccumulated + totalBorrows * totalReservesNew = interestAccumulated * reserveFactor + totalReserves * borrowIndexNew = simpleInterestFactor * borrowIndex + borrowIndex */ Exp memory simpleInterestFactor = mul_(Exp({mantissa: borrowRateMantissa}), timestampDelta); uint256 interestAccumulated = mul_ScalarTruncate(simpleInterestFactor, borrowsPrior); uint256 totalBorrowsNew = interestAccumulated + borrowsPrior; uint256 totalReservesNew = mul_ScalarTruncateAddUInt(Exp({mantissa: reserveFactorMantissa}), interestAccumulated, reservesPrior); uint256 borrowIndexNew = mul_ScalarTruncateAddUInt(simpleInterestFactor, borrowIndexPrior, borrowIndexPrior); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the previously calculated values into storage */ accrualBlockTimestamp = currentBlockTimestamp; borrowIndex = borrowIndexNew; totalBorrows = totalBorrowsNew; totalReserves = totalReservesNew; /* We emit an AccrueInterest event */ emit AccrueInterest(cashPrior, interestAccumulated, borrowIndexNew, totalBorrowsNew); return NO_ERROR; } /** * @notice Sender supplies assets into the market and receives cTokens in exchange * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param mintAmount The amount of the underlying asset to supply */ function mintInternal(uint256 mintAmount) internal nonReentrant { accrueInterest(); // mintFresh emits the actual Mint event if successful and logs on errors, so we don't need to mintFresh(msg.sender, mintAmount); } /** * @notice User supplies assets into the market and receives cTokens in exchange * @dev Assumes interest has already been accrued up to the current block * @param minter The address of the account which is supplying the assets * @param mintAmount The amount of the underlying asset to supply */ function mintFresh(address minter, uint256 mintAmount) internal { /* Fail if mint not allowed */ uint256 allowed = comptroller.mintAllowed(address(this), minter, mintAmount); if (allowed != 0) { revert MintComptrollerRejection(allowed); } /* Verify market's block timestamp equals current block timestamp */ if (accrualBlockTimestamp != getBlockTimestamp()) { revert MintFreshnessCheck(); } Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call `doTransferIn` for the minter and the mintAmount. * Note: The cToken must handle variations between ERC-20 and SONIC underlying. * `doTransferIn` reverts if anything goes wrong, since we can't be sure if * side-effects occurred. The function returns the amount actually transferred, * in case of a fee. On success, the cToken holds an additional `actualMintAmount` * of cash. */ uint256 actualMintAmount = doTransferIn(minter, mintAmount); /* * We get the current exchange rate and calculate the number of cTokens to be minted: * mintTokens = actualMintAmount / exchangeRate */ uint256 mintTokens = div_(actualMintAmount, exchangeRate); /* * We calculate the new total supply of cTokens and minter token balance, checking for overflow: * totalSupplyNew = totalSupply + mintTokens * accountTokensNew = accountTokens[minter] + mintTokens * And write them into storage */ totalSupply = totalSupply + mintTokens; accountTokens[minter] = accountTokens[minter] + mintTokens; /* We emit a Mint event, and a Transfer event */ emit Mint(minter, actualMintAmount, mintTokens); emit Transfer(address(this), minter, mintTokens); /* We call the defense hook */ // unused function // comptroller.mintVerify(address(this), minter, actualMintAmount, mintTokens); } /** * @notice Sender redeems cTokens in exchange for the underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemTokens The number of cTokens to redeem into underlying */ function redeemInternal(uint256 redeemTokens) internal nonReentrant { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to redeemFresh(payable(msg.sender), redeemTokens, 0); } /** * @notice Sender redeems cTokens in exchange for a specified amount of underlying asset * @dev Accrues interest whether or not the operation succeeds, unless reverted * @param redeemAmount The amount of underlying to receive from redeeming cTokens */ function redeemUnderlyingInternal(uint256 redeemAmount) internal nonReentrant { accrueInterest(); // redeemFresh emits redeem-specific logs on errors, so we don't need to redeemFresh(payable(msg.sender), 0, redeemAmount); } /** * @notice User redeems cTokens in exchange for the underlying asset * @dev Assumes interest has already been accrued up to the current block * @param redeemer The address of the account which is redeeming the tokens * @param redeemTokensIn The number of cTokens to redeem into underlying (only one of redeemTokensIn or redeemAmountIn may be non-zero) * @param redeemAmountIn The number of underlying tokens to receive from redeeming cTokens (only one of redeemTokensIn or redeemAmountIn may be non-zero) */ function redeemFresh(address payable redeemer, uint256 redeemTokensIn, uint256 redeemAmountIn) internal { require(redeemTokensIn == 0 || redeemAmountIn == 0, "one of redeemTokensIn or redeemAmountIn must be zero"); /* exchangeRate = invoke Exchange Rate Stored() */ Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); uint256 redeemTokens; uint256 redeemAmount; /* If redeemTokensIn > 0: */ if (redeemTokensIn > 0) { /* * We calculate the exchange rate and the amount of underlying to be redeemed: * redeemTokens = redeemTokensIn * redeemAmount = redeemTokensIn x exchangeRateCurrent */ redeemTokens = redeemTokensIn; redeemAmount = mul_ScalarTruncate(exchangeRate, redeemTokensIn); } else { /* * We get the current exchange rate and calculate the amount to be redeemed: * redeemTokens = redeemAmountIn / exchangeRate * redeemAmount = redeemAmountIn */ redeemTokens = div_(redeemAmountIn, exchangeRate); redeemAmount = redeemAmountIn; } /* Fail if redeem not allowed */ uint256 allowed = comptroller.redeemAllowed(address(this), redeemer, redeemTokens); if (allowed != 0) { revert RedeemComptrollerRejection(allowed); } /* Verify market's block timestamp equals current block timestamp */ if (accrualBlockTimestamp != getBlockTimestamp()) { revert RedeemFreshnessCheck(); } /* Fail gracefully if protocol has insufficient cash */ if (getCashPrior() < redeemAmount) { revert RedeemTransferOutNotPossible(); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We write the previously calculated values into storage. * Note: Avoid token reentrancy attacks by writing reduced supply before external transfer. */ totalSupply = totalSupply - redeemTokens; accountTokens[redeemer] = accountTokens[redeemer] - redeemTokens; /* * We invoke doTransferOut for the redeemer and the redeemAmount. * Note: The cToken must handle variations between ERC-20 and SONIC underlying. * On success, the cToken has redeemAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(redeemer, redeemAmount); /* We emit a Transfer event, and a Redeem event */ emit Transfer(redeemer, address(this), redeemTokens); emit Redeem(redeemer, redeemAmount, redeemTokens); /* We call the defense hook */ comptroller.redeemVerify(address(this), redeemer, redeemAmount, redeemTokens); } /** * @notice Sender borrows assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow */ function borrowInternal(uint256 borrowAmount) internal nonReentrant { accrueInterest(); // borrowFresh emits borrow-specific logs on errors, so we don't need to borrowFresh(payable(msg.sender), borrowAmount); } /** * @notice Users borrow assets from the protocol to their own address * @param borrowAmount The amount of the underlying asset to borrow */ function borrowFresh(address payable borrower, uint256 borrowAmount) internal { /* Fail if borrow not allowed */ uint256 allowed = comptroller.borrowAllowed(address(this), borrower, borrowAmount); if (allowed != 0) { revert BorrowComptrollerRejection(allowed); } /* Verify market's block timestamp equals current block timestamp */ if (accrualBlockTimestamp != getBlockTimestamp()) { revert BorrowFreshnessCheck(); } /* Fail gracefully if protocol has insufficient underlying cash */ if (getCashPrior() < borrowAmount) { revert BorrowCashNotAvailable(); } /* * We calculate the new borrower and total borrow balances, failing on overflow: * accountBorrowNew = accountBorrow + borrowAmount * totalBorrowsNew = totalBorrows + borrowAmount */ uint256 accountBorrowsPrev = borrowBalanceStoredInternal(borrower); uint256 accountBorrowsNew = accountBorrowsPrev + borrowAmount; uint256 totalBorrowsNew = totalBorrows + borrowAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We write the previously calculated values into storage. * Note: Avoid token reentrancy attacks by writing increased borrow before external transfer. `*/ accountBorrows[borrower].principal = accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = totalBorrowsNew; /* * We invoke doTransferOut for the borrower and the borrowAmount. * Note: The cToken must handle variations between ERC-20 and SONIC underlying. * On success, the cToken borrowAmount less of cash. * doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. */ doTransferOut(borrower, borrowAmount); /* We emit a Borrow event */ emit Borrow(borrower, borrowAmount, accountBorrowsNew, totalBorrowsNew); } /** * @notice Sender repays their own borrow * @param repayAmount The amount to repay, or -1 for the full outstanding amount */ function repayBorrowInternal(uint256 repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowFresh(msg.sender, msg.sender, repayAmount); } /** * @notice Sender repays a borrow belonging to borrower * @param borrower the account with the debt being payed off * @param repayAmount The amount to repay, or -1 for the full outstanding amount */ function repayBorrowBehalfInternal(address borrower, uint256 repayAmount) internal nonReentrant { accrueInterest(); // repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to repayBorrowFresh(msg.sender, borrower, repayAmount); } /** * @notice Borrows are repaid by another user (possibly the borrower). * @param payer the account paying off the borrow * @param borrower the account with the debt being payed off * @param repayAmount the amount of underlying tokens being returned, or -1 for the full outstanding amount * @return (uint) the actual repayment amount. */ function repayBorrowFresh(address payer, address borrower, uint256 repayAmount) internal returns (uint256) { /* Fail if repayBorrow not allowed */ uint256 allowed = comptroller.repayBorrowAllowed(address(this), payer, borrower, repayAmount); if (allowed != 0) { revert RepayBorrowComptrollerRejection(allowed); } /* Verify market's block timestamp equals current block timestamp */ if (accrualBlockTimestamp != getBlockTimestamp()) { revert RepayBorrowFreshnessCheck(); } /* We fetch the amount the borrower owes, with accumulated interest */ uint256 accountBorrowsPrev = borrowBalanceStoredInternal(borrower); /* If repayAmount == -1, repayAmount = accountBorrows */ uint256 repayAmountFinal = repayAmount == type(uint256).max ? accountBorrowsPrev : repayAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the payer and the repayAmount * Note: The cToken must handle variations between ERC-20 and SONIC underlying. * On success, the cToken holds an additional repayAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ uint256 actualRepayAmount = doTransferIn(payer, repayAmountFinal); /* * We calculate the new borrower and total borrow balances, failing on underflow: * accountBorrowsNew = accountBorrows - actualRepayAmount * totalBorrowsNew = totalBorrows - actualRepayAmount */ uint256 accountBorrowsNew = accountBorrowsPrev - actualRepayAmount; uint256 totalBorrowsNew = totalBorrows - actualRepayAmount; /* We write the previously calculated values into storage */ accountBorrows[borrower].principal = accountBorrowsNew; accountBorrows[borrower].interestIndex = borrowIndex; totalBorrows = totalBorrowsNew; /* We emit a RepayBorrow event */ emit RepayBorrow(payer, borrower, actualRepayAmount, accountBorrowsNew, totalBorrowsNew); return actualRepayAmount; } /** * @notice The sender liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay */ function liquidateBorrowInternal(address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral) internal nonReentrant { accrueInterest(); uint256 error = cTokenCollateral.accrueInterest(); if (error != NO_ERROR) { // accrueInterest emits logs on errors, but we still want to log the fact that an attempted liquidation failed revert LiquidateAccrueCollateralInterestFailed(error); } // liquidateBorrowFresh emits borrow-specific logs on errors, so we don't need to liquidateBorrowFresh(msg.sender, borrower, repayAmount, cTokenCollateral); } /** * @notice The liquidator liquidates the borrowers collateral. * The collateral seized is transferred to the liquidator. * @param borrower The borrower of this cToken to be liquidated * @param liquidator The address repaying the borrow and seizing collateral * @param cTokenCollateral The market in which to seize collateral from the borrower * @param repayAmount The amount of the underlying borrowed asset to repay */ function liquidateBorrowFresh( address liquidator, address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral ) internal { /* Fail if liquidate not allowed */ uint256 allowed = comptroller.liquidateBorrowAllowed( address(this), address(cTokenCollateral), liquidator, borrower, repayAmount ); if (allowed != 0) { revert LiquidateComptrollerRejection(allowed); } /* Verify market's block timestamp equals current block timestamp */ if (accrualBlockTimestamp != getBlockTimestamp()) { revert LiquidateFreshnessCheck(); } /* Verify cTokenCollateral market's block timestamp equals current block timestamp */ if (cTokenCollateral.accrualBlockTimestamp() != getBlockTimestamp()) { revert LiquidateCollateralFreshnessCheck(); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { revert LiquidateLiquidatorIsBorrower(); } /* Fail if repayAmount = 0 */ if (repayAmount == 0) { revert LiquidateCloseAmountIsZero(); } /* Fail if repayAmount = -1 */ if (repayAmount == type(uint256).max) { revert LiquidateCloseAmountIsUintMax(); } /* Fail if repayBorrow fails */ uint256 actualRepayAmount = repayBorrowFresh(liquidator, borrower, repayAmount); ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We calculate the number of collateral tokens that will be seized */ (uint256 amountSeizeError, uint256 seizeTokens) = comptroller.liquidateCalculateSeizeTokens(address(this), address(cTokenCollateral), actualRepayAmount); require(amountSeizeError == NO_ERROR, "LIQUIDATE_COMPTROLLER_CALCULATE_AMOUNT_SEIZE_FAILED"); /* Revert if borrower collateral token balance < seizeTokens */ require(cTokenCollateral.balanceOf(borrower) >= seizeTokens, "LIQUIDATE_SEIZE_TOO_MUCH"); // If this is also the collateral, run seizeInternal to avoid re-entrancy, otherwise make an external call if (address(cTokenCollateral) == address(this)) { seizeInternal(address(this), liquidator, borrower, seizeTokens); } else { require(cTokenCollateral.seize(liquidator, borrower, seizeTokens) == NO_ERROR, "token seizure failed"); } /* We emit a LiquidateBorrow event */ emit LiquidateBorrow(liquidator, borrower, actualRepayAmount, address(cTokenCollateral), seizeTokens); } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Will fail unless called by another cToken during the process of liquidation. * Its absolutely critical to use msg.sender as the borrowed cToken and not a parameter. * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function seize(address liquidator, address borrower, uint256 seizeTokens) external override nonReentrant returns (uint256) { seizeInternal(msg.sender, liquidator, borrower, seizeTokens); return NO_ERROR; } /** * @notice Transfers collateral tokens (this market) to the liquidator. * @dev Called only during an in-kind liquidation, or by liquidateBorrow during the liquidation of another CToken. * Its absolutely critical to use msg.sender as the seizer cToken and not a parameter. * @param seizerToken The contract seizing the collateral (i.e. borrowed cToken) * @param liquidator The account receiving seized collateral * @param borrower The account having collateral seized * @param seizeTokens The number of cTokens to seize */ function seizeInternal(address seizerToken, address liquidator, address borrower, uint256 seizeTokens) internal { /* Fail if seize not allowed */ uint256 allowed = comptroller.seizeAllowed(address(this), seizerToken, liquidator, borrower, seizeTokens); if (allowed != 0) { revert LiquidateSeizeComptrollerRejection(allowed); } /* Fail if borrower = liquidator */ if (borrower == liquidator) { revert LiquidateSeizeLiquidatorIsBorrower(); } /* * We calculate the new borrower and liquidator token balances, failing on underflow/overflow: * borrowerTokensNew = accountTokens[borrower] - seizeTokens * liquidatorTokensNew = accountTokens[liquidator] + seizeTokens */ uint256 protocolSeizeTokens = mul_(seizeTokens, Exp({mantissa: protocolSeizeShareMantissa})); uint256 liquidatorSeizeTokens = seizeTokens - protocolSeizeTokens; Exp memory exchangeRate = Exp({mantissa: exchangeRateStoredInternal()}); uint256 protocolSeizeAmount = mul_ScalarTruncate(exchangeRate, protocolSeizeTokens); uint256 totalReservesNew = totalReserves + protocolSeizeAmount; ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* We write the calculated values into storage */ totalReserves = totalReservesNew; totalSupply = totalSupply - protocolSeizeTokens; accountTokens[borrower] = accountTokens[borrower] - seizeTokens; accountTokens[liquidator] = accountTokens[liquidator] + liquidatorSeizeTokens; /* Emit a Transfer event */ emit Transfer(borrower, liquidator, liquidatorSeizeTokens); emit Transfer(borrower, address(this), protocolSeizeTokens); emit ReservesAdded(address(this), protocolSeizeAmount, totalReservesNew); } /** * Admin Functions ** */ /** * @notice Begins transfer of admin rights. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @dev Admin function to begin change of admin. The newPendingAdmin must call `_acceptAdmin` to finalize the transfer. * @param newPendingAdmin New pending admin. * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setPendingAdmin(address payable newPendingAdmin) external override returns (uint256) { // Check caller = admin if (msg.sender != admin) { revert SetPendingAdminOwnerCheck(); } // Save current value, if any, for inclusion in log address oldPendingAdmin = pendingAdmin; // Store pendingAdmin with value newPendingAdmin pendingAdmin = newPendingAdmin; // Emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin) emit NewPendingAdmin(oldPendingAdmin, newPendingAdmin); return NO_ERROR; } /** * @notice Accepts transfer of admin rights. msg.sender must be pendingAdmin * @dev Admin function for pending admin to accept role and update admin * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _acceptAdmin() external override returns (uint256) { // Check caller is pendingAdmin and pendingAdmin ≠ address(0) if (msg.sender != pendingAdmin || msg.sender == address(0)) { revert AcceptAdminPendingAdminCheck(); } // Save current values for inclusion in log address oldAdmin = admin; address oldPendingAdmin = pendingAdmin; // Store admin with value pendingAdmin admin = pendingAdmin; // Clear the pending value pendingAdmin = payable(address(0)); emit NewAdmin(oldAdmin, admin); emit NewPendingAdmin(oldPendingAdmin, pendingAdmin); return NO_ERROR; } /** * @notice Sets a new comptroller for the market * @dev Admin function to set a new comptroller * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setComptroller(ComptrollerInterface newComptroller) public override returns (uint256) { // Check caller is admin if (msg.sender != admin) { revert SetComptrollerOwnerCheck(); } ComptrollerInterface oldComptroller = comptroller; // Ensure invoke comptroller.isComptroller() returns true require(newComptroller.isComptroller(), "marker method returned false"); // Set market's comptroller to newComptroller comptroller = newComptroller; // Emit NewComptroller(oldComptroller, newComptroller) emit NewComptroller(oldComptroller, newComptroller); return NO_ERROR; } /** * @notice accrues interest and sets a new reserve factor for the protocol using _setReserveFactorFresh * @dev Admin function to accrue interest and set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactor(uint256 newReserveFactorMantissa) external override nonReentrant returns (uint256) { accrueInterest(); // _setReserveFactorFresh emits reserve-factor-specific logs on errors, so we don't need to. return _setReserveFactorFresh(newReserveFactorMantissa); } /** * @notice Sets a new reserve factor for the protocol (*requires fresh interest accrual) * @dev Admin function to set a new reserve factor * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setReserveFactorFresh(uint256 newReserveFactorMantissa) internal returns (uint256) { // Check caller is admin if (msg.sender != admin) { revert SetReserveFactorAdminCheck(); } // Verify market's block timestamp equals current block timestamp if (accrualBlockTimestamp != getBlockTimestamp()) { revert SetReserveFactorFreshCheck(); } // Check newReserveFactor ≤ maxReserveFactor if (newReserveFactorMantissa > reserveFactorMaxMantissa) { revert SetReserveFactorBoundsCheck(); } uint256 oldReserveFactorMantissa = reserveFactorMantissa; reserveFactorMantissa = newReserveFactorMantissa; emit NewReserveFactor(oldReserveFactorMantissa, newReserveFactorMantissa); return NO_ERROR; } /** * @notice Accrues interest and reduces reserves by transferring from msg.sender * @param addAmount Amount of addition to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _addReservesInternal(uint256 addAmount) internal