Source Code
Overview
S Balance
S Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 4978433 | 367 days ago | Contract Creation | 0 S |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
Actions
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {IInterestRateModelV2} from "../interfaces/IInterestRateModelV2.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {IERC3156FlashBorrower} from "../interfaces/IERC3156FlashBorrower.sol";
import {IHookReceiver} from "../interfaces/IHookReceiver.sol";
import {SiloERC4626Lib} from "./SiloERC4626Lib.sol";
import {SiloSolvencyLib} from "./SiloSolvencyLib.sol";
import {SiloLendingLib} from "./SiloLendingLib.sol";
import {SiloStdLib} from "./SiloStdLib.sol";
import {Hook} from "./Hook.sol";
import {CallBeforeQuoteLib} from "./CallBeforeQuoteLib.sol";
import {NonReentrantLib} from "./NonReentrantLib.sol";
import {ShareTokenLib} from "./ShareTokenLib.sol";
import {SiloStorageLib} from "./SiloStorageLib.sol";
import {Views} from "./Views.sol";
library Actions {
using SafeERC20 for IERC20;
using Hook for uint256;
using Hook for uint24;
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
bytes32 internal constant _FLASHLOAN_CALLBACK = keccak256("ERC3156FlashBorrower.onFlashLoan");
error FeeOverflow();
error FlashLoanNotPossible();
function initialize(ISiloConfig _siloConfig) external returns (address hookReceiver) {
IShareToken.ShareTokenStorage storage _sharedStorage = ShareTokenLib.getShareTokenStorage();
require(address(_sharedStorage.siloConfig) == address(0), ISilo.SiloInitialized());
ISiloConfig.ConfigData memory configData = _siloConfig.getConfig(address(this));
_sharedStorage.siloConfig = _siloConfig;
return configData.hookReceiver;
}
function deposit(
uint256 _assets,
uint256 _shares,
address _receiver,
ISilo.CollateralType _collateralType
)
external
returns (uint256 assets, uint256 shares)
{
_hookCallBeforeDeposit(_collateralType, _assets, _shares, _receiver);
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForSilo(address(this));
(
address shareToken, address asset
) = siloConfig.getCollateralShareTokenAndAsset(address(this), _collateralType);
(assets, shares) = SiloERC4626Lib.deposit({
_token: asset,
_depositor: msg.sender,
_assets: _assets,
_shares: _shares,
_receiver: _receiver,
_collateralShareToken: IShareToken(shareToken),
_collateralType: _collateralType
});
siloConfig.turnOffReentrancyProtection();
_hookCallAfterDeposit(_collateralType, _assets, _shares, _receiver, assets, shares);
}
function withdraw(ISilo.WithdrawArgs calldata _args)
external
returns (uint256 assets, uint256 shares)
{
_hookCallBeforeWithdraw(_args);
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForBothSilos();
ISiloConfig.DepositConfig memory depositConfig;
ISiloConfig.ConfigData memory collateralConfig;
ISiloConfig.ConfigData memory debtConfig;
(depositConfig, collateralConfig, debtConfig) = siloConfig.getConfigsForWithdraw(address(this), _args.owner);
(assets, shares) = SiloERC4626Lib.withdraw(
depositConfig.token,
_args.collateralType == ISilo.CollateralType.Collateral
? depositConfig.collateralShareToken
: depositConfig.protectedShareToken,
_args
);
if (depositConfig.silo == collateralConfig.silo) {
// If deposit is collateral, then check the solvency.
_checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, _args.owner);
}
siloConfig.turnOffReentrancyProtection();
_hookCallAfterWithdraw(_args, assets, shares);
}
function borrow(ISilo.BorrowArgs memory _args)
external
returns (uint256 assets, uint256 shares)
{
_hookCallBeforeBorrow(_args, Hook.BORROW);
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
require(!siloConfig.hasDebtInOtherSilo(address(this), _args.borrower), ISilo.BorrowNotPossible());
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForBothSilos();
siloConfig.setOtherSiloAsCollateralSilo(_args.borrower);
ISiloConfig.ConfigData memory collateralConfig;
ISiloConfig.ConfigData memory debtConfig;
(collateralConfig, debtConfig) = siloConfig.getConfigsForBorrow({_debtSilo: address(this)});
(assets, shares) = SiloLendingLib.borrow(
debtConfig.debtShareToken,
debtConfig.token,
msg.sender,
_args
);
_checkLTVWithoutAccruingInterest(collateralConfig, debtConfig, _args.borrower);
siloConfig.turnOffReentrancyProtection();
_hookCallAfterBorrow(_args, Hook.BORROW, assets, shares);
}
function borrowSameAsset(ISilo.BorrowArgs memory _args)
external
returns (uint256 assets, uint256 shares)
{
_hookCallBeforeBorrow(_args, Hook.BORROW_SAME_ASSET);
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
require(!siloConfig.hasDebtInOtherSilo(address(this), _args.borrower), ISilo.BorrowNotPossible());
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForSilo(address(this));
siloConfig.setThisSiloAsCollateralSilo(_args.borrower);
ISiloConfig.ConfigData memory collateralConfig = siloConfig.getConfig(address(this));
ISiloConfig.ConfigData memory debtConfig = collateralConfig;
(assets, shares) = SiloLendingLib.borrow({
_debtShareToken: debtConfig.debtShareToken,
_token: debtConfig.token,
_spender: msg.sender,
_args: _args
});
_checkLTVWithoutAccruingInterest(collateralConfig, debtConfig, _args.borrower);
siloConfig.turnOffReentrancyProtection();
_hookCallAfterBorrow(_args, Hook.BORROW_SAME_ASSET, assets, shares);
}
function repay(
uint256 _assets,
uint256 _shares,
address _borrower,
address _repayer
)
external
returns (uint256 assets, uint256 shares)
{
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
if (_shareStorage.hookSetup.hooksBefore.matchAction(Hook.REPAY)) {
bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), Hook.REPAY, data);
}
ISiloConfig siloConfig = _shareStorage.siloConfig;
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForSilo(address(this));
(address debtShareToken, address debtAsset) = siloConfig.getDebtShareTokenAndAsset(address(this));
(assets, shares) = SiloLendingLib.repay(
IShareToken(debtShareToken), debtAsset, _assets, _shares, _borrower, _repayer
);
siloConfig.turnOffReentrancyProtection();
if (_shareStorage.hookSetup.hooksAfter.matchAction(Hook.REPAY)) {
bytes memory data = abi.encodePacked(_assets, _shares, _borrower, _repayer, assets, shares);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), Hook.REPAY, data);
}
}
// solhint-disable-next-line function-max-lines
function transitionCollateral(ISilo.TransitionCollateralArgs memory _args)
external
returns (uint256 assets, uint256 toShares)
{
_hookCallBeforeTransitionCollateral(_args);
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
siloConfig.turnOnReentrancyProtection();
siloConfig.accrueInterestForBothSilos();
(
ISiloConfig.DepositConfig memory depositConfig,
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = siloConfig.getConfigsForWithdraw(address(this), _args.owner);
uint256 shares;
// transition collateral withdraw
address shareTokenFrom = _args.transitionFrom == ISilo.CollateralType.Collateral
? depositConfig.collateralShareToken
: depositConfig.protectedShareToken;
(assets, shares) = SiloERC4626Lib.withdraw({
_asset: address(0), // empty token because we don't want to transfer
_shareToken: shareTokenFrom,
_args: ISilo.WithdrawArgs({
assets: 0,
shares: _args.shares,
owner: _args.owner,
receiver: _args.owner,
spender: msg.sender,
collateralType: _args.transitionFrom
})
});
// transition collateral deposit
(ISilo.CollateralType depositType, address shareTokenTo) =
_args.transitionFrom == ISilo.CollateralType.Collateral
? (ISilo.CollateralType.Protected, depositConfig.protectedShareToken)
: (ISilo.CollateralType.Collateral, depositConfig.collateralShareToken);
(assets, toShares) = SiloERC4626Lib.deposit({
_token: address(0), // empty token because we don't want to transfer
_depositor: msg.sender,
_assets: assets,
_shares: 0,
_receiver: _args.owner,
_collateralShareToken: IShareToken(shareTokenTo),
_collateralType: depositType
});
// If deposit is collateral, then check the solvency.
if (depositConfig.silo == collateralConfig.silo) {
_checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, _args.owner);
}
siloConfig.turnOffReentrancyProtection();
_hookCallAfterTransitionCollateral(_args, toShares, assets);
}
function switchCollateralToThisSilo() external {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.SWITCH_COLLATERAL;
if (_shareStorage.hookSetup.hooksBefore.matchAction(action)) {
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(
address(this), action, abi.encodePacked(msg.sender)
);
}
ISiloConfig siloConfig = _shareStorage.siloConfig;
require(siloConfig.borrowerCollateralSilo(msg.sender) != address(this), ISilo.CollateralSiloAlreadySet());
siloConfig.turnOnReentrancyProtection();
siloConfig.setThisSiloAsCollateralSilo(msg.sender);
ISiloConfig.ConfigData memory collateralConfig;
ISiloConfig.ConfigData memory debtConfig;
(collateralConfig, debtConfig) = siloConfig.getConfigsForSolvency(msg.sender);
if (debtConfig.silo != address(0)) {
siloConfig.accrueInterestForBothSilos();
_checkSolvencyWithoutAccruingInterest(collateralConfig, debtConfig, msg.sender);
}
siloConfig.turnOffReentrancyProtection();
if (_shareStorage.hookSetup.hooksAfter.matchAction(action)) {
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(
address(this), action, abi.encodePacked(msg.sender)
);
}
}
/// @notice Executes a flash loan, sending the requested amount to the receiver and expecting it back with a fee
/// @param _receiver The entity that will receive the flash loan and is expected to return it with a fee
/// @param _token The token that is being borrowed in the flash loan
/// @param _amount The amount of tokens to be borrowed
/// @param _data Additional data to be passed to the flash loan receiver
/// @return success A boolean indicating if the flash loan was successful
function flashLoan(
IERC3156FlashBorrower _receiver,
address _token,
uint256 _amount,
bytes calldata _data
)
external
returns (bool success)
{
require(_amount != 0, ISilo.ZeroAmount());
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
if (_shareStorage.hookSetup.hooksBefore.matchAction(Hook.FLASH_LOAN)) {
bytes memory data = abi.encodePacked(_receiver, _token, _amount);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), Hook.FLASH_LOAN, data);
}
// flashFee will revert for wrong token
uint256 fee = SiloStdLib.flashFee(_shareStorage.siloConfig, _token, _amount);
require(fee <= type(uint192).max, FeeOverflow());
// this check also verify if token is correct
require(_amount <= Views.maxFlashLoan(_token), FlashLoanNotPossible());
// cast safe, because we checked `fee > type(uint192).max`
SiloStorageLib.getSiloStorage().daoAndDeployerRevenue += uint192(fee);
IERC20(_token).safeTransfer(address(_receiver), _amount);
require(
_receiver.onFlashLoan(msg.sender, _token, _amount, fee, _data) == _FLASHLOAN_CALLBACK,
ISilo.FlashloanFailed()
);
IERC20(_token).safeTransferFrom(address(_receiver), address(this), _amount + fee);
if (_shareStorage.hookSetup.hooksAfter.matchAction(Hook.FLASH_LOAN)) {
bytes memory data = abi.encodePacked(_receiver, _token, _amount, fee);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), Hook.FLASH_LOAN, data);
}
success = true;
}
/// @notice Withdraws accumulated fees and distributes them proportionally to the DAO and deployer
/// @dev This function takes into account scenarios where either the DAO or deployer may not be set, distributing
/// accordingly
/// @param _silo Silo address
function withdrawFees(ISilo _silo) external returns (uint256 daoRevenue, uint256 deployerRevenue) {
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
siloConfig.turnOnReentrancyProtection();
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 earnedFees = $.daoAndDeployerRevenue;
require(earnedFees != 0, ISilo.EarnedZero());
(
address daoFeeReceiver,
address deployerFeeReceiver,
uint256 daoFee,
uint256 deployerFee,
address asset
) = SiloStdLib.getFeesAndFeeReceiversWithAsset(_silo);
uint256 availableLiquidity;
uint256 siloBalance = IERC20(asset).balanceOf(address(this));
uint256 protectedAssets = $.totalAssets[ISilo.AssetType.Protected];
// we will never underflow because `_protectedAssets` is always less/equal `siloBalance`
unchecked { availableLiquidity = protectedAssets > siloBalance ? 0 : siloBalance - protectedAssets; }
require(availableLiquidity != 0, ISilo.NoLiquidity());
if (earnedFees > availableLiquidity) earnedFees = availableLiquidity;
// we will never underflow because earnedFees max value is `daoAndDeployerRevenue`
unchecked { $.daoAndDeployerRevenue -= uint192(earnedFees); }
if (deployerFeeReceiver == address(0)) {
// deployer was never setup or deployer NFT has been burned
IERC20(asset).safeTransfer(daoFeeReceiver, earnedFees);
} else {
// split fees proportionally
daoRevenue = earnedFees * daoFee;
unchecked {
// fees are % in decimal point so safe to uncheck
daoRevenue = daoRevenue / (daoFee + deployerFee);
// `daoRevenue` is chunk of `earnedFees`, so safe to uncheck
deployerRevenue = earnedFees - daoRevenue;
}
IERC20(asset).safeTransfer(daoFeeReceiver, daoRevenue);
IERC20(asset).safeTransfer(deployerFeeReceiver, deployerRevenue);
}
siloConfig.turnOffReentrancyProtection();
}
function updateHooks() external returns (uint24 hooksBefore, uint24 hooksAfter) {
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
NonReentrantLib.nonReentrant(siloConfig);
ISiloConfig.ConfigData memory cfg = siloConfig.getConfig(address(this));
if (cfg.hookReceiver == address(0)) return (0, 0);
(hooksBefore, hooksAfter) = IHookReceiver(cfg.hookReceiver).hookReceiverConfig(address(this));
IShareToken(cfg.collateralShareToken).synchronizeHooks(hooksBefore, hooksAfter);
IShareToken(cfg.protectedShareToken).synchronizeHooks(hooksBefore, hooksAfter);
IShareToken(cfg.debtShareToken).synchronizeHooks(hooksBefore, hooksAfter);
}
function callOnBehalfOfSilo(address _target, uint256 _value, ISilo.CallType _callType, bytes calldata _input)
internal
returns (bool success, bytes memory result)
{
require(
msg.sender == address(ShareTokenLib.getShareTokenStorage().hookSetup.hookReceiver),
ISilo.OnlyHookReceiver()
);
// Silo will not send back any ether leftovers after the call.