nonReentrant returns (uint256) { accrueInterest(); // _addReservesFresh emits reserve-addition-specific logs on errors, so we don't need to. _addReservesFresh(addAmount); return NO_ERROR; } /** * @notice Add reserves by transferring from caller * @dev Requires fresh interest accrual * @param addAmount Amount of addition to reserves * @return (uint, uint) An error code (0=success, otherwise a failure (see ErrorReporter.sol for details)) and the actual amount added, net token fees */ function _addReservesFresh(uint256 addAmount) internal returns (uint256, uint256) { // totalReserves + actualAddAmount uint256 totalReservesNew; uint256 actualAddAmount; // We fail gracefully unless market's block timestamp equals current block timestamp if (accrualBlockTimestamp != getBlockTimestamp()) { revert AddReservesFactorFreshCheck(actualAddAmount); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) /* * We call doTransferIn for the caller and the addAmount * Note: The cToken must handle variations between ERC-20 and SONIC underlying. * On success, the cToken holds an additional addAmount of cash. * doTransferIn reverts if anything goes wrong, since we can't be sure if side effects occurred. * it returns the amount actually transferred, in case of a fee. */ actualAddAmount = doTransferIn(msg.sender, addAmount); totalReservesNew = totalReserves + actualAddAmount; // Store reserves[n+1] = reserves[n] + actualAddAmount totalReserves = totalReservesNew; /* Emit NewReserves(admin, actualAddAmount, reserves[n+1]) */ emit ReservesAdded(msg.sender, actualAddAmount, totalReservesNew); /* Return (NO_ERROR, actualAddAmount) */ return (NO_ERROR, actualAddAmount); } /** * @notice Accrues interest and reduces reserves by transferring to admin * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReserves(uint256 reduceAmount) external override nonReentrant returns (uint256) { accrueInterest(); // _reduceReservesFresh emits reserve-reduction-specific logs on errors, so we don't need to. return _reduceReservesFresh(reduceAmount); } /** * @notice Reduces reserves by transferring to admin * @dev Requires fresh interest accrual * @param reduceAmount Amount of reduction to reserves * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _reduceReservesFresh(uint256 reduceAmount) internal returns (uint256) { // totalReserves - reduceAmount uint256 totalReservesNew; // Check caller is admin if (msg.sender != admin) { revert ReduceReservesAdminCheck(); } // We fail gracefully unless market's block timestamp equals current block timestamp if (accrualBlockTimestamp != getBlockTimestamp()) { revert ReduceReservesFreshCheck(); } // Fail gracefully if protocol has insufficient underlying cash if (getCashPrior() < reduceAmount) { revert ReduceReservesCashNotAvailable(); } // Check reduceAmount ≤ reserves[n] (totalReserves) if (reduceAmount > totalReserves) { revert ReduceReservesCashValidation(); } ///////////////////////// // EFFECTS & INTERACTIONS // (No safe failures beyond this point) totalReservesNew = totalReserves - reduceAmount; // Store reserves[n+1] = reserves[n] - reduceAmount totalReserves = totalReservesNew; // doTransferOut reverts if anything goes wrong, since we can't be sure if side effects occurred. doTransferOut(admin, reduceAmount); emit ReservesReduced(admin, reduceAmount, totalReservesNew); return NO_ERROR; } /** * @notice accrues interest and updates the interest rate model using _setInterestRateModelFresh * @dev Admin function to accrue interest and update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModel(InterestRateModel newInterestRateModel) public override returns (uint256) { accrueInterest(); // _setInterestRateModelFresh emits interest-rate-model-update-specific logs on errors, so we don't need to. return _setInterestRateModelFresh(newInterestRateModel); } /** * @notice updates the interest rate model (*requires fresh interest accrual) * @dev Admin function to update the interest rate model * @param newInterestRateModel the new interest rate model to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setInterestRateModelFresh(InterestRateModel newInterestRateModel) internal returns (uint256) { // Used to store old model for use in the event that is emitted on success InterestRateModel oldInterestRateModel; // Check caller is admin if (msg.sender != admin) { revert SetInterestRateModelOwnerCheck(); } // We fail gracefully unless market's block timestamp equals current block timestamp if (accrualBlockTimestamp != getBlockTimestamp()) { revert SetInterestRateModelFreshCheck(); } // Track the market's current interest rate model oldInterestRateModel = interestRateModel; // Ensure invoke newInterestRateModel.isInterestRateModel() returns true require(newInterestRateModel.isInterestRateModel(), "marker method returned false"); // Set the interest rate model to newInterestRateModel interestRateModel = newInterestRateModel; // Emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel) emit NewMarketInterestRateModel(oldInterestRateModel, newInterestRateModel); return NO_ERROR; } /** * @notice accrues interest and updates the protocol seize share using _setProtocolSeizeShareFresh * @dev Admin function to accrue interest and update the protocol seize share * @param newProtocolSeizeShareMantissa the new protocol seize share to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setProtocolSeizeShare(uint256 newProtocolSeizeShareMantissa) external override nonReentrant returns (uint256) { accrueInterest(); // _setProtocolSeizeShareFresh emits protocol-seize-share-update-specific logs on errors, so we don't need to. return _setProtocolSeizeShareFresh(newProtocolSeizeShareMantissa); } /** * @notice updates the protocol seize share (*requires fresh interest accrual) * @dev Admin function to update the protocol seize share * @param newProtocolSeizeShareMantissa the new protocol seize share to use * @return uint 0=success, otherwise a failure (see ErrorReporter.sol for details) */ function _setProtocolSeizeShareFresh(uint256 newProtocolSeizeShareMantissa) internal returns (uint256) { // Used to store old share for use in the event that is emitted on success uint256 oldProtocolSeizeShareMantissa; // Check caller is admin if (msg.sender != admin) { revert SetProtocolSeizeShareOwnerCheck(); } // We fail gracefully unless market's block timestamp equals current block timestamp if (accrualBlockTimestamp != getBlockTimestamp()) { revert SetProtocolSeizeShareFreshCheck(); } // Track the market's current protocol seize share oldProtocolSeizeShareMantissa = protocolSeizeShareMantissa; // Set the protocol seize share to newProtocolSeizeShareMantissa protocolSeizeShareMantissa = newProtocolSeizeShareMantissa; // Emit NewProtocolSeizeShareMantissa(oldProtocolSeizeShareMantissa, newProtocolSeizeShareMantissa) emit NewProtocolSeizeShare(oldProtocolSeizeShareMantissa, newProtocolSeizeShareMantissa); return NO_ERROR; } /** * Safe Token ** */ /** * @notice Gets balance of this contract in terms of the underlying * @dev This excludes the value of the current message, if any * @return The quantity of underlying owned by this contract */ function getCashPrior() internal view virtual returns (uint256); /** * @dev Performs a transfer in, reverting upon failure. Returns the amount actually transferred to the protocol, in case of a fee. * This may revert due to insufficient balance or insufficient allowance. */ function doTransferIn(address from, uint256 amount) internal virtual returns (uint256); /** * @dev Performs a transfer out, ideally returning an explanatory error code upon failure rather than reverting. * If caller has not called checked protocol's balance, may revert due to insufficient cash held in the contract. * If caller has checked protocol's balance, and verified it is >= amount, this should not revert in normal conditions. */ function doTransferOut(address payable to, uint256 amount) internal virtual; /** * Reentrancy Guard ** */ /** * @dev Prevents a contract from calling itself, directly or indirectly. */ modifier nonReentrant() { require(_notEntered, "re-entered"); _notEntered = false; _; _notEntered = true; // get a gas-refund post-Istanbul } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import "./CToken.sol"; abstract contract PriceOracle { /// @notice Indicator that this is a PriceOracle contract (for inspection) bool public constant isPriceOracle = true; /** * @notice Get the underlying price of a cToken asset * @param cToken The cToken to get the underlying price of * @return The underlying asset price mantissa (scaled by 1e18). * Zero means the price is unavailable. */ function getUnderlyingPrice(CToken cToken) external view virtual returns (uint256); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import {CToken} from "../CToken.sol"; interface IRewardDistributor { /** * Comptroller calls these functions to update the index and disburse rewards */ function updateSupplyIndexAndDisburseSupplierRewards(CToken _cToken, address _supplier) external; function updateBorrowIndexAndDisburseBorrowerRewards(CToken _cToken, address _borrower) external; function disburseSupplierRewards(CToken _cToken, address _supplier) external; function disburseBorrowerRewards(CToken _cToken, address _borrower) external; function updateBorrowIndex(CToken _cToken) external; function updateSupplyIndex(CToken _cToken) external; }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; abstract contract ComptrollerInterface { /// @notice Indicator that this is a Comptroller contract (for inspection) bool public constant isComptroller = true; /** * Assets You Are In ** */ function enterMarkets(address[] calldata cTokens) external virtual returns (uint256[] memory); function exitMarket(address cToken) external virtual returns (uint256); function checkMembership(address account, address cToken) external view virtual returns (bool); function enterMarketForCToken(address cToken, address account) external virtual returns (uint256); /** * Policy Hooks ** */ function mintAllowed(address cToken, address minter, uint256 mintAmount) external virtual returns (uint256); function mintVerify(address cToken, address minter, uint256 mintAmount, uint256 mintTokens) external virtual; function redeemAllowed(address cToken, address redeemer, uint256 redeemTokens) external virtual returns (uint256); function redeemVerify(address cToken, address redeemer, uint256 redeemAmount, uint256 redeemTokens) external virtual; function borrowAllowed(address cToken, address borrower, uint256 borrowAmount) external virtual returns (uint256); function borrowVerify(address cToken, address borrower, uint256 borrowAmount) external virtual; function repayBorrowAllowed(address cToken, address payer, address borrower, uint256 repayAmount) external virtual returns (uint256); function repayBorrowVerify( address cToken, address payer, address borrower, uint256 repayAmount, uint256 borrowerIndex ) external virtual; function liquidateBorrowAllowed( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint256 repayAmount ) external virtual returns (uint256); function liquidateBorrowVerify( address cTokenBorrowed, address cTokenCollateral, address liquidator, address borrower, uint256 repayAmount, uint256 seizeTokens ) external virtual; function seizeAllowed( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint256 seizeTokens ) external virtual returns (uint256); function seizeVerify( address cTokenCollateral, address cTokenBorrowed, address liquidator, address borrower, uint256 seizeTokens ) external virtual; function transferAllowed(address cToken, address src, address dst, uint256 transferTokens) external virtual returns (uint256); function transferVerify(address cToken, address src, address dst, uint256 transferTokens) external virtual; /** * Liquidity/Liquidation Calculations ** */ function liquidateCalculateSeizeTokens(address cTokenBorrowed, address cTokenCollateral, uint256 repayAmount) external view virtual returns (uint256, uint256); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; import "./ComptrollerInterface.sol"; import "./InterestRateModel.sol"; import "./EIP20NonStandardInterface.sol"; import "./ErrorReporter.sol"; contract CTokenStorage { /** * @dev Guard variable for re-entrancy checks */ bool internal _notEntered; /** * @notice EIP-20 token name for this token */ string public name; /** * @notice EIP-20 token symbol for this token */ string public symbol; /** * @notice EIP-20 token decimals for this token */ uint8 public decimals; // Maximum borrow rate that can ever be applied (.0001% / timestamp) // Estimation of maximum borrow rate = 0.0001% * ((365 * 24 * 3600) / 1 second) = 3153% // The original interest from Compound v2 is 0.0005% * ((365 * 24 * 3600) / 15 seconds) = 1051% uint256 internal constant borrowRateMaxMantissa = 0.0001e16; // Maximum fraction of interest that can be set aside for reserves uint256 internal constant reserveFactorMaxMantissa = 1e18; /** * @notice Administrator for this contract */ address payable public admin; /** * @notice Pending administrator for this contract */ address payable public pendingAdmin; /** * @notice Contract which oversees inter-cToken operations */ ComptrollerInterface public comptroller; /** * @notice Model which tells what the current interest rate should be */ InterestRateModel public interestRateModel; // Initial exchange rate used when minting the first CTokens (used when totalSupply = 0) uint256 internal initialExchangeRateMantissa; /** * @notice Fraction of interest currently set aside for reserves */ uint256 public reserveFactorMantissa; /** * @notice Block timestamp that interest was last accrued at */ uint256 public accrualBlockTimestamp; /** * @notice Accumulator of the total earned interest rate since the opening of the market */ uint256 public borrowIndex; /** * @notice Total amount of outstanding borrows of the underlying in this market */ uint256 public totalBorrows; /** * @notice Total amount of reserves of the underlying held in this market */ uint256 public totalReserves; /** * @notice Total number of tokens in circulation */ uint256 public totalSupply; // Official record of token balances for each account mapping(address => uint256) internal accountTokens; // Approved token transfer amounts on behalf of others mapping(address => mapping(address => uint256)) internal transferAllowances; /** * @notice Container for borrow