// The hook receiver should request the ether if needed in a separate call.
if (_callType == ISilo.CallType.Delegatecall) {
(success, result) = _target.delegatecall(_input); // solhint-disable-line avoid-low-level-calls
} else {
(success, result) = _target.call{value: _value}(_input); // solhint-disable-line avoid-low-level-calls
}
}
// this method expect interest to be already accrued
function _checkSolvencyWithoutAccruingInterest(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _user
) private {
if (_debtConfig.silo != _collateralConfig.silo) {
_collateralConfig.callSolvencyOracleBeforeQuote();
_debtConfig.callSolvencyOracleBeforeQuote();
}
bool userIsSolvent = SiloSolvencyLib.isSolvent(
_collateralConfig, _debtConfig, _user, ISilo.AccrueInterestInMemory.No
);
require(userIsSolvent, ISilo.NotSolvent());
}
// this method expect interest to be already accrued
function _checkLTVWithoutAccruingInterest(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower
) private {
if (_collateralConfig.silo != _debtConfig.silo) {
_collateralConfig.callMaxLtvOracleBeforeQuote();
_debtConfig.callMaxLtvOracleBeforeQuote();
}
bool borrowerIsBelowMaxLtv = SiloSolvencyLib.isBelowMaxLtv(
_collateralConfig, _debtConfig, _borrower, ISilo.AccrueInterestInMemory.No
);
require(borrowerIsBelowMaxLtv, ISilo.AboveMaxLtv());
}
function _hookCallBeforeWithdraw(
ISilo.WithdrawArgs calldata _args
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.withdrawAction(_args.collateralType);
if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return;
bytes memory data =
abi.encodePacked(_args.assets, _args.shares, _args.receiver, _args.owner, _args.spender);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data);
}
function _hookCallAfterWithdraw(
ISilo.WithdrawArgs calldata _args,
uint256 assets,
uint256 shares
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.withdrawAction(_args.collateralType);
if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return;
bytes memory data =
abi.encodePacked(_args.assets, _args.shares, _args.receiver, _args.owner, _args.spender, assets, shares);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data);
}
function _hookCallBeforeBorrow(ISilo.BorrowArgs memory _args, uint256 action) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return;
bytes memory data = abi.encodePacked(
_args.assets,
_args.shares,
_args.receiver,
_args.borrower,
msg.sender // spender
);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data);
}
function _hookCallAfterBorrow(
ISilo.BorrowArgs memory _args,
uint256 action,
uint256 assets,
uint256 shares
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return;
bytes memory data = abi.encodePacked(
_args.assets,
_args.shares,
_args.receiver,
_args.borrower,
msg.sender, // spender
assets,
shares
);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data);
}
function _hookCallBeforeTransitionCollateral(ISilo.TransitionCollateralArgs memory _args) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.transitionCollateralAction(_args.transitionFrom);
if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return;
bytes memory data = abi.encodePacked(_args.shares, _args.owner);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data);
}
function _hookCallAfterTransitionCollateral(
ISilo.TransitionCollateralArgs memory _args,
uint256 _shares,
uint256 _assets
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.transitionCollateralAction(_args.transitionFrom);
if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return;
bytes memory data = abi.encodePacked(_shares, _args.owner, _assets);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data);
}
function _hookCallBeforeDeposit(
ISilo.CollateralType _collateralType,
uint256 _assets,
uint256 _shares,
address _receiver
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.depositAction(_collateralType);
if (!_shareStorage.hookSetup.hooksBefore.matchAction(action)) return;
bytes memory data = abi.encodePacked(_assets, _shares, _receiver);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).beforeAction(address(this), action, data);
}
function _hookCallAfterDeposit(
ISilo.CollateralType _collateralType,
uint256 _assets,
uint256 _shares,
address _receiver,
uint256 _exactAssets,
uint256 _exactShare
) private {
IShareToken.ShareTokenStorage storage _shareStorage = ShareTokenLib.getShareTokenStorage();
uint256 action = Hook.depositAction(_collateralType);
if (!_shareStorage.hookSetup.hooksAfter.matchAction(action)) return;
bytes memory data = abi.encodePacked(_assets, _shares, _receiver, _exactAssets, _exactShare);
IHookReceiver(_shareStorage.hookSetup.hookReceiver).afterAction(address(this), action, data);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISilo} from "./ISilo.sol";
import {ICrossReentrancyGuard} from "./ICrossReentrancyGuard.sol";
interface ISiloConfig is ICrossReentrancyGuard {
struct InitData {
/// @notice Can be address zero if deployer fees are not to be collected. If deployer address is zero then
/// deployer fee must be zero as well. Deployer will be minted an NFT that gives the right to claim deployer
/// fees. NFT can be transferred with the right to claim.
address deployer;
/// @notice Address of the hook receiver called on every before/after action on Silo. Hook contract also
/// implements liquidation logic and veSilo gauge connection.
address hookReceiver;
/// @notice Deployer's fee in 18 decimals points. Deployer will earn this fee based on the interest earned
/// by the Silo. Max deployer fee is set by the DAO. At deployment it is 15%.
uint256 deployerFee;
/// @notice DAO's fee in 18 decimals points. DAO will earn this fee based on the interest earned
/// by the Silo. Acceptable fee range fee is set by the DAO. Default at deployment is 5% - 50%.
uint256 daoFee;
/// @notice Address of the first token
address token0;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle0;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle0;
/// @notice Address of the interest rate model
address interestRateModel0;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine, if borrower
/// can borrow given amount of assets. MaxLtv is in 18 decimals points. MaxLtv must be lower or equal to LT.
uint256 maxLtv0;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals
/// points. LT must not be lower than maxLTV.
uint256 lt0;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv0;
/// @notice Liquidation fee for the first token in 18 decimals points. Liquidation fee is what liquidator earns
/// for repaying insolvent loan.
uint256 liquidationFee0;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee0;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote0;
/// @notice Address of the second token
address token1;
/// @notice Address of the solvency oracle. Solvency oracle is used to calculate LTV when deciding if borrower
/// is solvent or should be liquidated. Solvency oracle is optional and if not set price of 1 will be assumed.
address solvencyOracle1;
/// @notice Address of the maxLtv oracle. Max LTV oracle is used to calculate LTV when deciding if borrower
/// can borrow given amount of assets. Max LTV oracle is optional and if not set it defaults to solvency
/// oracle. If neither is set price of 1 will be assumed.
address maxLtvOracle1;
/// @notice Address of the interest rate model
address interestRateModel1;
/// @notice Maximum LTV for first token. maxLTV is in 18 decimals points and is used to determine,
/// if borrower can borrow given amount of assets. maxLtv is in 18 decimals points
uint256 maxLtv1;
/// @notice Liquidation threshold for first token. LT is used to calculate solvency. LT is in 18 decimals points
uint256 lt1;
/// @notice minimal acceptable LTV after liquidation, in 18 decimals points
uint256 liquidationTargetLtv1;
/// @notice Liquidation fee is what liquidator earns for repaying insolvent loan.
uint256 liquidationFee1;
/// @notice Flashloan fee sets the cost of taking a flashloan in 18 decimals points
uint256 flashloanFee1;
/// @notice Indicates if a beforeQuote on oracle contract should be called before quoting price
bool callBeforeQuote1;
}
struct ConfigData {
uint256 daoFee;
uint256 deployerFee;
address silo;
address token;
address protectedShareToken;
address collateralShareToken;
address debtShareToken;
address solvencyOracle;
address maxLtvOracle;
address interestRateModel;
uint256 maxLtv;
uint256 lt;
uint256 liquidationTargetLtv;
uint256 liquidationFee;
uint256 flashloanFee;
address hookReceiver;
bool callBeforeQuote;
}
struct DepositConfig {
address silo;
address token;
address collateralShareToken;
address protectedShareToken;
uint256 daoFee;
uint256 deployerFee;
address interestRateModel;
}
error OnlySilo();
error OnlySiloOrTokenOrHookReceiver();
error WrongSilo();
error OnlyDebtShareToken();
error DebtExistInOtherSilo();
error FeeTooHigh();
/// @dev It should be called on debt transfer (debt share token transfer).
/// In the case if the`_recipient` doesn't have configured a collateral silo,
/// it will be set to the collateral silo of the `_sender`.
/// @param _sender sender address
/// @param _recipient recipient address
function onDebtTransfer(address _sender, address _recipient) external;
/// @notice Set collateral silo.
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo the same as msg.sender.
/// @param _borrower borrower address
function setThisSiloAsCollateralSilo(address _borrower) external;
/// @notice Set collateral silo
/// @dev Revert if msg.sender is not a SILO_0 or SILO_1.
/// @dev Always set collateral silo opposite to the msg.sender.
/// @param _borrower borrower address
function setOtherSiloAsCollateralSilo(address _borrower) external;
/// @notice Accrue interest for the silo
/// @param _silo silo for which accrue interest
function accrueInterestForSilo(address _silo) external;
/// @notice Accrue interest for both silos (SILO_0 and SILO_1 in a config)
function accrueInterestForBothSilos() external;
/// @notice Retrieves the collateral silo for a specific borrower.
/// @dev As a user can deposit into `Silo0` and `Silo1`, this property specifies which Silo
/// will be used as collateral for the debt. Later on, it will be used for max LTV and solvency checks.
/// After being set, the collateral silo is never set to `address(0)` again but such getters as
/// `getConfigsForSolvency`, `getConfigsForBorrow`, `getConfigsForWithdraw` will return empty
/// collateral silo config if borrower doesn't have debt.
///
/// In the SiloConfig collateral silo is set by the following functions:
/// `onDebtTransfer` - only if the recipient doesn't have collateral silo set (inherits it from the sender)
/// This function is called on debt share token transfer (debt transfer).
/// `setThisSiloAsCollateralSilo` - sets the same silo as the one that calls the function.
/// `setOtherSiloAsCollateralSilo` - sets the opposite silo as collateral from the one that calls the function.
///
/// In the Silo collateral silo is set by the following functions:
/// `borrow` - always sets opposite silo as collateral.
/// If Silo0 borrows, then Silo1 will be collateral and vice versa.
/// `borrowSameAsset` - always sets the same silo as collateral.
/// `switchCollateralToThisSilo` - always sets the same silo as collateral.
/// @param _borrower The address of the borrower for which the collateral silo is being retrieved
/// @return collateralSilo The address of the collateral silo for the specified borrower
function borrowerCollateralSilo(address _borrower) external view returns (address collateralSilo);
/// @notice Retrieves the silo ID
/// @dev Each silo is assigned a unique ID. ERC-721 token is minted with identical ID to deployer.
/// An owner of that token receives the deployer fees.
/// @return siloId The ID of the silo
function SILO_ID() external view returns (uint256 siloId); // solhint-disable-line func-name-mixedcase
/// @notice Retrieves the addresses of the two silos
/// @return silo0 The address of the first silo
/// @return silo1 The address of the second silo
function getSilos() external view returns (address silo0, address silo1);
/// @notice Retrieves the asset associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which the associated asset is being retrieved
/// @return asset The address of the asset associated with the specified silo
function getAssetForSilo(address _silo) external view returns (address asset);
/// @notice Verifies if the borrower has debt in other silo by checking the debt share token balance
/// @param _thisSilo The address of the silo in respect of which the debt is checked
/// @param _borrower The address of the borrower for which the debt is checked
/// @return hasDebt true if the borrower has debt in other silo
function hasDebtInOtherSilo(address _thisSilo, address _borrower) external view returns (bool hasDebt);
/// @notice Retrieves the debt silo associated with a specific borrower
/// @dev This function reverts if debt present in two silo (should not happen)
/// @param _borrower The address of the borrower for which the debt silo is being retrieved
function getDebtSilo(address _borrower) external view returns (address debtSilo);
/// @notice Retrieves configuration data for both silos. First config is for the silo that is asking for configs.
/// @param borrower borrower address for which debtConfig will be returned
/// @return collateralConfig The configuration data for collateral silo (empty if there is no debt).
/// @return debtConfig The configuration data for debt silo (empty if there is no debt).
function getConfigsForSolvency(address borrower)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves configuration data for a specific silo
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return config The configuration data for the specified silo
function getConfig(address _silo) external view returns (ConfigData memory config);
/// @notice Retrieves configuration data for a specific silo for withdraw fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _silo The address of the silo for which configuration data is being retrieved
/// @return depositConfig The configuration data for the specified silo (always config for `_silo`)
/// @return collateralConfig The configuration data for the collateral silo (empty if there is no debt)
/// @return debtConfig The configuration data for the debt silo (empty if there is no debt)
function getConfigsForWithdraw(address _silo, address _borrower) external view returns (
DepositConfig memory depositConfig,
ConfigData memory collateralConfig,
ConfigData memory debtConfig
);
/// @notice Retrieves configuration data for a specific silo for borrow fn.
/// @dev This function reverts for incorrect silo address input.
/// @param _debtSilo The address of the silo for which configuration data is being retrieved
/// @return collateralConfig The configuration data for the collateral silo (always other than `_debtSilo`)
/// @return debtConfig The configuration data for the debt silo (always config for `_debtSilo`)
function getConfigsForBorrow(address _debtSilo)
external
view
returns (ConfigData memory collateralConfig, ConfigData memory debtConfig);
/// @notice Retrieves fee-related information for a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which fee-related information is being retrieved.
/// @return daoFee The DAO fee percentage in 18 decimals points.
/// @return deployerFee The deployer fee percentage in 18 decimals points.
/// @return flashloanFee The flashloan fee percentage in 18 decimals points.
/// @return asset The address of the asset associated with the specified silo.
function getFeesWithAsset(address _silo)
external
view
returns (uint256 daoFee, uint256 deployerFee, uint256 flashloanFee, address asset);
/// @notice Retrieves share tokens associated with a specific silo
/// @dev This function reverts for incorrect silo address input
/// @param _silo The address of the silo for which share tokens are being retrieved
/// @return protectedShareToken The address of the protected (non-borrowable) share token
/// @return collateralShareToken The address of the collateral share token
/// @return debtShareToken The address of the debt share token
function getShareTokens(address _silo)
external
view
returns (address protectedShareToken, address collateralShareToken, address debtShareToken);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @param _collateralType The type of collateral
/// @return shareToken The address of the share token (collateral or protected collateral)
/// @return asset The address of the silo token
function getCollateralShareTokenAndAsset(address _silo, ISilo.CollateralType _collateralType)
external
view
returns (address shareToken, address asset);
/// @notice Retrieves the share token and the silo token associated with a specific silo
/// @param _silo The address of the silo for which the share token and silo token are being retrieved
/// @return shareToken The address of the share token (debt)
/// @return asset The address of the silo token
function getDebtShareTokenAndAsset(address _silo)
external
view
returns (address shareToken, address asset);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IInterestRateModelV2Config} from "./IInterestRateModelV2Config.sol";
interface IInterestRateModelV2 {
struct Config {
// uopt ∈ (0, 1) – optimal utilization;
int256 uopt;
// ucrit ∈ (uopt, 1) – threshold of large utilization;
int256 ucrit;
// ulow ∈ (0, uopt) – threshold of low utilization
int256 ulow;
// ki > 0 – integrator gain
int256 ki;
// kcrit > 0 – proportional gain for large utilization
int256 kcrit;
// klow ≥ 0 – proportional gain for low utilization
int256 klow;
// klin ≥ 0 – coefficient of the lower linear bound
int256 klin;
// beta ≥ 0 - a scaling factor
int256 beta;
// ri ≥ 0 – initial value of the integrator
int112 ri;
// Tcrit ≥ 0 - initial value of the time during which the utilization exceeds the critical value
int112 Tcrit;
}
struct Setup {
// ri ≥ 0 – the integrator
int112 ri;
// Tcrit ≥ 0 - the time during which the utilization exceeds the critical value
int112 Tcrit;
// flag that informs if setup is initialized
bool initialized;
}
/* solhint-enable */
error AddressZero();
error DeployConfigFirst();
error AlreadyInitialized();
error InvalidBeta();
error InvalidKcrit();
error InvalidKi();
error InvalidKlin();
error InvalidKlow();
error InvalidTcrit();
error InvalidTimestamps();
error InvalidUcrit();
error InvalidUlow();
error InvalidUopt();
error InvalidRi();
/// @dev Get config for given asset in a Silo.
/// @param _silo Silo address for which config should be set
/// @return Config struct for asset in Silo
function getConfig(address _silo) external view returns (Config memory);
/// @notice get the flag to detect rcomp restriction (zero current interest) due to overflow
/// overflow boolean flag to detect rcomp restriction
function overflowDetected(address _silo, uint256 _blockTimestamp)
external
view
returns (bool overflow);
/// @dev pure function that calculates current annual interest rate
/// @param _c configuration object, IInterestRateModel.Config
/// @param _totalBorrowAmount current total borrows for asset
/// @param _totalDeposits current total deposits for asset
/// @param _interestRateTimestamp timestamp of last interest rate update
/// @param _blockTimestamp current block timestamp
/// @return rcur current annual interest rate (1e18 == 100%)
function calculateCurrentInterestRate(
Config calldata _c,
uint256 _totalDeposits,
uint256 _totalBorrowAmount,
uint256 _interestRateTimestamp,
uint256 _blockTimestamp
) external pure returns (uint256 rcur);
/// @dev pure function that calculates interest rate based on raw input data
/// @param _c configuration object, IInterestRateModel.Config
/// @param _totalBorrowAmount current total borrows for asset
/// @param _totalDeposits current total deposits for asset
/// @param _interestRateTimestamp timestamp of last interest rate update
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
/// @return ri current integral part of the rate
/// @return Tcrit time during which the utilization exceeds the critical value
/// @return overflow boolean flag to detect rcomp restriction
function calculateCompoundInterestRateWithOverflowDetection(
Config memory _c,
uint256 _totalDeposits,
uint256 _totalBorrowAmount,
uint256 _interestRateTimestamp,
uint256 _blockTimestamp
)
external
pure
returns (
uint256 rcomp,
int256 ri,
int256 Tcrit,
bool overflow
);
/// @dev pure function that calculates interest rate based on raw input data
/// @param _c configuration object, IInterestRateModel.Config
/// @param _totalBorrowAmount current total borrows for asset
/// @param _totalDeposits current total deposits for asset
/// @param _interestRateTimestamp timestamp of last interest rate update
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
/// @return ri current integral part of the rate
/// @return Tcrit time during which the utilization exceeds the critical value
function calculateCompoundInterestRate(
Config memory _c,
uint256 _totalDeposits,
uint256 _totalBorrowAmount,
uint256 _interestRateTimestamp,
uint256 _blockTimestamp
) external pure returns (uint256 rcomp, int256 ri, int256 Tcrit);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC4626, IERC20, IERC20Metadata} from "openzeppelin5/interfaces/IERC4626.sol";
import {IERC3156FlashLender} from "./IERC3156FlashLender.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISiloFactory} from "./ISiloFactory.sol";
import {IHookReceiver} from "./IHookReceiver.sol";
// solhint-disable ordering
interface ISilo is IERC20, IERC4626, IERC3156FlashLender {
/// @dev Interest accrual happens on each deposit/withdraw/borrow/repay. View methods work on storage that might be
/// outdate. Some calculations require accrued interest to return current state of Silo. This struct is used
/// to make a decision inside functions if interest should be accrued in memory to work on updated values.
enum AccrueInterestInMemory {
No,
Yes
}
/// @dev Silo has two separate oracles for solvency and maxLtv calculations. MaxLtv oracle is optional. Solvency
/// oracle can also be optional if asset is used as denominator in Silo config. For example, in ETH/USDC Silo
/// one could setup only solvency oracle for ETH that returns price in USDC. Then USDC does not need an oracle
/// because it's used as denominator for ETH and it's "price" can be assume as 1.
enum OracleType {
Solvency,
MaxLtv
}
/// @dev There are 3 types of accounting in the system: for non-borrowable collateral deposit called "protected",
/// for borrowable collateral deposit called "collateral" and for borrowed tokens called "debt". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum AssetType {
Protected, // default
Collateral,
Debt
}
/// @dev There are 2 types of accounting in the system: for non-borrowable collateral deposit called "protected" and
/// for borrowable collateral deposit called "collateral". System does
/// identical calculations for each type of accounting but it uses different data. To avoid code duplication
/// this enum is used to decide which data should be read.
enum CollateralType {
Protected, // default
Collateral
}
/// @dev Types of calls that can be made by the hook receiver on behalf of Silo via `callOnBehalfOfSilo` fn
enum CallType {
Call, // default
Delegatecall
}
/// @param _assets Amount of assets the user wishes to withdraw. Use 0 if shares are provided.
/// @param _shares Shares the user wishes to burn in exchange for the withdrawal. Use 0 if assets are provided.
/// @param _receiver Address receiving the withdrawn assets
/// @param _owner Address of the owner of the shares being burned
/// @param _spender Address executing the withdrawal; may be different than `_owner` if an allowance was set
/// @param _collateralType Type of the asset being withdrawn (Collateral or Protected)
struct WithdrawArgs {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
ISilo.CollateralType collateralType;
}
/// @param assets Number of assets the borrower intends to borrow. Use 0 if shares are provided.
/// @param shares Number of shares corresponding to the assets that the borrower intends to borrow. Use 0 if
/// assets are provided.
/// @param receiver Address that will receive the borrowed assets
/// @param borrower The user who is borrowing the assets
struct BorrowArgs {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
}
/// @param shares Amount of shares the user wishes to transit.
/// @param owner owner of the shares after transition.
/// @param transitionFrom type of collateral that will be transitioned.
struct TransitionCollateralArgs {
uint256 shares;
address owner;
ISilo.CollateralType transitionFrom;
}
struct UtilizationData {
/// @dev COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
uint256 collateralAssets;
/// @dev DEBT: Amount of asset token that has been borrowed plus accrued interest.
uint256 debtAssets;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
}
struct SiloStorage {
/// @param daoAndDeployerRevenue Current amount of assets (fees) accrued by DAO and Deployer
/// but not yet withdrawn
uint192 daoAndDeployerRevenue;
/// @dev timestamp of the last interest accrual
uint64 interestRateTimestamp;
/// @dev silo is just for one asset,
/// but this one asset can be of three types: mapping key is uint256(AssetType), so we store `assets` by type.
/// Assets based on type:
/// - PROTECTED COLLATERAL: Amount of asset token that has been deposited to Silo that can be ONLY used
/// as collateral. These deposits do NOT earn interest and CANNOT be borrowed.
/// - COLLATERAL: Amount of asset token that has been deposited to Silo plus interest earned by depositors.
/// It also includes token amount that has been borrowed.
/// - DEBT: Amount of asset token that has been borrowed plus accrued interest.
/// `totalAssets` can have outdated value (without interest), if you doing view call (of off-chain call)
/// please use getters eg `getCollateralAssets()` to fetch value that includes interest.
mapping(AssetType assetType => uint256 assets) totalAssets;
}
/// @notice Emitted on protected deposit
/// @param sender wallet address that deposited asset
/// @param owner wallet address that received shares in Silo
/// @param assets amount of asset that was deposited
/// @param shares amount of shares that was minted
event DepositProtected(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice Emitted on protected withdraw
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owned asset
/// @param assets amount of asset that was withdrew
/// @param shares amount of shares that was burn
event WithdrawProtected(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on borrow
/// @param sender wallet address that sent transaction
/// @param receiver wallet address that received asset
/// @param owner wallet address that owes assets
/// @param assets amount of asset that was borrowed
/// @param shares amount of shares that was minted
event Borrow(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Emitted on repayment
/// @param sender wallet address that repaid asset
/// @param owner wallet address that owed asset
/// @param assets amount of asset that was repaid
/// @param shares amount of shares that was burn
event Repay(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
/// @notice emitted only when collateral has been switched to other one
event CollateralTypeChanged(address indexed borrower);
event HooksUpdated(uint24 hooksBefore, uint24 hooksAfter);
event AccruedInterest(uint256 hooksBefore);
event FlashLoan(uint256 amount);
event WithdrawnFeed(uint256 daoFees, uint256 deployerFees);
error UnsupportedFlashloanToken();
error FlashloanAmountTooBig();
error NothingToWithdraw();
error NotEnoughLiquidity();
error NotSolvent();
error BorrowNotPossible();
error EarnedZero();
error FlashloanFailed();
error AboveMaxLtv();
error SiloInitialized();
error OnlyHookReceiver();
error NoLiquidity();
error InputCanBeAssetsOrShares();
error CollateralSiloAlreadySet();
error RepayTooHigh();
error ZeroAmount();
error InputZeroShares();
error ReturnZeroAssets();
error ReturnZeroShares();
/// @return siloFactory The associated factory of the silo
function factory() external view returns (ISiloFactory siloFactory);
/// @notice Method for HookReceiver only to call on behalf of Silo
/// @param _target address of the contract to call
/// @param _value amount of ETH to send
/// @param _callType type of the call (Call or Delegatecall)
/// @param _input calldata for the call
function callOnBehalfOfSilo(address _target, uint256 _value, CallType _callType, bytes calldata _input)
external
payable
returns (bool success, bytes memory result);
/// @notice Initialize Silo
/// @param _siloConfig address of ISiloConfig with full config for this Silo
function initialize(ISiloConfig _siloConfig) external;
/// @notice Update hooks configuration for Silo
/// @dev This function must be called after the hooks configuration is changed in the hook receiver
function updateHooks() external;
/// @notice Fetches the silo configuration contract
/// @return siloConfig Address of the configuration contract associated with the silo
function config() external view returns (ISiloConfig siloConfig);
/// @notice Fetches the utilization data of the silo used by IRM
function utilizationData() external view returns (UtilizationData memory utilizationData);
/// @notice Fetches the real (available to borrow) liquidity in the silo, it does include interest
/// @return liquidity The amount of liquidity
function getLiquidity() external view returns (uint256 liquidity);
/// @notice Determines if a borrower is solvent
/// @param _borrower Address of the borrower to check for solvency
/// @return True if the borrower is solvent, otherwise false
function isSolvent(address _borrower) external view returns (bool);
/// @notice Retrieves the raw total amount of assets based on provided type (direct storage access)
function getTotalAssetsStorage(AssetType _assetType) external view returns (uint256);
/// @notice Direct storage access to silo storage
/// @dev See struct `SiloStorage` for more details
function getSiloStorage()
external
view
returns (
uint192 daoAndDeployerRevenue,
uint64 interestRateTimestamp,
uint256 protectedAssets,
uint256 collateralAssets,
uint256 debtAssets
);
/// @notice Retrieves the total amount of collateral (borrowable) assets with interest
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
function getCollateralAssets() external view returns (uint256 totalCollateralAssets);
/// @notice Retrieves the total amount of debt assets with interest
/// @return totalDebtAssets The total amount of assets of type 'Debt'
function getDebtAssets() external view returns (uint256 totalDebtAssets);
/// @notice Retrieves the total amounts of collateral and protected (non-borrowable) assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalProtectedAssets The total amount of protected (non-borrowable) assets
function getCollateralAndProtectedTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets);
/// @notice Retrieves the total amounts of collateral and debt assets
/// @return totalCollateralAssets The total amount of assets of type 'Collateral'
/// @return totalDebtAssets The total amount of debt assets of type 'Debt'
function getCollateralAndDebtTotalsStorage()
external
view
returns (uint256 totalCollateralAssets, uint256 totalDebtAssets);
/// @notice Implements IERC4626.convertToShares for each asset type
function convertToShares(uint256 _assets, AssetType _assetType) external view returns (uint256 shares);
/// @notice Implements IERC4626.convertToAssets for each asset type
function convertToAssets(uint256 _shares, AssetType _assetType) external view returns (uint256 assets);
/// @notice Implements IERC4626.previewDeposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewDeposit(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.deposit for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function deposit(uint256 _assets, address _receiver, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.previewMint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewMint(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.mint for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function mint(uint256 _shares, address _receiver, CollateralType _collateralType) external returns (uint256 assets);
/// @notice Implements IERC4626.maxWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxWithdraw(address _owner, CollateralType _collateralType) external view returns (uint256 maxAssets);
/// @notice Implements IERC4626.previewWithdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewWithdraw(uint256 _assets, CollateralType _collateralType) external view returns (uint256 shares);
/// @notice Implements IERC4626.withdraw for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function withdraw(uint256 _assets, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 shares);
/// @notice Implements IERC4626.maxRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function maxRedeem(address _owner, CollateralType _collateralType) external view returns (uint256 maxShares);
/// @notice Implements IERC4626.previewRedeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function previewRedeem(uint256 _shares, CollateralType _collateralType) external view returns (uint256 assets);
/// @notice Implements IERC4626.redeem for protected (non-borrowable) collateral and collateral
/// @dev Reverts for debt asset type
function redeem(uint256 _shares, address _receiver, address _owner, CollateralType _collateralType)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrow(address _borrower) external view returns (uint256 maxAssets);
/// @notice Previews the amount of shares equivalent to the given asset amount for borrowing
/// @param _assets Amount of assets to preview the equivalent shares for
/// @return shares Amount of shares equivalent to the provided asset amount
function previewBorrow(uint256 _assets) external view returns (uint256 shares);
/// @notice Allows an address to borrow a specified amount of assets
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrow(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Calculates the maximum amount of shares that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxShares Maximum number of shares that the borrower can borrow
function maxBorrowShares(address _borrower) external view returns (uint256 maxShares);
/// @notice Previews the amount of assets equivalent to the given share amount for borrowing
/// @param _shares Amount of shares to preview the equivalent assets for
/// @return assets Amount of assets equivalent to the provided share amount
function previewBorrowShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Calculates the maximum amount of assets that can be borrowed by the given address
/// @param _borrower Address of the potential borrower
/// @return maxAssets Maximum amount of assets that the borrower can borrow, this value is underestimated
/// That means, in some cases when you borrow maxAssets, you will be able to borrow again eg. up to 2wei
/// Reason for underestimation is to return value that will not cause borrow revert
function maxBorrowSameAsset(address _borrower) external view returns (uint256 maxAssets);
/// @notice Allows an address to borrow a specified amount of assets that will be back up with deposit made with the
/// same asset
/// @param _assets Amount of assets to borrow
/// @param _receiver Address receiving the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return shares Amount of shares equivalent to the borrowed assets
function borrowSameAsset(uint256 _assets, address _receiver, address _borrower)
external returns (uint256 shares);
/// @notice Allows a user to borrow assets based on the provided share amount
/// @param _shares Amount of shares to borrow against
/// @param _receiver Address to receive the borrowed assets
/// @param _borrower Address responsible for the borrowed assets
/// @return assets Amount of assets borrowed
function borrowShares(uint256 _shares, address _receiver, address _borrower)
external
returns (uint256 assets);
/// @notice Calculates the maximum amount an address can repay based on their debt shares
/// @param _borrower Address of the borrower
/// @return assets Maximum amount of assets the borrower can repay
function maxRepay(address _borrower) external view returns (uint256 assets);
/// @notice Provides an estimation of the number of shares equivalent to a given asset amount for repayment
/// @param _assets Amount of assets to be repaid
/// @return shares Estimated number of shares equivalent to the provided asset amount
function previewRepay(uint256 _assets) external view returns (uint256 shares);