balance information * @member principal Total balance (with accrued interest), after applying the most recent balance-changing action * @member interestIndex Global borrowIndex as of the most recent balance-changing action */ struct BorrowSnapshot { uint256 principal; uint256 interestIndex; } // Mapping of account addresses to outstanding borrow balances mapping(address => BorrowSnapshot) internal accountBorrows; /** * @notice Share of seized collateral that is added to reserves */ uint256 public protocolSeizeShareMantissa; } abstract contract CTokenInterface is CTokenStorage { /** * @notice Indicator that this is a CToken contract (for inspection) */ bool public constant isCToken = true; /** * Market Events ** */ /** * @notice Event emitted when interest is accrued */ event AccrueInterest(uint256 cashPrior, uint256 interestAccumulated, uint256 borrowIndex, uint256 totalBorrows); /** * @notice Event emitted when tokens are minted */ event Mint(address minter, uint256 mintAmount, uint256 mintTokens); /** * @notice Event emitted when tokens are redeemed */ event Redeem(address redeemer, uint256 redeemAmount, uint256 redeemTokens); /** * @notice Event emitted when underlying is borrowed */ event Borrow(address borrower, uint256 borrowAmount, uint256 accountBorrows, uint256 totalBorrows); /** * @notice Event emitted when a borrow is repaid */ event RepayBorrow( address payer, address borrower, uint256 repayAmount, uint256 accountBorrows, uint256 totalBorrows ); /** * @notice Event emitted when a borrow is liquidated */ event LiquidateBorrow( address liquidator, address borrower, uint256 repayAmount, address cTokenCollateral, uint256 seizeTokens ); /** * Admin Events ** */ /** * @notice Event emitted when pendingAdmin is changed */ event NewPendingAdmin(address oldPendingAdmin, address newPendingAdmin); /** * @notice Event emitted when pendingAdmin is accepted, which means admin is updated */ event NewAdmin(address oldAdmin, address newAdmin); /** * @notice Event emitted when comptroller is changed */ event NewComptroller(ComptrollerInterface oldComptroller, ComptrollerInterface newComptroller); /** * @notice Event emitted when interestRateModel is changed */ event NewMarketInterestRateModel(InterestRateModel oldInterestRateModel, InterestRateModel newInterestRateModel); /** * @notice Event emitted when the reserve factor is changed */ event NewReserveFactor(uint256 oldReserveFactorMantissa, uint256 newReserveFactorMantissa); /** * @notice Event emitted when the protocol seize share is changed */ event NewProtocolSeizeShare(uint256 oldProtocolSeizeShareMantissa, uint256 newProtocolSeizeShareMantissa); /** * @notice Event emitted when the reserves are added */ event ReservesAdded(address benefactor, uint256 addAmount, uint256 newTotalReserves); /** * @notice Event emitted when the reserves are reduced */ event ReservesReduced(address admin, uint256 reduceAmount, uint256 newTotalReserves); /** * @notice EIP20 Transfer event */ event Transfer(address indexed from, address indexed to, uint256 amount); /** * @notice EIP20 Approval event */ event Approval(address indexed owner, address indexed spender, uint256 amount); /** * User Interface ** */ function transfer(address dst, uint256 amount) external virtual returns (bool); function transferFrom(address src, address dst, uint256 amount) external virtual returns (bool); function approve(address spender, uint256 amount) external virtual returns (bool); function allowance(address owner, address spender) external view virtual returns (uint256); function balanceOf(address owner) external view virtual returns (uint256); function balanceOfUnderlying(address owner) external virtual returns (uint256); function getAccountSnapshot(address account) external view virtual returns (uint256, uint256, uint256, uint256); function borrowRatePerTimestamp() external view virtual returns (uint256); function supplyRatePerTimestamp() external view virtual returns (uint256); function totalBorrowsCurrent() external virtual returns (uint256); function borrowBalanceCurrent(address account) external virtual returns (uint256); function borrowBalanceStored(address account) external view virtual returns (uint256); function exchangeRateCurrent() external virtual returns (uint256); function exchangeRateStored() external view virtual returns (uint256); function getCash() external view virtual returns (uint256); function accrueInterest() external virtual returns (uint256); function seize(address liquidator, address borrower, uint256 seizeTokens) external virtual returns (uint256); /** * Admin Functions ** */ function _setPendingAdmin(address payable newPendingAdmin) external virtual returns (uint256); function _acceptAdmin() external virtual returns (uint256); function _setComptroller(ComptrollerInterface newComptroller) external virtual returns (uint256); function _setReserveFactor(uint256 newReserveFactorMantissa) external virtual returns (uint256); function _reduceReserves(uint256 reduceAmount) external virtual returns (uint256); function _setInterestRateModel(InterestRateModel newInterestRateModel) external virtual returns (uint256); function _setProtocolSeizeShare(uint256 newProtocolSeizeShareMantissa) external virtual returns (uint256); } contract CErc20Storage { /** * @notice Underlying asset for this CToken */ address public underlying; } abstract contract CErc20Interface is CErc20Storage { /** * User Interface ** */ function mint(uint256 mintAmount) external virtual returns (uint256); function mintAsCollateral(uint256 mintAmount) external virtual returns (uint256); function redeem(uint256 redeemTokens) external virtual returns (uint256); function redeemUnderlying(uint256 redeemAmount) external virtual returns (uint256); function borrow(uint256 borrowAmount) external virtual returns (uint256); function repayBorrow(uint256 repayAmount) external virtual returns (uint256); function repayBorrowBehalf(address borrower, uint256 repayAmount) external virtual returns (uint256); function liquidateBorrow(address borrower, uint256 repayAmount, CTokenInterface cTokenCollateral) external virtual returns (uint256); function sweepToken(EIP20NonStandardInterface token) external virtual; /** * Admin Functions ** */ function _addReserves(uint256 addAmount) external virtual returns (uint256); } contract CDelegationStorage { /** * @notice Implementation address for this contract */ address public implementation; } abstract contract CDelegatorInterface is CDelegationStorage { /** * @notice Emitted when implementation is changed */ event NewImplementation(address oldImplementation, address newImplementation); /** * @notice Called by the admin to update the implementation of the delegator * @param implementation_ The address of the new implementation for delegation * @param allowResign Flag to indicate whether to call _resignImplementation on the old implementation * @param becomeImplementationData The encoded bytes data to be passed to _becomeImplementation */ function _setImplementation(address implementation_, bool allowResign, bytes memory becomeImplementationData) external virtual; } abstract contract CDelegateInterface is CDelegationStorage { /** * @notice Called by the