/// @notice Repays a given asset amount and returns the equivalent number of shares
/// @param _assets Amount of assets to be repaid
/// @param _borrower Address of the borrower whose debt is being repaid
/// @return shares The equivalent number of shares for the provided asset amount
function repay(uint256 _assets, address _borrower) external returns (uint256 shares);
/// @notice Calculates the maximum number of shares that can be repaid for a given borrower
/// @param _borrower Address of the borrower
/// @return shares The maximum number of shares that can be repaid for the borrower
function maxRepayShares(address _borrower) external view returns (uint256 shares);
/// @notice Provides a preview of the equivalent assets for a given number of shares to repay
/// @param _shares Number of shares to preview repayment for
/// @return assets Equivalent assets for the provided shares
function previewRepayShares(uint256 _shares) external view returns (uint256 assets);
/// @notice Allows a user to repay a loan using shares instead of assets
/// @param _shares The number of shares the borrower wants to repay with
/// @param _borrower The address of the borrower for whom to repay the loan
/// @return assets The equivalent assets amount for the provided shares
function repayShares(uint256 _shares, address _borrower) external returns (uint256 assets);
/// @notice Transitions assets between borrowable (collateral) and non-borrowable (protected) states
/// @dev This function allows assets to move between collateral and protected (non-borrowable) states without
/// leaving the protocol
/// @param _shares Amount of shares to be transitioned
/// @param _owner Owner of the assets being transitioned
/// @param _transitionFrom Specifies if the transition is from collateral or protected assets
/// @return assets Amount of assets transitioned
function transitionCollateral(uint256 _shares, address _owner, CollateralType _transitionFrom)
external
returns (uint256 assets);
/// @notice Switches the collateral silo to this silo
/// @dev Revert if the collateral silo is already set
function switchCollateralToThisSilo() external;
/// @notice Accrues interest for the asset and returns the accrued interest amount
/// @return accruedInterest The total interest accrued during this operation
function accrueInterest() external returns (uint256 accruedInterest);
/// @notice only for SiloConfig
function accrueInterestForConfig(
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) external;
/// @notice Withdraws earned fees and distributes them to the DAO and deployer fee receivers
function withdrawFees() external;
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
import {ISilo} from "./ISilo.sol";
interface IShareToken is IERC20Metadata {
struct HookSetup {
/// @param this is the same as in siloConfig
address hookReceiver;
/// @param hooks bitmap
uint24 hooksBefore;
/// @param hooks bitmap
uint24 hooksAfter;
/// @param tokenType must be one of this hooks values: COLLATERAL_TOKEN, PROTECTED_TOKEN, DEBT_TOKEN
uint24 tokenType;
}
struct ShareTokenStorage {
/// @notice Silo address for which tokens was deployed
ISilo silo;
/// @dev cached silo config address
ISiloConfig siloConfig;
/// @notice Copy of hooks setup from SiloConfig for optimisation purposes
HookSetup hookSetup;
bool transferWithChecks;
}
/// @notice Emitted every time receiver is notified about token transfer
/// @param notificationReceiver receiver address
/// @param success false if TX reverted on `notificationReceiver` side, otherwise true
event NotificationSent(address indexed notificationReceiver, bool success);
error OnlySilo();
error OnlySiloConfig();
error OwnerIsZero();
error RecipientIsZero();
error AmountExceedsAllowance();
error RecipientNotSolventAfterTransfer();
error SenderNotSolventAfterTransfer();
error ZeroTransfer();
/// @notice method for SiloConfig to synchronize hooks
/// @param _hooksBefore hooks bitmap to trigger hooks BEFORE action
/// @param _hooksAfter hooks bitmap to trigger hooks AFTER action
function synchronizeHooks(uint24 _hooksBefore, uint24 _hooksAfter) external;
/// @notice Mint method for Silo to create debt
/// @param _owner wallet for which to mint token
/// @param _spender wallet that asks for mint
/// @param _amount amount of token to be minted
function mint(address _owner, address _spender, uint256 _amount) external;
/// @notice Burn method for Silo to close debt
/// @param _owner wallet for which to burn token
/// @param _spender wallet that asks for burn
/// @param _amount amount of token to be burned
function burn(address _owner, address _spender, uint256 _amount) external;
/// @notice TransferFrom method for liquidation
/// @param _from wallet from which we transferring tokens
/// @param _to wallet that will get tokens
/// @param _amount amount of token to transfer
function forwardTransferFromNoChecks(address _from, address _to, uint256 _amount) external;
/// @dev Returns the amount of tokens owned by `account`.
/// @param _account address for which to return data
/// @return balance of the _account
/// @return totalSupply total supply of the token
function balanceOfAndTotalSupply(address _account) external view returns (uint256 balance, uint256 totalSupply);
/// @notice Returns silo address for which token was deployed
/// @return silo address
function silo() external view returns (ISilo silo);
function siloConfig() external view returns (ISiloConfig silo);
/// @notice Returns hook setup
function hookSetup() external view returns (HookSetup memory);
/// @notice Returns hook receiver address
function hookReceiver() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IERC3156FlashBorrower {
/// @notice During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Receive a flash loan.
/// @param _initiator The initiator of the loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _fee The additional amount of tokens to repay.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
/// @return The keccak256 hash of "ERC3156FlashBorrower.onFlashLoan"
function onFlashLoan(address _initiator, address _token, uint256 _amount, uint256 _fee, bytes calldata _data)
external
returns (bytes32);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {ISiloConfig} from "./ISiloConfig.sol";
interface IHookReceiver {
struct HookConfig {
uint24 hooksBefore;
uint24 hooksAfter;
}
event HookConfigured(address silo, uint24 hooksBefore, uint24 hooksAfter);
/// @notice Initialize a hook receiver
/// @param _siloConfig Silo configuration with all the details about the silo
/// @param _data Data to initialize the hook receiver (if needed)
function initialize(ISiloConfig _siloConfig, bytes calldata _data) external;
/// @notice state of Silo before action, can be also without interest, if you need them, call silo.accrueInterest()
function beforeAction(address _silo, uint256 _action, bytes calldata _input) external;
function afterAction(address _silo, uint256 _action, bytes calldata _inputAndOutput) external;
/// @notice return hooksBefore and hooksAfter configuration
function hookReceiverConfig(address _silo) external view returns (uint24 hooksBefore, uint24 hooksAfter);
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {SiloSolvencyLib} from "./SiloSolvencyLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {SiloStdLib} from "./SiloStdLib.sol";
import {SiloLendingLib} from "./SiloLendingLib.sol";
import {Rounding} from "./Rounding.sol";
import {Hook} from "./Hook.sol";
import {ShareTokenLib} from "./ShareTokenLib.sol";
import {SiloStorageLib} from "./SiloStorageLib.sol";
// solhint-disable function-max-lines
library SiloERC4626Lib {
using SafeERC20 for IERC20;
using Math for uint256;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @dev ERC4626: MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be
/// deposited. In our case, we want to limit this value in a way, that after max deposit we can do borrow.
/// That's why we decided to go with type(uint128).max - which is anyway high enough to consume any totalSupply
uint256 internal constant _VIRTUAL_DEPOSIT_LIMIT = type(uint256).max;
/// @notice Deposit assets into the silo
/// @param _token The ERC20 token address being deposited; 0 means tokens will not be transferred. Useful for
/// transition of collateral.
/// @param _depositor Address of the user depositing the assets
/// @param _assets Amount of assets being deposited. Use 0 if shares are provided.
/// @param _shares Shares being exchanged for the deposit; used for precise calculations. Use 0 if assets are
/// provided.
/// @param _receiver The address that will receive the collateral shares
/// @param _collateralShareToken The collateral share token
/// @param _collateralType The type of collateral being deposited
/// @return assets The exact amount of assets being deposited
/// @return shares The exact number of collateral shares being minted in exchange for the deposited assets
function deposit(
address _token,
address _depositor,
uint256 _assets,
uint256 _shares,
address _receiver,
IShareToken _collateralShareToken,
ISilo.CollateralType _collateralType
) internal returns (uint256 assets, uint256 shares) {
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 totalAssets = $.totalAssets[ISilo.AssetType(uint256(_collateralType))];
(assets, shares) = SiloMathLib.convertToAssetsOrToShares(
_assets,
_shares,
totalAssets,
_collateralShareToken.totalSupply(),
Rounding.DEPOSIT_TO_ASSETS,
Rounding.DEPOSIT_TO_SHARES,
ISilo.AssetType(uint256(_collateralType))
);
$.totalAssets[ISilo.AssetType(uint256(_collateralType))] = totalAssets + assets;
// Hook receiver is called after `mint` and can reentry but state changes are completed already,
// and reentrancy protection is still enabled.
_collateralShareToken.mint(_receiver, _depositor, shares);
if (_token != address(0)) {
// Reentrancy is possible only for view methods (read-only reentrancy),
// so no harm can be done as the state is already updated.
// We do not expect the silo to work with any malicious token that will not send tokens to silo.
IERC20(_token).safeTransferFrom(_depositor, address(this), assets);
}
}
/// @notice Withdraw assets from the silo
/// @dev Asset type is not verified here, make sure you revert before when type == Debt
/// @param _asset The ERC20 token address to withdraw; 0 means tokens will not be transferred. Useful for
/// transition of collateral.
/// @param _shareToken Address of the share token being burned for withdrawal
/// @param _args ISilo.WithdrawArgs
/// @return assets The exact amount of assets withdrawn
/// @return shares The exact number of shares burned in exchange for the withdrawn assets
function withdraw(
address _asset,
address _shareToken,
ISilo.WithdrawArgs memory _args
) internal returns (uint256 assets, uint256 shares) {
uint256 shareTotalSupply = IShareToken(_shareToken).totalSupply();
require(shareTotalSupply != 0, ISilo.NothingToWithdraw());
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
{ // Stack too deep
uint256 totalAssets = $.totalAssets[ISilo.AssetType(uint256(_args.collateralType))];
(assets, shares) = SiloMathLib.convertToAssetsOrToShares(
_args.assets,
_args.shares,
totalAssets,
shareTotalSupply,
Rounding.WITHDRAW_TO_ASSETS,
Rounding.WITHDRAW_TO_SHARES,
ISilo.AssetType(uint256(_args.collateralType))
);
uint256 liquidity = _args.collateralType == ISilo.CollateralType.Collateral
? SiloMathLib.liquidity($.totalAssets[ISilo.AssetType.Collateral], $.totalAssets[ISilo.AssetType.Debt])
: $.totalAssets[ISilo.AssetType.Protected];
// check liquidity
require(assets <= liquidity, ISilo.NotEnoughLiquidity());
$.totalAssets[ISilo.AssetType(uint256(_args.collateralType))] = totalAssets - assets;
}
// `burn` checks if `_spender` is allowed to withdraw `_owner` assets. `burn` calls hook receiver
// after tokens transfer and can potentially reenter, but state changes are already completed,
// and reentrancy protection is still enabled.
IShareToken(_shareToken).burn(_args.owner, _args.spender, shares);
if (_asset != address(0)) {
// fee-on-transfer is ignored
IERC20(_asset).safeTransfer(_args.receiver, assets);
}
}
/// @notice Determines the maximum amount a user can withdraw, either in terms of assets or shares
/// @dev The function computes the maximum withdrawable assets and shares, considering user's collateral, debt,
/// and the liquidity in the silo.
/// Debt withdrawals are not allowed, resulting in a revert if such an attempt is made.
/// @param _owner Address of the user for which the maximum withdrawal amount is calculated
/// @param _collateralType The type of asset being considered for withdrawal
/// @param _totalAssets The total PROTECTED assets in the silo. In case of collateral use `0`, total
/// collateral will be calculated internally with interest
/// @return assets The maximum assets that the user can withdraw
/// @return shares The maximum shares that the user can withdraw
function maxWithdraw(
address _owner,
ISilo.CollateralType _collateralType,
uint256 _totalAssets
) internal view returns (uint256 assets, uint256 shares) {
(
ISiloConfig.DepositConfig memory depositConfig,
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = ShareTokenLib.siloConfig().getConfigsForWithdraw(address(this), _owner);
uint256 shareTokenTotalSupply;
uint256 liquidity;
if (_collateralType == ISilo.CollateralType.Collateral) {
shareTokenTotalSupply = IShareToken(depositConfig.collateralShareToken).totalSupply();
(liquidity, _totalAssets, ) = SiloLendingLib.getLiquidityAndAssetsWithInterest(
depositConfig.interestRateModel,
depositConfig.daoFee,
depositConfig.deployerFee
);
} else {
shareTokenTotalSupply = IShareToken(depositConfig.protectedShareToken).totalSupply();
liquidity = _totalAssets;
}
if (depositConfig.silo != collateralConfig.silo) {
shares = _collateralType == ISilo.CollateralType.Protected
? IShareToken(depositConfig.protectedShareToken).balanceOf(_owner)
: IShareToken(depositConfig.collateralShareToken).balanceOf(_owner);
assets = SiloMathLib.convertToAssets(
shares,
_totalAssets,
shareTokenTotalSupply,
Rounding.MAX_WITHDRAW_TO_ASSETS,
ISilo.AssetType(uint256(_collateralType))
);
if (_collateralType == ISilo.CollateralType.Protected || assets <= liquidity) return (assets, shares);
assets = liquidity;
shares = SiloMathLib.convertToShares(
assets,
_totalAssets,
shareTokenTotalSupply,
// when we doing withdraw, we using Rounding.Ceil, because we want to burn as many shares
// however here, we will be using shares as input to withdraw, if we round up, we can overflow
// because we will want to withdraw too much, so we have to use Rounding.Floor
Rounding.MAX_WITHDRAW_TO_SHARES,
ISilo.AssetType.Collateral
);
return (assets, shares);
} else {
return maxWithdrawWhenDebt(
collateralConfig, debtConfig, _owner, liquidity, shareTokenTotalSupply, _collateralType, _totalAssets
);
}
}
function maxWithdrawWhenDebt(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _owner,
uint256 _liquidity,
uint256 _shareTokenTotalSupply,
ISilo.CollateralType _collateralType,
uint256 _totalAssets
) internal view returns (uint256 assets, uint256 shares) {
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations(
_collateralConfig,
_debtConfig,
_owner,
ISilo.OracleType.Solvency,
ISilo.AccrueInterestInMemory.Yes,
IShareToken(_debtConfig.debtShareToken).balanceOf(_owner)
);
{
(uint256 collateralValue, uint256 debtValue) =
SiloSolvencyLib.getPositionValues(ltvData, _collateralConfig.token, _debtConfig.token);
assets = SiloMathLib.calculateMaxAssetsToWithdraw(
collateralValue,
debtValue,
_collateralConfig.lt,
ltvData.borrowerProtectedAssets,
ltvData.borrowerCollateralAssets
);
}
(assets, shares) = SiloMathLib.maxWithdrawToAssetsAndShares(
assets,
ltvData.borrowerCollateralAssets,
ltvData.borrowerProtectedAssets,
_collateralType,
_totalAssets,
_shareTokenTotalSupply,
_liquidity
);
if (assets != 0) {
// recalculate assets due to rounding error that we have in convertToShares
assets = SiloMathLib.convertToAssets(
shares,
_totalAssets,
_shareTokenTotalSupply,
Rounding.MAX_WITHDRAW_TO_ASSETS,
ISilo.AssetType(uint256(_collateralType))
);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {SiloStdLib, ISiloConfig, IShareToken, ISilo} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";
library SiloSolvencyLib {
using Math for uint256;
struct LtvData {
ISiloOracle collateralOracle;
ISiloOracle debtOracle;
uint256 borrowerProtectedAssets;
uint256 borrowerCollateralAssets;
uint256 borrowerDebtAssets;
}
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _INFINITY = type(uint256).max;
/// @notice Determines if a borrower is solvent based on the Loan-to-Value (LTV) ratio
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check solvency for
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower is solvent, false otherwise
function isSolvent(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
if (_debtConfig.silo == address(0)) return true; // no debt, so solvent
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.Solvency,
_accrueInMemory,
IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower)
);
return ltv <= _collateralConfig.lt;
}
/// @notice Determines if a borrower's Loan-to-Value (LTV) ratio is below the maximum allowed LTV
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower to check against max LTV
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return True if the borrower's LTV is below the maximum, false otherwise
function isBelowMaxLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.AccrueInterestInMemory _accrueInMemory
) internal view returns (bool) {
uint256 debtShareBalance = IShareToken(_debtConfig.debtShareToken).balanceOf(_borrower);
if (debtShareBalance == 0) return true;
uint256 ltv = getLtv(
_collateralConfig,
_debtConfig,
_borrower,
ISilo.OracleType.MaxLtv,
_accrueInMemory,
debtShareBalance
);
return ltv <= _collateralConfig.maxLtv;
}
/// @notice Retrieves assets data required for LTV calculations
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower Address of the borrower whose LTV data is to be calculated
/// @param _oracleType Specifies whether to use the MaxLTV or Solvency oracle type for calculations
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @param _debtShareBalanceCached Cached value of debt share balance for the borrower. If debt shares of
/// `_borrower` is unknown, simply pass `0`.
/// @return ltvData Data structure containing necessary data to compute LTV
function getAssetsDataForLtvCalculations( // solhint-disable-line function-max-lines
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalanceCached
) internal view returns (LtvData memory ltvData) {
if (_collateralConfig.token != _debtConfig.token) {
// When calculating maxLtv, use maxLtv oracle.
(ltvData.collateralOracle, ltvData.debtOracle) = _oracleType == ISilo.OracleType.MaxLtv
? (ISiloOracle(_collateralConfig.maxLtvOracle), ISiloOracle(_debtConfig.maxLtvOracle))
: (ISiloOracle(_collateralConfig.solvencyOracle), ISiloOracle(_debtConfig.solvencyOracle));
}
uint256 totalShares;
uint256 shares;
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.protectedShareToken, _borrower, 0 /* no cache */
);
(
uint256 totalCollateralAssets, uint256 totalProtectedAssets
) = ISilo(_collateralConfig.silo).getCollateralAndProtectedTotalsStorage();
ltvData.borrowerProtectedAssets = SiloMathLib.convertToAssets(
shares, totalProtectedAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Protected
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_collateralConfig.collateralShareToken, _borrower, 0 /* no cache */
);
totalCollateralAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalCollateralAssetsWithInterest(
_collateralConfig.silo,
_collateralConfig.interestRateModel,
_collateralConfig.daoFee,
_collateralConfig.deployerFee
)
: totalCollateralAssets;
ltvData.borrowerCollateralAssets = SiloMathLib.convertToAssets(
shares, totalCollateralAssets, totalShares, Rounding.COLLATERAL_TO_ASSETS, ISilo.AssetType.Collateral
);
(shares, totalShares) = SiloStdLib.getSharesAndTotalSupply(
_debtConfig.debtShareToken, _borrower, _debtShareBalanceCached
);
uint256 totalDebtAssets = _accrueInMemory == ISilo.AccrueInterestInMemory.Yes
? SiloStdLib.getTotalDebtAssetsWithInterest(_debtConfig.silo, _debtConfig.interestRateModel)
: ISilo(_debtConfig.silo).getTotalAssetsStorage(ISilo.AssetType.Debt);
// BORROW value -> to assets -> UP
ltvData.borrowerDebtAssets = SiloMathLib.convertToAssets(
shares, totalDebtAssets, totalShares, Rounding.DEBT_TO_ASSETS, ISilo.AssetType.Debt
);
}
/// @notice Calculates the Loan-To-Value (LTV) ratio for a given borrower
/// @param _collateralConfig Configuration data related to the collateral asset
/// @param _debtConfig Configuration data related to the debt asset
/// @param _borrower Address of the borrower whose LTV is to be computed
/// @param _oracleType Oracle type to use for fetching the asset prices
/// @param _accrueInMemory Determines whether or not to consider un-accrued interest in calculations
/// @return ltvInDp The computed LTV ratio in 18 decimals precision
function getLtv(
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
ISilo.OracleType _oracleType,
ISilo.AccrueInterestInMemory _accrueInMemory,
uint256 _debtShareBalance
) internal view returns (uint256 ltvInDp) {
if (_debtShareBalance == 0) return 0;
LtvData memory ltvData = getAssetsDataForLtvCalculations(
_collateralConfig, _debtConfig, _borrower, _oracleType, _accrueInMemory, _debtShareBalance
);
if (ltvData.borrowerDebtAssets == 0) return 0;
(,, ltvInDp) = calculateLtv(ltvData, _collateralConfig.token, _debtConfig.token);
}
/// @notice Calculates the Loan-to-Value (LTV) ratio based on provided collateral and debt data
/// @dev calculation never reverts, if there is revert, then it is because of oracle
/// @param _ltvData Data structure containing relevant information to calculate LTV
/// @param _collateralToken Address of the collateral token
/// @param _debtAsset Address of the debt token
/// @return sumOfBorrowerCollateralValue Total value of borrower's collateral
/// @return totalBorrowerDebtValue Total debt value for the borrower
/// @return ltvInDp Calculated LTV in 18 decimal precision
function calculateLtv(
SiloSolvencyLib.LtvData memory _ltvData, address _collateralToken, address _debtAsset)
internal
view
returns (uint256 sumOfBorrowerCollateralValue, uint256 totalBorrowerDebtValue, uint256 ltvInDp)
{
(
sumOfBorrowerCollateralValue, totalBorrowerDebtValue
) = getPositionValues(_ltvData, _collateralToken, _debtAsset);
if (sumOfBorrowerCollateralValue == 0 && totalBorrowerDebtValue == 0) {
return (0, 0, 0);
} else if (sumOfBorrowerCollateralValue == 0) {
ltvInDp = _INFINITY;
} else {
ltvInDp = ltvMath(totalBorrowerDebtValue, sumOfBorrowerCollateralValue);
}
}
/// @notice Computes the value of collateral and debt based on given LTV data and asset addresses
/// @param _ltvData Data structure containing the assets data required for LTV calculations
/// @param _collateralAsset Address of the collateral asset
/// @param _debtAsset Address of the debt asset
/// @return sumOfCollateralValue Total value of collateral assets considering both protected and regular collateral
/// assets
/// @return debtValue Total value of debt assets
function getPositionValues(LtvData memory _ltvData, address _collateralAsset, address _debtAsset)
internal
view
returns (uint256 sumOfCollateralValue, uint256 debtValue)
{
uint256 sumOfCollateralAssets;
sumOfCollateralAssets = _ltvData.borrowerProtectedAssets + _ltvData.borrowerCollateralAssets;
if (sumOfCollateralAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
sumOfCollateralValue = address(_ltvData.collateralOracle) != address(0)
? _ltvData.collateralOracle.quote(sumOfCollateralAssets, _collateralAsset)
: sumOfCollateralAssets;
}
if (_ltvData.borrowerDebtAssets != 0) {
// if no oracle is set, assume price 1, we should also not set oracle for quote token
debtValue = address(_ltvData.debtOracle) != address(0)
? _ltvData.debtOracle.quote(_ltvData.borrowerDebtAssets, _debtAsset)
: _ltvData.borrowerDebtAssets;
}
}
function ltvMath(uint256 _totalBorrowerDebtValue, uint256 _sumOfBorrowerCollateralValue)
internal
pure
returns (uint256 ltvInDp)
{
ltvInDp = _totalBorrowerDebtValue.mulDiv(_PRECISION_DECIMALS, _sumOfBorrowerCollateralValue, Rounding.LTV);
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {SiloSolvencyLib} from "./SiloSolvencyLib.sol";
import {SiloStdLib} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";
import {ShareTokenLib} from "./ShareTokenLib.sol";
import {SiloStorageLib} from "./SiloStorageLib.sol";
library SiloLendingLib {
using SafeERC20 for IERC20;
using Math for uint256;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @notice Allows repaying borrowed assets either partially or in full
/// @param _debtShareToken debt share token address
/// @param _debtAsset underlying debt asset address
/// @param _assets The amount of assets to repay. Use 0 if shares are used.
/// @param _shares The number of corresponding shares associated with the debt. Use 0 if assets are used.
/// @param _borrower The account that has the debt
/// @param _repayer The account that is repaying the debt
/// @return assets The amount of assets that was repaid
/// @return shares The corresponding number of debt shares that were repaid
function repay(
IShareToken _debtShareToken,
address _debtAsset,
uint256 _assets,
uint256 _shares,
address _borrower,
address _repayer
) internal returns (uint256 assets, uint256 shares) {
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt];
(uint256 debtSharesBalance, uint256 totalDebtShares) = _debtShareToken.balanceOfAndTotalSupply(_borrower);
(assets, shares) = SiloMathLib.convertToAssetsOrToShares({
_assets: _assets,
_shares: _shares,
_totalAssets: totalDebtAssets,
_totalShares: totalDebtShares,
_roundingToAssets: Rounding.REPAY_TO_ASSETS,
_roundingToShares: Rounding.REPAY_TO_SHARES,
_assetType: ISilo.AssetType.Debt
});
if (shares > debtSharesBalance) {
shares = debtSharesBalance;
(assets, shares) = SiloMathLib.convertToAssetsOrToShares({
_assets: 0,
_shares: shares,
_totalAssets: totalDebtAssets,
_totalShares: totalDebtShares,
_roundingToAssets: Rounding.REPAY_TO_ASSETS,
_roundingToShares: Rounding.REPAY_TO_SHARES,
_assetType: ISilo.AssetType.Debt
});
}
require(totalDebtAssets >= assets, ISilo.RepayTooHigh());
// subtract repayment from debt, save to unchecked because of above `totalDebtAssets < assets`
unchecked { $.totalAssets[ISilo.AssetType.Debt] = totalDebtAssets - assets; }
// Anyone can repay anyone's debt so no approval check is needed.
_debtShareToken.burn(_borrower, _repayer, shares);
// fee-on-transfer is ignored
// Reentrancy is possible only for view methods (read-only reentrancy),
// so no harm can be done as the state is already updated.
// We do not expect the silo to work with any malicious token that will not send tokens back.
IERC20(_debtAsset).safeTransferFrom(_repayer, address(this), assets);
}
/// @notice Accrues interest on assets, updating the collateral and debt balances
/// @dev This method will accrue interest for ONE asset ONLY, to calculate for both silos you have to call it twice
/// with `_configData` for each token
/// @param _interestRateModel The address of the interest rate model to calculate the compound interest rate
/// @param _daoFee DAO's fee in 18 decimals points
/// @param _deployerFee Deployer's fee in 18 decimals points
/// @return accruedInterest The total amount of interest accrued
function accrueInterestForAsset(address _interestRateModel, uint256 _daoFee, uint256 _deployerFee)
external
returns (uint256 accruedInterest)
{
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint64 lastTimestamp = $.interestRateTimestamp;
// Interest has already been accrued this block
if (lastTimestamp == block.timestamp) {
return 0;
}
// This is the first time, so we can return early and save some gas
if (lastTimestamp == 0) {
$.interestRateTimestamp = uint64(block.timestamp);
return 0;
}
uint256 totalFees;
uint256 totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt];
uint256 rcomp;
try
IInterestRateModel(_interestRateModel).getCompoundInterestRateAndUpdate(
totalCollateralAssets,
totalDebtAssets,
lastTimestamp
)
returns (uint256 interestRate)
{
rcomp = interestRate;
} catch {
// do not lock silo on interest calculation
emit IInterestRateModel.InterestRateModelError();
}
(
$.totalAssets[ISilo.AssetType.Collateral], $.totalAssets[ISilo.AssetType.Debt], totalFees, accruedInterest
) = SiloMathLib.getCollateralAmountsWithInterest(
totalCollateralAssets,
totalDebtAssets,
rcomp,
_daoFee,
_deployerFee
);
// update remaining contract state
$.interestRateTimestamp = uint64(block.timestamp);
// we operating on chunks (fees) of real tokens, so overflow should not happen
// fee is simply too small to overflow on cast to uint192, even if, we will get lower fee
unchecked { $.daoAndDeployerRevenue += uint192(totalFees); }
}
/// @notice Allows a user or a delegate to borrow assets against their collateral
/// @dev The function checks for necessary conditions such as borrow possibility, enough liquidity, and zero
/// values
/// @param _debtShareToken address of debt share token
/// @param _token address of underlying debt token
/// @param _spender Address which initiates the borrowing action on behalf of the borrower
/// @return borrowedAssets Actual number of assets that the user has borrowed
/// @return borrowedShares Number of debt share tokens corresponding to the borrowed assets
function borrow(
address _debtShareToken,
address _token,
address _spender,
ISilo.BorrowArgs memory _args
)
internal
returns (uint256 borrowedAssets, uint256 borrowedShares)
{
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt];
(borrowedAssets, borrowedShares) = SiloMathLib.convertToAssetsOrToShares(
_args.assets,
_args.shares,
totalDebtAssets,
IShareToken(_debtShareToken).totalSupply(),
Rounding.BORROW_TO_ASSETS,
Rounding.BORROW_TO_SHARES,
ISilo.AssetType.Debt
);
uint256 totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
require(
_token == address(0) || borrowedAssets <= SiloMathLib.liquidity(totalCollateralAssets, totalDebtAssets),
ISilo.NotEnoughLiquidity()
);
// add new debt
$.totalAssets[ISilo.AssetType.Debt] = totalDebtAssets + borrowedAssets;
// `mint` checks if _spender is allowed to borrow on the account of _borrower.
IShareToken(_debtShareToken).mint(_args.borrower, _spender, borrowedShares);
if (_token != address(0)) {
// fee-on-transfer is ignored.