delegator on a delegate to initialize it for duty * @dev Should revert if any issues arise which make it unfit for delegation * @param data The encoded bytes data for any initialization */ function _becomeImplementation(bytes memory data) external virtual; /** * @notice Called by the delegator on a delegate to forfeit its responsibility */ function _resignImplementation() external virtual; }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; /** * @title ERC 20 Token Standard Interface * https://eips.ethereum.org/EIPS/eip-20 */ interface EIP20Interface { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return balance The balance */ function balanceOf(address owner) external view returns (uint256 balance); /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return success Whether or not the transfer succeeded */ function transfer(address dst, uint256 amount) external returns (bool success); /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer * @return success Whether or not the transfer succeeded */ function transferFrom(address src, address dst, uint256 amount) external returns (bool success); /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved (-1 means infinite) * @return success Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return remaining The number of tokens allowed to be spent (-1 means infinite) */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; /** * @title Mach's InterestRateModel Interface * @author Mach Finance */ abstract contract InterestRateModel { /// @notice Indicator that this is an InterestRateModel contract (for inspection) bool public constant isInterestRateModel = true; /** * @notice Calculates the current borrow interest rate per timestamp * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @return The borrow rate per timestamp (as a percentage, and scaled by 1e18) */ function getBorrowRate(uint256 cash, uint256 borrows, uint256 reserves) external view virtual returns (uint256); /** * @notice Calculates the current supply interest rate per timestamp * @param cash The total amount of cash the market has * @param borrows The total amount of borrows the market has outstanding * @param reserves The total amount of reserves the market has * @param reserveFactorMantissa The current reserve factor the market has * @return The supply rate per timestamp (as a percentage, and scaled by 1e18) */ function getSupplyRate(uint256 cash, uint256 borrows, uint256 reserves, uint256 reserveFactorMantissa) external view virtual returns (uint256); }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; /** * @title Exponential module for storing fixed-precision decimals * @author Mach * @notice Exp is a struct which stores decimals with a fixed precision of 18 decimal places. * Thus, if we wanted to store the 5.1, mantissa would store 5.1e18. That is: * `Exp({mantissa: 5100000000000000000})`. */ contract ExponentialNoError { uint256 constant expScale = 1e18; uint256 constant doubleScale = 1e36; uint256 constant halfExpScale = expScale / 2; uint256 constant mantissaOne = expScale; struct Exp { uint256 mantissa; } struct Double { uint256 mantissa; } /** * @dev Truncates the given exp to a whole number value. * For example, truncate(Exp{mantissa: 15 * expScale}) = 15 */ function truncate(Exp memory exp) internal pure returns (uint256) { // Note: We are not using careful math here as we're performing a division that cannot fail return exp.mantissa / expScale; } /** * @dev Multiply an Exp by a scalar, then truncate to return an unsigned integer. */ function mul_ScalarTruncate(Exp memory a, uint256 scalar) internal pure returns (uint256) { Exp memory product = mul_(a, scalar); return truncate(product); } /** * @dev Multiply an Exp by a scalar, truncate, then add an to an unsigned integer, returning an unsigned integer. */ function mul_ScalarTruncateAddUInt(Exp memory a, uint256 scalar, uint256 addend) internal pure returns (uint256) { Exp memory product = mul_(a, scalar); return add_(truncate(product), addend); } /** * @dev Checks if first Exp is less than second Exp. */ function lessThanExp(Exp memory left, Exp memory right) internal pure returns (bool) { return left.mantissa < right.mantissa; } /** * @dev Checks if left Exp <= right Exp. */ function lessThanOrEqualExp(Exp memory left, Exp memory right) internal pure returns (bool) { return left.mantissa <= right.mantissa; } /** * @dev Checks if left Exp > right Exp. */ function greaterThanExp(Exp memory left, Exp memory right) internal pure returns (bool) { return left.mantissa > right.mantissa; } /** * @dev returns true if Exp is exactly zero */ function isZeroExp(Exp memory value) internal pure returns (bool) { return value.mantissa == 0; } function safe224(uint256 n, string memory errorMessage) internal pure returns (uint224) { require(n < 2 ** 224, errorMessage); return uint224(n); } function safe32(uint256 n, string memory errorMessage) internal pure returns (uint32) { require(n < 2 ** 32, errorMessage); return uint32(n); } function add_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: add_(a.mantissa, b.mantissa)}); } function add_(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } function sub_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: sub_(a.mantissa, b.mantissa)}); } function sub_(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } function mul_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b.mantissa) / expScale}); } function mul_(Exp memory a, uint256 b) internal pure returns (Exp memory) { return Exp({mantissa: mul_(a.mantissa, b)}); } function mul_(uint256 a, Exp memory b) internal pure returns (uint256) { return mul_(a, b.mantissa) / expScale; } function mul_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b.mantissa) / doubleScale}); } function mul_(Double memory a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: mul_(a.mantissa, b)}); } function mul_(uint256 a, Double memory b) internal pure returns (uint256) { return mul_(a, b.mantissa) / doubleScale; } function mul_(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } function div_(Exp memory a, Exp memory b) internal pure returns (Exp memory) { return Exp({mantissa: div_(mul_(a.mantissa, expScale), b.mantissa)}); } function div_(Exp memory a, uint256 b) internal pure returns (Exp memory) { return Exp({mantissa: div_(a.mantissa, b)}); } function div_(uint256 a, Exp memory b) internal pure returns (uint256) { return div_(mul_(a, expScale), b.mantissa); } function div_(Double memory a, Double memory b) internal pure returns (Double memory) { return Double({mantissa: div_(mul_(a.mantissa, doubleScale), b.mantissa)}); } function div_(Double memory a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: div_(a.mantissa, b)}); } function div_(uint256 a, Double memory b) internal pure returns (uint256) { return div_(mul_(a, doubleScale), b.mantissa); } function div_(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function fraction(uint256 a, uint256 b) internal pure returns (Double memory) { return Double({mantissa: div_(mul_(a, doubleScale), b)}); } }