IERC20(_token).safeTransfer(_args.receiver, borrowedAssets);
}
}
/// @notice Determines the maximum amount (both in assets and shares) that a borrower can borrow
/// @param _collateralConfig Configuration data for the collateral
/// @param _debtConfig Configuration data for the debt
/// @param _borrower The address of the borrower whose maximum borrow limit is being queried
/// @param _totalDebtAssets The total debt assets in the system
/// @param _totalDebtShares The total debt shares in the system
/// @param _siloConfig address of SiloConfig contract
/// @return assets The maximum amount in assets that can be borrowed
/// @return shares The equivalent amount in shares for the maximum assets that can be borrowed
function calculateMaxBorrow( // solhint-disable-line function-max-lines
ISiloConfig.ConfigData memory _collateralConfig,
ISiloConfig.ConfigData memory _debtConfig,
address _borrower,
uint256 _totalDebtAssets,
uint256 _totalDebtShares,
ISiloConfig _siloConfig
)
internal
view
returns (uint256 assets, uint256 shares)
{
SiloSolvencyLib.LtvData memory ltvData = SiloSolvencyLib.getAssetsDataForLtvCalculations({
_collateralConfig: _collateralConfig,
_debtConfig: _debtConfig,
_borrower: _borrower,
_oracleType: ISilo.OracleType.MaxLtv,
_accrueInMemory: ISilo.AccrueInterestInMemory.Yes,
_debtShareBalanceCached: 0 /* no cache */
});
(
uint256 sumOfBorrowerCollateralValue, uint256 borrowerDebtValue
) = SiloSolvencyLib.getPositionValues(ltvData, _collateralConfig.token, _debtConfig.token);
uint256 maxBorrowValue = SiloMathLib.calculateMaxBorrowValue(
_collateralConfig.maxLtv,
sumOfBorrowerCollateralValue,
borrowerDebtValue
);
(assets, shares) = maxBorrowValueToAssetsAndShares({
_maxBorrowValue: maxBorrowValue,
_debtAsset: _debtConfig.token,
_debtOracle: ltvData.debtOracle,
_totalDebtAssets: _totalDebtAssets,
_totalDebtShares: _totalDebtShares
});
if (assets == 0 || shares == 0) return (0, 0);
uint256 liquidityWithInterest = getLiquidity(_siloConfig);
if (assets > liquidityWithInterest) {
assets = liquidityWithInterest;
// rounding must follow same flow as in `maxBorrowValueToAssetsAndShares()`
shares = SiloMathLib.convertToShares(
assets,
_totalDebtAssets,
_totalDebtShares,
Rounding.MAX_BORROW_TO_SHARES,
ISilo.AssetType.Debt
);
}
}
function maxBorrow(address _borrower, bool _sameAsset)
internal
view
returns (uint256 maxAssets, uint256 maxShares)
{
ISiloConfig siloConfig = ShareTokenLib.siloConfig();
if (siloConfig.hasDebtInOtherSilo(address(this), _borrower)) return (0, 0);
ISiloConfig.ConfigData memory collateralConfig;
ISiloConfig.ConfigData memory debtConfig;
if (_sameAsset) {
debtConfig = siloConfig.getConfig(address(this));
collateralConfig = debtConfig;
} else {
(collateralConfig, debtConfig) = siloConfig.getConfigsForBorrow({_debtSilo: address(this)});
}
(uint256 totalDebtAssets, uint256 totalDebtShares) =
SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(debtConfig, ISilo.AssetType.Debt);
return calculateMaxBorrow(
collateralConfig,
debtConfig,
_borrower,
totalDebtAssets,
totalDebtShares,
siloConfig
);
}
function getLiquidity(ISiloConfig _siloConfig) internal view returns (uint256 liquidity) {
ISiloConfig.ConfigData memory config = _siloConfig.getConfig(address(this));
(liquidity,,) = getLiquidityAndAssetsWithInterest(config.interestRateModel, config.daoFee, config.deployerFee);
}
function getLiquidityAndAssetsWithInterest(address _interestRateModel, uint256 _daoFee, uint256 _deployerFee)
internal
view
returns (uint256 liquidity, uint256 totalCollateralAssets, uint256 totalDebtAssets)
{
totalCollateralAssets = SiloStdLib.getTotalCollateralAssetsWithInterest(
address(this),
_interestRateModel,
_daoFee,
_deployerFee
);
totalDebtAssets = SiloStdLib.getTotalDebtAssetsWithInterest(
address(this),
_interestRateModel
);
liquidity = SiloMathLib.liquidity(totalCollateralAssets, totalDebtAssets);
}
/// @notice Calculates the maximum borrowable assets and shares
/// @param _maxBorrowValue The maximum value that can be borrowed by the user
/// @param _debtAsset Address of the debt token
/// @param _debtOracle Oracle used to get the value of the debt token
/// @param _totalDebtAssets Total assets of the debt
/// @param _totalDebtShares Total shares of the debt
/// @return assets Maximum borrowable assets
/// @return shares Maximum borrowable shares
function maxBorrowValueToAssetsAndShares(
uint256 _maxBorrowValue,
address _debtAsset,
ISiloOracle _debtOracle,
uint256 _totalDebtAssets,
uint256 _totalDebtShares
)
internal
view
returns (uint256 assets, uint256 shares)
{
if (_maxBorrowValue == 0) {
return (0, 0);
}
uint256 debtTokenSample = _PRECISION_DECIMALS;
uint256 debtSampleValue = address(_debtOracle) == address(0)
? debtTokenSample
: _debtOracle.quote(debtTokenSample, _debtAsset);
assets = _maxBorrowValue.mulDiv(debtTokenSample, debtSampleValue, Rounding.MAX_BORROW_TO_ASSETS);
// when we borrow, we convertToShares with rounding.Up, to create higher debt, however here,
// when we want to calculate "max borrow", we can not round.Up, because it can create issue with max ltv,
// because we not creating debt here, we calculating max assets/shares, so we need to round.Down here
shares = SiloMathLib.convertToShares(
assets, _totalDebtAssets, _totalDebtShares, Rounding.MAX_BORROW_TO_SHARES, ISilo.AssetType.Debt
);
// we need to recalculate assets, because what we did above is assets => shares with rounding down, but when
// we input assets, they will generate more shares, so we need to calculate assets based on final shares
// not based on borrow value
assets = SiloMathLib.convertToAssets(
shares, _totalDebtAssets, _totalDebtShares, Rounding.MAX_BORROW_TO_ASSETS, ISilo.AssetType.Debt
);
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {SafeERC20} from "openzeppelin5/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IInterestRateModel} from "../interfaces/IInterestRateModel.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
library SiloStdLib {
using SafeERC20 for IERC20;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
/// @notice Returns flash fee amount
/// @param _config address of config contract for Silo
/// @param _token for which fee is calculated
/// @param _amount for which fee is calculated
/// @return fee flash fee amount
function flashFee(ISiloConfig _config, address _token, uint256 _amount) internal view returns (uint256 fee) {
if (_amount == 0) return 0;
// all user set fees are in 18 decimals points
(,, uint256 flashloanFee, address asset) = _config.getFeesWithAsset(address(this));
require(_token == asset, ISilo.UnsupportedFlashloanToken());
if (flashloanFee == 0) return 0;
require(type(uint256).max / _amount >= flashloanFee, ISilo.FlashloanAmountTooBig());
fee = _amount * flashloanFee / _PRECISION_DECIMALS;
// round up
if (fee == 0) return 1;
}
/// @notice Returns totalAssets and totalShares for conversion math (convertToAssets and convertToShares)
/// @dev This is useful for view functions that do not accrue interest before doing calculations. To work on
/// updated numbers, interest should be added on the fly.
/// @param _configData for a single token for which to do calculations
/// @param _assetType used to read proper storage data
/// @return totalAssets total assets in Silo with interest for given asset type
/// @return totalShares total shares in Silo for given asset type
function getTotalAssetsAndTotalSharesWithInterest(
ISiloConfig.ConfigData memory _configData,
ISilo.AssetType _assetType
)
internal
view
returns (uint256 totalAssets, uint256 totalShares)
{
if (_assetType == ISilo.AssetType.Protected) {
totalAssets = ISilo(_configData.silo).getTotalAssetsStorage(ISilo.AssetType.Protected);
totalShares = IShareToken(_configData.protectedShareToken).totalSupply();
} else if (_assetType == ISilo.AssetType.Collateral) {
totalAssets = getTotalCollateralAssetsWithInterest(
_configData.silo,
_configData.interestRateModel,
_configData.daoFee,
_configData.deployerFee
);
totalShares = IShareToken(_configData.collateralShareToken).totalSupply();
} else { // ISilo.AssetType.Debt
totalAssets = getTotalDebtAssetsWithInterest(_configData.silo, _configData.interestRateModel);
totalShares = IShareToken(_configData.debtShareToken).totalSupply();
}
}
/// @notice Retrieves fee amounts in 18 decimals points and their respective receivers along with the asset
/// @param _silo Silo address
/// @return daoFeeReceiver Address of the DAO fee receiver
/// @return deployerFeeReceiver Address of the deployer fee receiver
/// @return daoFee DAO fee amount in 18 decimals points
/// @return deployerFee Deployer fee amount in 18 decimals points
/// @return asset Address of the associated asset
function getFeesAndFeeReceiversWithAsset(ISilo _silo)
internal
view
returns (
address daoFeeReceiver,
address deployerFeeReceiver,
uint256 daoFee,
uint256 deployerFee,
address asset
)
{
(daoFee, deployerFee,, asset) = _silo.config().getFeesWithAsset(address(_silo));
(daoFeeReceiver, deployerFeeReceiver) = _silo.factory().getFeeReceivers(address(_silo));
}
/// @notice Calculates the total collateral assets with accrued interest
/// @dev Do not use this method when accrueInterest were executed already, in that case total does not change
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @param _daoFee DAO fee in 18 decimals points
/// @param _deployerFee Deployer fee in 18 decimals points
/// @return totalCollateralAssetsWithInterest Accumulated collateral amount with interest
function getTotalCollateralAssetsWithInterest(
address _silo,
address _interestRateModel,
uint256 _daoFee,
uint256 _deployerFee
) internal view returns (uint256 totalCollateralAssetsWithInterest) {
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(uint256 collateralAssets, uint256 debtAssets) = ISilo(_silo).getCollateralAndDebtTotalsStorage();
(totalCollateralAssetsWithInterest,,,) = SiloMathLib.getCollateralAmountsWithInterest(
collateralAssets, debtAssets, rcomp, _daoFee, _deployerFee
);
}
/// @param _balanceCached if balance of `_owner` is unknown beforehand, then pass `0`
function getSharesAndTotalSupply(address _shareToken, address _owner, uint256 _balanceCached)
internal
view
returns (uint256 shares, uint256 totalSupply)
{
if (_balanceCached == 0) {
(shares, totalSupply) = IShareToken(_shareToken).balanceOfAndTotalSupply(_owner);
} else {
shares = _balanceCached;
totalSupply = IShareToken(_shareToken).totalSupply();
}
}
/// @notice Calculates the total debt assets with accrued interest
/// @param _silo Address of the silo contract
/// @param _interestRateModel Interest rate model to fetch compound interest rates
/// @return totalDebtAssetsWithInterest Accumulated debt amount with interest
function getTotalDebtAssetsWithInterest(address _silo, address _interestRateModel)
internal
view
returns (uint256 totalDebtAssetsWithInterest)
{
uint256 rcomp;
try IInterestRateModel(_interestRateModel).getCompoundInterestRate(_silo, block.timestamp) returns (uint256 r) {
rcomp = r;
} catch {
// do not lock silo
}
(
totalDebtAssetsWithInterest,
) = SiloMathLib.getDebtAmountsWithInterest(ISilo(_silo).getTotalAssetsStorage(ISilo.AssetType.Debt), rcomp);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {ISilo} from "../interfaces/ISilo.sol";
// solhint-disable private-vars-leading-underscore
library Hook {
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
struct BeforeDepositInput {
uint256 assets;
uint256 shares;
address receiver;
}
/// @notice The data structure for the deposit hook
/// @param assets The amount of assets deposited
/// @param shares The amount of shares deposited
/// @param receiver The receiver of the deposit
/// @param receivedAssets The exact amount of assets being deposited
/// @param mintedShares The exact amount of shares being minted
struct AfterDepositInput {
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
struct BeforeWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
}
/// @notice The data structure for the withdraw hook
/// @param assets The amount of assets withdrawn
/// @param shares The amount of shares withdrawn
/// @param receiver The receiver of the withdrawal
/// @param owner The owner of the shares
/// @param spender The spender of the shares
/// @param withdrawnAssets The exact amount of assets being withdrawn
/// @param withdrawnShares The exact amount of shares being withdrawn
struct AfterWithdrawInput {
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
}
/// @notice The data structure for the share token transfer hook
/// @param sender The sender of the transfer (address(0) on mint)
/// @param recipient The recipient of the transfer (address(0) on burn)
/// @param amount The amount of tokens transferred/minted/burned
/// @param senderBalance The balance of the sender after the transfer (empty on mint)
/// @param recipientBalance The balance of the recipient after the transfer (empty on burn)
/// @param totalSupply The total supply of the share token
struct AfterTokenTransfer {
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
}
/// @notice The data structure for the before borrow hook
/// @param assets The amount of assets to borrow
/// @param shares The amount of shares to borrow
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param _spender Address which initiates the borrowing action on behalf of the borrower
struct BeforeBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
}
/// @notice The data structure for the after borrow hook
/// @param assets The amount of assets borrowed
/// @param shares The amount of shares borrowed
/// @param receiver The receiver of the borrow
/// @param borrower The borrower of the assets
/// @param spender Address which initiates the borrowing action on behalf of the borrower
/// @param borrowedAssets The exact amount of assets being borrowed
/// @param borrowedShares The exact amount of shares being borrowed
struct AfterBorrowInput {
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
}
/// @notice The data structure for the before repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
struct BeforeRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
}
/// @notice The data structure for the after repay hook
/// @param assets The amount of assets to repay
/// @param shares The amount of shares to repay
/// @param borrower The borrower of the assets
/// @param repayer The repayer of the assets
/// @param repaidAssets The exact amount of assets being repaid
/// @param repaidShares The exact amount of shares being repaid
struct AfterRepayInput {
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
}
/// @notice The data structure for the before flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Requested amount of tokens
struct BeforeFlashLoanInput {
address receiver;
address token;
uint256 amount;
}
/// @notice The data structure for the after flash loan hook
/// @param receiver The flash loan receiver
/// @param token The flash loan token
/// @param amount Received amount of tokens
/// @param fee The flash loan fee
struct AfterFlashLoanInput {
address receiver;
address token;
uint256 amount;
uint256 fee;
}
/// @notice The data structure for the before transition collateral hook
/// @param shares The amount of shares to transition
struct BeforeTransitionCollateralInput {
uint256 shares;
address owner;
}
/// @notice The data structure for the after transition collateral hook
/// @param shares The amount of shares to transition
struct AfterTransitionCollateralInput {
uint256 shares;
address owner;
uint256 assets;
}
/// @notice The data structure for the switch collateral hook
/// @param user The user switching collateral
struct SwitchCollateralInput {
address user;
}
/// @notice Supported hooks
/// @dev The hooks are stored as a bitmap and can be combined with bitwise OR
uint256 internal constant NONE = 0;
uint256 internal constant DEPOSIT = 2 ** 1;
uint256 internal constant BORROW = 2 ** 2;
uint256 internal constant BORROW_SAME_ASSET = 2 ** 3;
uint256 internal constant REPAY = 2 ** 4;
uint256 internal constant WITHDRAW = 2 ** 5;
uint256 internal constant FLASH_LOAN = 2 ** 6;
uint256 internal constant TRANSITION_COLLATERAL = 2 ** 7;
uint256 internal constant SWITCH_COLLATERAL = 2 ** 8;
uint256 internal constant LIQUIDATION = 2 ** 9;
uint256 internal constant SHARE_TOKEN_TRANSFER = 2 ** 10;
uint256 internal constant COLLATERAL_TOKEN = 2 ** 11;
uint256 internal constant PROTECTED_TOKEN = 2 ** 12;
uint256 internal constant DEBT_TOKEN = 2 ** 13;
// note: currently we can support hook value up to 2 ** 23,
// because for optimisation purposes, we storing hooks as uint24
// For decoding packed data
uint256 private constant PACKED_ADDRESS_LENGTH = 20;
uint256 private constant PACKED_FULL_LENGTH = 32;
uint256 private constant PACKED_ENUM_LENGTH = 1;
uint256 private constant PACKED_BOOL_LENGTH = 1;
error FailedToParseBoolean();
/// @notice Checks if the action has a specific hook
/// @param _action The action
/// @param _expectedHook The expected hook
/// @dev The function returns true if the action has the expected hook.
/// As hooks actions can be combined with bitwise OR, the following examples are valid:
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, COLLATERAL_TOKEN) == true`
/// `matchAction(WITHDRAW | COLLATERAL_TOKEN, WITHDRAW | COLLATERAL_TOKEN) == true`
function matchAction(uint256 _action, uint256 _expectedHook) internal pure returns (bool) {
return _action & _expectedHook == _expectedHook;
}
/// @notice Adds a hook to an action
/// @param _action The action
/// @param _newAction The new hook to be added
function addAction(uint256 _action, uint256 _newAction) internal pure returns (uint256) {
return _action | _newAction;
}
/// @dev please be careful with removing actions, because other hooks might using them
/// eg when you have `_action = COLLATERAL_TOKEN | PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER`
/// and you want to remove action on protected token transfer by doing
/// `remove(_action, PROTECTED_TOKEN | SHARE_TOKEN_TRANSFER)`, the result will be `_action=COLLATERAL_TOKEN`
/// and it will not trigger collateral token transfer. In this example you should do:
/// `remove(_action, PROTECTED_TOKEN)`
function removeAction(uint256 _action, uint256 _actionToRemove) internal pure returns (uint256) {
return _action & (~_actionToRemove);
}
/// @notice Returns the action for depositing a specific collateral type
/// @param _type The collateral type
function depositAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return DEPOSIT | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for withdrawing a specific collateral type
/// @param _type The collateral type
function withdrawAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return WITHDRAW | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the action for collateral transition
/// @param _type The collateral type
function transitionCollateralAction(ISilo.CollateralType _type) internal pure returns (uint256) {
return TRANSITION_COLLATERAL | (_type == ISilo.CollateralType.Collateral ? COLLATERAL_TOKEN : PROTECTED_TOKEN);
}
/// @notice Returns the share token transfer action
/// @param _tokenType The token type (COLLATERAL_TOKEN || PROTECTED_TOKEN || DEBT_TOKEN)
function shareTokenTransfer(uint256 _tokenType) internal pure returns (uint256) {
return SHARE_TOKEN_TRANSFER | _tokenType;
}
/// @dev Decodes packed data from the share token after the transfer hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTokenTransferDecode(bytes memory packed)
internal
pure
returns (AfterTokenTransfer memory input)
{
address sender;
address recipient;
uint256 amount;
uint256 senderBalance;
uint256 recipientBalance;
uint256 totalSupply;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
sender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
recipient := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
senderBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
recipientBalance := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
totalSupply := mload(add(packed, pointer))
}
input = AfterTokenTransfer(sender, recipient, amount, senderBalance, recipientBalance, totalSupply);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeDepositDecode(bytes memory packed)
internal
pure
returns (BeforeDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
}
input = BeforeDepositInput(assets, shares, receiver);
}
/// @dev Decodes packed data from the deposit hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterDepositDecode(bytes memory packed)
internal
pure
returns (AfterDepositInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
uint256 receivedAssets;
uint256 mintedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
receivedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
mintedShares := mload(add(packed, pointer))
}
input = AfterDepositInput(assets, shares, receiver, receivedAssets, mintedShares);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeWithdrawDecode(bytes memory packed)
internal
pure
returns (BeforeWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeWithdrawInput(assets, shares, receiver, owner, spender);
}
/// @dev Decodes packed data from the withdraw hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterWithdrawDecode(bytes memory packed)
internal
pure
returns (AfterWithdrawInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address owner;
address spender;
uint256 withdrawnAssets;
uint256 withdrawnShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
withdrawnShares := mload(add(packed, pointer))
}
input = AfterWithdrawInput(assets, shares, receiver, owner, spender, withdrawnAssets, withdrawnShares);
}
/// @dev Decodes packed data from the before borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeBorrowDecode(bytes memory packed)
internal
pure
returns (BeforeBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
}
input = BeforeBorrowInput(assets, shares, receiver, borrower, spender);
}
/// @dev Decodes packed data from the after borrow hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterBorrowDecode(bytes memory packed)
internal
pure
returns (AfterBorrowInput memory input)
{
uint256 assets;
uint256 shares;
address receiver;
address borrower;
address spender;
uint256 borrowedAssets;
uint256 borrowedShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
spender := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
borrowedShares := mload(add(packed, pointer))
}
input = AfterBorrowInput(assets, shares, receiver, borrower, spender, borrowedAssets, borrowedShares);
}
/// @dev Decodes packed data from the before repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeRepayDecode(bytes memory packed)
internal
pure
returns (BeforeRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
}
input = BeforeRepayInput(assets, shares, borrower, repayer);
}
/// @dev Decodes packed data from the after repay hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterRepayDecode(bytes memory packed)
internal
pure
returns (AfterRepayInput memory input)
{
uint256 assets;
uint256 shares;
address borrower;
address repayer;
uint256 repaidAssets;
uint256 repaidShares;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
assets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
borrower := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
repayer := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidAssets := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
repaidShares := mload(add(packed, pointer))
}
input = AfterRepayInput(assets, shares, borrower, repayer, repaidAssets, repaidShares);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeFlashLoanDecode(bytes memory packed)
internal
pure
returns (BeforeFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
}
input = BeforeFlashLoanInput(receiver, token, amount);
}
/// @dev Decodes packed data from the before flash loan hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterFlashLoanDecode(bytes memory packed)
internal
pure
returns (AfterFlashLoanInput memory input)
{
address receiver;
address token;
uint256 amount;
uint256 fee;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
receiver := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
token := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
amount := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
fee := mload(add(packed, pointer))
}
input = AfterFlashLoanInput(receiver, token, amount, fee);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function beforeTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (BeforeTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
}
input = BeforeTransitionCollateralInput(shares, owner);
}
/// @dev Decodes packed data from the transition collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function afterTransitionCollateralDecode(bytes memory packed)
internal
pure
returns (AfterTransitionCollateralInput memory input)
{
uint256 shares;
address owner;
uint256 assets;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_FULL_LENGTH
shares := mload(add(packed, pointer))
pointer := add(pointer, PACKED_ADDRESS_LENGTH)
owner := mload(add(packed, pointer))
pointer := add(pointer, PACKED_FULL_LENGTH)
assets := mload(add(packed, pointer))
}
input = AfterTransitionCollateralInput(shares, owner, assets);
}
/// @dev Decodes packed data from the switch collateral hook
/// @param packed The packed data (via abi.encodePacked)
/// @return input decoded
function switchCollateralDecode(bytes memory packed)
internal
pure
returns (SwitchCollateralInput memory input)
{
address user;
assembly { // solhint-disable-line no-inline-assembly
let pointer := PACKED_ADDRESS_LENGTH
user := mload(add(packed, pointer))
}
input = SwitchCollateralInput(user);
}
/// @dev Converts a uint8 to a boolean
function _toBoolean(uint8 _value) internal pure returns (bool result) {
if (_value == 0) {
result = false;
} else if (_value == 1) {
result = true;
} else {
revert FailedToParseBoolean();
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
library CallBeforeQuoteLib {
/// @dev Call `beforeQuote` on the `solvencyOracle` oracle
/// @param _config Silo config data
function callSolvencyOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.solvencyOracle != address(0)) {
ISiloOracle(_config.solvencyOracle).beforeQuote(_config.token);
}
}
/// @dev Call `beforeQuote` on the `maxLtvOracle` oracle
/// @param _config Silo config data
function callMaxLtvOracleBeforeQuote(ISiloConfig.ConfigData memory _config) internal {
if (_config.callBeforeQuote && _config.maxLtvOracle != address(0)) {
ISiloOracle(_config.maxLtvOracle).beforeQuote(_config.token);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ICrossReentrancyGuard} from "../interfaces/ICrossReentrancyGuard.sol";
library NonReentrantLib {
function nonReentrant(ISiloConfig _config) internal view {
require(!_config.reentrancyGuardEntered(), ICrossReentrancyGuard.CrossReentrantCall());
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;
import {Strings} from "openzeppelin5/utils/Strings.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {TokenHelper} from "../lib/TokenHelper.sol";
import {CallBeforeQuoteLib} from "../lib/CallBeforeQuoteLib.sol";
import {Hook} from "../lib/Hook.sol";
// solhint-disable ordering
library ShareTokenLib {
using Hook for uint24;
using CallBeforeQuoteLib for ISiloConfig.ConfigData;
// keccak256(abi.encode(uint256(keccak256("silo.storage.ShareToken")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant _STORAGE_LOCATION = 0x01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1200;
function getShareTokenStorage() internal pure returns (IShareToken.ShareTokenStorage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := _STORAGE_LOCATION
}
}
// solhint-disable-next-line func-name-mixedcase, private-vars-leading-underscore
function __ShareToken_init(ISilo _silo, address _hookReceiver, uint24 _tokenType) external {
IShareToken.ShareTokenStorage storage $ = ShareTokenLib.getShareTokenStorage();
$.silo = _silo;
$.siloConfig = _silo.config();
$.hookSetup.hookReceiver = _hookReceiver;
$.hookSetup.tokenType = _tokenType;
$.transferWithChecks = true;
}
/// @dev decimals of share token
function decimals() external view returns (uint8) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
return uint8(TokenHelper.assertAndGetDecimals(configData.token));
}
/// @dev Name convention:
/// NAME - asset name
/// SILO_ID - unique silo id
///
/// Protected deposit: "Silo Finance Non-borrowable NAME Deposit, SiloId: SILO_ID"
/// Borrowable deposit: "Silo Finance Borrowable NAME Deposit, SiloId: SILO_ID"
/// Debt: "Silo Finance NAME Debt, SiloId: SILO_ID"
function name() external view returns (string memory) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID());
string memory pre = "";
string memory post = " Deposit";
if (address(this) == configData.protectedShareToken) {
pre = "Non-borrowable ";
} else if (address(this) == configData.collateralShareToken) {
pre = "Borrowable ";
} else if (address(this) == configData.debtShareToken) {
post = " Debt";
}
string memory tokenSymbol = TokenHelper.symbol(configData.token);
return string.concat("Silo Finance ", pre, tokenSymbol, post, ", SiloId: ", siloIdAscii);
}
/// @dev Symbol convention:
/// SYMBOL - asset symbol
/// SILO_ID - unique silo id
///
/// Protected deposit: "nbSYMBOL-SILO_ID"
/// Borrowable deposit: "bSYMBOL-SILO_ID"
/// Debt: "dSYMBOL-SILO_ID"
function symbol() external view returns (string memory) {
IShareToken.ShareTokenStorage storage $ = getShareTokenStorage();
ISiloConfig.ConfigData memory configData = $.siloConfig.getConfig(address($.silo));
string memory siloIdAscii = Strings.toString($.siloConfig.SILO_ID());
string memory pre;
if (address(this) == configData.protectedShareToken) {
pre = "nb";
} else if (address(this) == configData.collateralShareToken) {
pre = "b";
} else if (address(this) == configData.debtShareToken) {
pre = "d";
}
string memory tokenSymbol = TokenHelper.symbol(configData.token);
return string.concat(pre, tokenSymbol, "-", siloIdAscii);
}
/// @notice Call beforeQuote on solvency oracles
/// @param _user user address for which the solvent check is performed
function callOracleBeforeQuote(ISiloConfig _siloConfig, address _user) internal {
(
ISiloConfig.ConfigData memory collateralConfig,
ISiloConfig.ConfigData memory debtConfig
) = _siloConfig.getConfigsForSolvency(_user);
collateralConfig.callSolvencyOracleBeforeQuote();
debtConfig.callSolvencyOracleBeforeQuote();
}
/// @dev Call on behalf of share token
/// @param _target target address to call
/// @param _value value to send
/// @param _callType call type
/// @param _input input data
/// @return success true if the call was successful, false otherwise
/// @return result bytes returned by the call
function callOnBehalfOfShareToken(address _target, uint256 _value, ISilo.CallType _callType, bytes calldata _input)
internal
returns (bool success, bytes memory result)
{
// Share token will not send back any ether leftovers after the call.