// SPDX-License-Identifier: BSD-3-Clause pragma solidity 0.8.22; /** * @title EIP20NonStandardInterface * @dev Version of ERC20 with no return values for `transfer` and `transferFrom` * See https://medium.com/coinmonks/missing-return-value-bug-at-least-130-tokens-affected-d67bf08521ca */ interface EIP20NonStandardInterface { /** * @notice Get the total number of tokens in circulation * @return The supply of tokens */ function totalSupply() external view returns (uint256); /** * @notice Gets the balance of the specified address * @param owner The address from which the balance will be retrieved * @return balance The balance */ function balanceOf(address owner) external view returns (uint256 balance); /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transfer` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `msg.sender` to `dst` * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transfer(address dst, uint256 amount) external; /// /// !!!!!!!!!!!!!! /// !!! NOTICE !!! `transferFrom` does not return a value, in violation of the ERC-20 specification /// !!!!!!!!!!!!!! /// /** * @notice Transfer `amount` tokens from `src` to `dst` * @param src The address of the source account * @param dst The address of the destination account * @param amount The number of tokens to transfer */ function transferFrom(address src, address dst, uint256 amount) external; /** * @notice Approve `spender` to transfer up to `amount` from `src` * @dev This will overwrite the approval amount for `spender` * and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve) * @param spender The address of the account which may transfer tokens * @param amount The number of tokens that are approved * @return success Whether or not the approval succeeded */ function approve(address spender, uint256 amount) external returns (bool success); /** * @notice Get the current allowance from `owner` for `spender` * @param owner The address of the account which owns the tokens to be spent * @param spender The address of the account which may transfer tokens * @return remaining The number of tokens allowed to be spent */ function allowance(address owner, address spender) external view returns (uint256 remaining); event Transfer(address indexed from, address indexed to, uint256 amount); event Approval(address indexed owner, address indexed spender, uint256 amount); }
{ "remappings": [ "@pythnetwork/pyth-sdk-solidity/=lib/pyth-crosschain/target_chains/ethereum/sdk/solidity/", "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/", "@api3/contracts/=lib/contracts/contracts/", "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/", "pyth-crosschain/=lib/pyth-crosschain/", "solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"error","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"info","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"detail","type":"uint256"}],"name":"Failure","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newAdmin","type":"address"}],"name":"NewAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldImplementation","type":"address"},{"indexed":false,"internalType":"address","name":"newImplementation","type":"address"}],"name":"NewImplementation","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPendingAdmin","type":"address"},{"indexed":false,"internalType":"address","name":"newPendingAdmin","type":"address"}],"name":"NewPendingAdmin","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldPendingImplementation","type":"address"},{"indexed":false,"internalType":"address","name":"newPendingImplementation","type":"address"}],"name":"NewPendingImplementation","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"_acceptAdmin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"_acceptImplementation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPendingAdmin","type":"address"}],"name":"_setPendingAdmin","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPendingImplementation","type":"address"}],"name":"_setPendingImplementation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"admin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"comptrollerImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingAdmin","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingComptrollerImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x60806040526004361061007b5760003560e01c8063dcfbc0c71161004e578063dcfbc0c714610196578063e992a041146101b6578063e9c714f2146101d6578063f851a440146101eb5761007b565b806326782247146100f6578063b71d1a0c14610133578063bb82aa5e14610161578063c1e8033414610181575b6002546040516000916001600160a01b03169061009b908390369061055a565b600060405180830381855af49150503d80600081146100d6576040519150601f19603f3d011682016040523d82523d6000602084013e6100db565b606091505b505090506040513d6000823e8180156100f2573d82f35b3d82fd5b34801561010257600080fd5b50600154610116906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b34801561013f57600080fd5b5061015361014e36600461056a565b61020b565b60405190815260200161012a565b34801561016d57600080fd5b50600254610116906001600160a01b031681565b34801561018d57600080fd5b50610153610298565b3480156101a257600080fd5b50600354610116906001600160a01b031681565b3480156101c257600080fd5b506101536101d136600461056a565b61038e565b3480156101e257600080fd5b50610153610407565b3480156101f757600080fd5b50600054610116906001600160a01b031681565b600080546001600160a01b031633146102305761022a6001600e6104e1565b92915050565b600180546001600160a01b038481166001600160a01b031983168117909355604080519190921680825260208201939093527fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a991015b60405180910390a160005b9392505050565b6003546000906001600160a01b0316331415806102be57506003546001600160a01b0316155b156102d3576102ce6001806104e1565b905090565b60028054600380546001600160a01b038082166001600160a01b031980861682179096559490911690915560408051919092168082526020820184905292917fd604de94d45953f9138079ec1b82d533cb2160c906d1076d1f7ed54befbca97a910160405180910390a1600354604080516001600160a01b03808516825290921660208301527fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d81591015b60405180910390a160009250505090565b600080546001600160a01b031633146103ad5761022a6001600f6104e1565b600380546001600160a01b038481166001600160a01b031983168117909355604080519190921680825260208201939093527fe945ccee5d701fc83f9b8aa8ca94ea4219ec1fcbd4f4cab4f0ea57c5c3e1d8159101610286565b6001546000906001600160a01b031633141580610422575033155b15610433576102ce600160006104e1565b60008054600180546001600160a01b038082166001600160a01b031980861682179096559490911690915560408051919092168082526020820184905292917ff9ffabca9c8276e99321725bcb43fb076a6c66a54b7f21c4e8146d8519b417dc910160405180910390a1600154604080516001600160a01b03808516825290921660208301527fca4f2f25d0898edd99413412fb94012f9e54ec8142f9b093e7720646a95b16a9910161037d565b60007f45b96fe442630264581b197e84bbada861235052c5a1aadfff9ea4e40a969aa083601181111561051657610516610593565b83601381111561052857610528610593565b60408051928352602083019190915260009082015260600160405180910390a182601181111561029157610291610593565b8183823760009101908152919050565b60006020828403121561057c57600080fd5b81356001600160a01b038116811461029157600080fd5b634e487b7160e01b600052602160045260246000fdfea264697066735822122004bf09913c49ac098c9b09e73439c4fab5a2315a68ba9357467364f52132446a64736f6c63430008160033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.