// The hook receiver should request the ether if needed in a separate call.
if (_callType == ISilo.CallType.Delegatecall) {
(success, result) = _target.delegatecall(_input); // solhint-disable-line avoid-low-level-calls
} else {
(success, result) = _target.call{value: _value}(_input); // solhint-disable-line avoid-low-level-calls
}
}
/// @dev checks if operation is "real" transfer
/// @param _sender sender address
/// @param _recipient recipient address
/// @return bool true if operation is real transfer, false if it is mint or burn
function isTransfer(address _sender, address _recipient) internal pure returns (bool) {
// in order this check to be true, it is required to have:
// require(sender != address(0), "ERC20: transfer from the zero address");
// require(recipient != address(0), "ERC20: transfer to the zero address");
// on transfer. ERC20 has them, so we good.
return _sender != address(0) && _recipient != address(0);
}
function siloConfig() internal view returns (ISiloConfig thisSiloConfig) {
return ShareTokenLib.getShareTokenStorage().siloConfig;
}
function getConfig() internal view returns (ISiloConfig.ConfigData memory thisSiloConfigData) {
thisSiloConfigData = ShareTokenLib.getShareTokenStorage().siloConfig.getConfig(address(this));
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.28;
import {ISilo} from "silo-core/contracts/interfaces/ISilo.sol";
library SiloStorageLib {
// keccak256(abi.encode(uint256(keccak256("silo.storage.SiloVault")) - 1)) & ~bytes32(uint256(0xff));
bytes32 private constant _STORAGE_LOCATION = 0xd7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f8300;
function getSiloStorage() internal pure returns (ISilo.SiloStorage storage $) {
// solhint-disable-next-line no-inline-assembly
assembly {
$.slot := _STORAGE_LOCATION
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {IERC20} from "openzeppelin5/token/ERC20/IERC20.sol";
import {ISiloConfig} from "../interfaces/ISiloConfig.sol";
import {ISilo} from "../interfaces/ISilo.sol";
import {ISiloOracle} from "../interfaces/ISiloOracle.sol";
import {IShareToken} from "../interfaces/IShareToken.sol";
import {ISiloFactory} from "../interfaces/ISiloFactory.sol";
import {SiloERC4626Lib} from "./SiloERC4626Lib.sol";
import {SiloSolvencyLib} from "./SiloSolvencyLib.sol";
import {SiloLendingLib} from "./SiloLendingLib.sol";
import {SiloStdLib} from "./SiloStdLib.sol";
import {SiloMathLib} from "./SiloMathLib.sol";
import {Rounding} from "./Rounding.sol";
import {ShareTokenLib} from "./ShareTokenLib.sol";
import {SiloStorageLib} from "./SiloStorageLib.sol";
// solhint-disable ordering
library Views {
uint256 internal constant _100_PERCENT = 1e18;
bytes32 internal constant _FLASHLOAN_CALLBACK = keccak256("ERC3156FlashBorrower.onFlashLoan");
function isSolvent(address _borrower) external view returns (bool) {
(
ISiloConfig.ConfigData memory collateral,
ISiloConfig.ConfigData memory debt
) = ShareTokenLib.siloConfig().getConfigsForSolvency(_borrower);
return SiloSolvencyLib.isSolvent(collateral, debt, _borrower, ISilo.AccrueInterestInMemory.Yes);
}
/// @notice Returns flash fee amount
/// @param _token for which fee is calculated
/// @param _amount for which fee is calculated
/// @return fee flash fee amount
function flashFee(address _token, uint256 _amount) external view returns (uint256 fee) {
fee = SiloStdLib.flashFee(ShareTokenLib.siloConfig(), _token, _amount);
}
function maxFlashLoan(address _token) internal view returns (uint256 maxLoan) {
if (_token != ShareTokenLib.siloConfig().getAssetForSilo(address(this))) return 0;
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
uint256 protectedAssets = $.totalAssets[ISilo.AssetType.Protected];
uint256 balance = IERC20(_token).balanceOf(address(this));
unchecked {
// we check underflow ourself
return balance > protectedAssets ? balance - protectedAssets : 0;
}
}
function maxBorrow(address _borrower, bool _sameAsset)
external
view
returns (uint256 maxAssets, uint256 maxShares)
{
return SiloLendingLib.maxBorrow(_borrower, _sameAsset);
}
function maxWithdraw(address _owner, ISilo.CollateralType _collateralType)
external
view
returns (uint256 assets, uint256 shares)
{
return SiloERC4626Lib.maxWithdraw(
_owner,
_collateralType,
// 0 for CollateralType.Collateral because it will be calculated internally
_collateralType == ISilo.CollateralType.Protected
? SiloStorageLib.getSiloStorage().totalAssets[ISilo.AssetType.Protected]
: 0
);
}
function maxRepay(address _borrower) external view returns (uint256 assets) {
ISiloConfig.ConfigData memory configData = ShareTokenLib.getConfig();
uint256 shares = IShareToken(configData.debtShareToken).balanceOf(_borrower);
(uint256 totalSiloAssets, uint256 totalShares) =
SiloStdLib.getTotalAssetsAndTotalSharesWithInterest(configData, ISilo.AssetType.Debt);
return SiloMathLib.convertToAssets(
shares, totalSiloAssets, totalShares, Rounding.MAX_REPAY_TO_ASSETS, ISilo.AssetType.Debt
);
}
function getSiloStorage()
internal
view
returns (
uint192 daoAndDeployerRevenue,
uint64 interestRateTimestamp,
uint256 protectedAssets,
uint256 collateralAssets,
uint256 debtAssets
)
{
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
daoAndDeployerRevenue = $.daoAndDeployerRevenue;
interestRateTimestamp = $.interestRateTimestamp;
protectedAssets = $.totalAssets[ISilo.AssetType.Protected];
collateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
debtAssets = $.totalAssets[ISilo.AssetType.Debt];
}
function utilizationData() internal view returns (ISilo.UtilizationData memory) {
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
return ISilo.UtilizationData({
collateralAssets: $.totalAssets[ISilo.AssetType.Collateral],
debtAssets: $.totalAssets[ISilo.AssetType.Debt],
interestRateTimestamp: $.interestRateTimestamp
});
}
function getDebtAssets() internal view returns (uint256 totalDebtAssets) {
ISiloConfig.ConfigData memory thisSiloConfig = ShareTokenLib.getConfig();
totalDebtAssets = SiloStdLib.getTotalDebtAssetsWithInterest(
thisSiloConfig.silo, thisSiloConfig.interestRateModel
);
}
function getCollateralAndProtectedAssets()
internal
view
returns (uint256 totalCollateralAssets, uint256 totalProtectedAssets)
{
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
totalProtectedAssets = $.totalAssets[ISilo.AssetType.Protected];
}
function getCollateralAndDebtAssets()
internal
view
returns (uint256 totalCollateralAssets, uint256 totalDebtAssets)
{
ISilo.SiloStorage storage $ = SiloStorageLib.getSiloStorage();
totalCollateralAssets = $.totalAssets[ISilo.AssetType.Collateral];
totalDebtAssets = $.totalAssets[ISilo.AssetType.Debt];
}
function copySiloConfig(
ISiloConfig.InitData memory _initData,
ISiloFactory.Range memory _daoFeeRange,
uint256 _maxDeployerFee,
uint256 _maxFlashloanFee,
uint256 _maxLiquidationFee
)
internal
view
returns (ISiloConfig.ConfigData memory configData0, ISiloConfig.ConfigData memory configData1)
{
validateSiloInitData(_initData, _daoFeeRange, _maxDeployerFee, _maxFlashloanFee, _maxLiquidationFee);
configData0.hookReceiver = _initData.hookReceiver;
configData0.token = _initData.token0;
configData0.solvencyOracle = _initData.solvencyOracle0;
// If maxLtv oracle is not set, fallback to solvency oracle
configData0.maxLtvOracle = _initData.maxLtvOracle0 == address(0)
? _initData.solvencyOracle0
: _initData.maxLtvOracle0;
configData0.interestRateModel = _initData.interestRateModel0;
configData0.maxLtv = _initData.maxLtv0;
configData0.lt = _initData.lt0;
configData0.liquidationTargetLtv = _initData.liquidationTargetLtv0;
configData0.deployerFee = _initData.deployerFee;
configData0.daoFee = _initData.daoFee;
configData0.liquidationFee = _initData.liquidationFee0;
configData0.flashloanFee = _initData.flashloanFee0;
configData0.callBeforeQuote = _initData.callBeforeQuote0;
configData1.hookReceiver = _initData.hookReceiver;
configData1.token = _initData.token1;
configData1.solvencyOracle = _initData.solvencyOracle1;
// If maxLtv oracle is not set, fallback to solvency oracle
configData1.maxLtvOracle = _initData.maxLtvOracle1 == address(0)
? _initData.solvencyOracle1
: _initData.maxLtvOracle1;
configData1.interestRateModel = _initData.interestRateModel1;
configData1.maxLtv = _initData.maxLtv1;
configData1.lt = _initData.lt1;
configData1.liquidationTargetLtv = _initData.liquidationTargetLtv1;
configData1.deployerFee = _initData.deployerFee;
configData1.daoFee = _initData.daoFee;
configData1.liquidationFee = _initData.liquidationFee1;
configData1.flashloanFee = _initData.flashloanFee1;
configData1.callBeforeQuote = _initData.callBeforeQuote1;
}
// solhint-disable-next-line code-complexity
function validateSiloInitData(
ISiloConfig.InitData memory _initData,
ISiloFactory.Range memory _daoFeeRange,
uint256 _maxDeployerFee,
uint256 _maxFlashloanFee,
uint256 _maxLiquidationFee
) internal view returns (bool) {
require(_initData.hookReceiver != address(0), ISiloFactory.MissingHookReceiver());
require(_initData.token0 != address(0), ISiloFactory.EmptyToken0());
require(_initData.token1 != address(0), ISiloFactory.EmptyToken1());
require(_initData.token0 != _initData.token1, ISiloFactory.SameAsset());
require(_initData.maxLtv0 != 0 || _initData.maxLtv1 != 0, ISiloFactory.InvalidMaxLtv());
require(_initData.maxLtv0 <= _initData.lt0, ISiloFactory.InvalidMaxLtv());
require(_initData.maxLtv1 <= _initData.lt1, ISiloFactory.InvalidMaxLtv());
require(_initData.liquidationFee0 <= _maxLiquidationFee, ISiloFactory.MaxLiquidationFeeExceeded());
require(_initData.liquidationFee1 <= _maxLiquidationFee, ISiloFactory.MaxLiquidationFeeExceeded());
require(_initData.lt0 + _initData.liquidationFee0 <= _100_PERCENT, ISiloFactory.InvalidLt());
require(_initData.lt1 + _initData.liquidationFee1 <= _100_PERCENT, ISiloFactory.InvalidLt());
require(
_initData.maxLtvOracle0 == address(0) || _initData.solvencyOracle0 != address(0),
ISiloFactory.OracleMisconfiguration()
);
require(
!_initData.callBeforeQuote0 || _initData.solvencyOracle0 != address(0),
ISiloFactory.InvalidCallBeforeQuote()
);
require(
_initData.maxLtvOracle1 == address(0) || _initData.solvencyOracle1 != address(0),
ISiloFactory.OracleMisconfiguration()
);
require(
!_initData.callBeforeQuote1 || _initData.solvencyOracle1 != address(0),
ISiloFactory.InvalidCallBeforeQuote()
);
verifyQuoteTokens(_initData);
require(_initData.deployerFee == 0 || _initData.deployer != address(0), ISiloFactory.InvalidDeployer());
require(_initData.deployerFee <= _maxDeployerFee, ISiloFactory.MaxDeployerFeeExceeded());
require(_daoFeeRange.min <= _initData.daoFee, ISiloFactory.DaoMinRangeExceeded());
require(_initData.daoFee <= _daoFeeRange.max, ISiloFactory.DaoMaxRangeExceeded());
require(_initData.flashloanFee0 <= _maxFlashloanFee, ISiloFactory.MaxFlashloanFeeExceeded());
require(_initData.flashloanFee1 <= _maxFlashloanFee, ISiloFactory.MaxFlashloanFeeExceeded());
require(_initData.liquidationTargetLtv0 <= _initData.lt0, ISiloFactory.LiquidationTargetLtvTooHigh());
require(_initData.liquidationTargetLtv1 <= _initData.lt1, ISiloFactory.LiquidationTargetLtvTooHigh());
require(
_initData.interestRateModel0 != address(0) && _initData.interestRateModel1 != address(0),
ISiloFactory.InvalidIrm()
);
return true;
}
function verifyQuoteTokens(ISiloConfig.InitData memory _initData) internal view {
address expectedQuoteToken;
expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.solvencyOracle0);
expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.maxLtvOracle0);
expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.solvencyOracle1);
expectedQuoteToken = verifyQuoteToken(expectedQuoteToken, _initData.maxLtvOracle1);
}
function verifyQuoteToken(address _expectedQuoteToken, address _oracle)
internal
view
returns (address quoteToken)
{
if (_oracle == address(0)) return _expectedQuoteToken;
quoteToken = ISiloOracle(_oracle).quoteToken();
if (_expectedQuoteToken == address(0)) return quoteToken;
require(_expectedQuoteToken == quoteToken, ISiloFactory.InvalidQuoteToken());
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ICrossReentrancyGuard {
error CrossReentrantCall();
error CrossReentrancyNotActive();
/// @notice only silo method for cross Silo reentrancy
function turnOnReentrancyProtection() external;
/// @notice only silo method for cross Silo reentrancy
function turnOffReentrancyProtection() external;
/// @notice view method for checking cross Silo reentrancy flag
/// @return entered true if the reentrancy guard is currently set to "entered", which indicates there is a
/// `nonReentrant` function in the call stack.
function reentrancyGuardEntered() external view returns (bool entered);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IInterestRateModelV2} from "./IInterestRateModelV2.sol";
interface IInterestRateModelV2Config {
/// @return config returns immutable IRM configuration that is present in contract
function getConfig() external view returns (IInterestRateModelV2.Config memory config);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";
/**
* @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
* https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
*/
interface IERC4626 is IERC20, IERC20Metadata {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender,
address indexed receiver,
address indexed owner,
uint256 assets,
uint256 shares
);
/**
* @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
*
* - MUST be an ERC-20 token contract.
* - MUST NOT revert.
*/
function asset() external view returns (address assetTokenAddress);
/**
* @dev Returns the total amount of the underlying asset that is “managed” by Vault.
*
* - SHOULD include any compounding that occurs from yield.
* - MUST be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT revert.
*/
function totalAssets() external view returns (uint256 totalManagedAssets);
/**
* @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToShares(uint256 assets) external view returns (uint256 shares);
/**
* @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
* scenario where all the conditions are met.
*
* - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
* - MUST NOT show any variations depending on the caller.
* - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
* - MUST NOT revert.
*
* NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
* “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
* from.
*/
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
* through a deposit call.
*
* - MUST return a limited value if receiver is subject to some deposit limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
* - MUST NOT revert.
*/
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
* call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
* in the same transaction.
* - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
* deposit would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/**
* @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* deposit execution, and are accounted for during deposit.
* - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
* - MUST return a limited value if receiver is subject to some mint limit.
* - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
* - MUST NOT revert.
*/
function maxMint(address receiver) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
* current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
* in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
* same transaction.
* - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
* would be accepted, regardless if the user has enough tokens approved, etc.
* - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by minting.
*/
function previewMint(uint256 shares) external view returns (uint256 assets);
/**
* @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
*
* - MUST emit the Deposit event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
* execution, and are accounted for during mint.
* - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
* approving enough underlying tokens to the Vault contract, etc).
*
* NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
*/
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/**
* @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
* Vault, through a withdraw call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
* call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
* called
* in the same transaction.
* - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
* the withdrawal would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by depositing.
*/
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/**
* @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* withdraw execution, and are accounted for during withdraw.
* - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/**
* @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
* through a redeem call.
*
* - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
* - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
* - MUST NOT revert.
*/
function maxRedeem(address owner) external view returns (uint256 maxShares);
/**
* @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
* given current on-chain conditions.
*
* - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
* in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
* same transaction.
* - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
* redemption would be accepted, regardless if the user has enough shares, etc.
* - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
* - MUST NOT revert.
*
* NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
* share price or some other type of condition, meaning the depositor will lose assets by redeeming.
*/
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/**
* @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
*
* - MUST emit the Withdraw event.
* - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
* redeem execution, and are accounted for during redeem.
* - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
* not having enough shares, etc).
*
* NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
* Those methods should be performed separately.
*/
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC3156FlashBorrower} from "./IERC3156FlashBorrower.sol";
/// @notice https://eips.ethereum.org/EIPS/eip-3156
interface IERC3156FlashLender {
/// @notice Protected deposits are not available for a flash loan.
/// During the execution of the flashloan, Silo methods are not taking into consideration the fact,
/// that some (or all) tokens were transferred as flashloan, therefore some methods can return invalid state
/// eg. maxWithdraw can return amount that are not available to withdraw during flashlon.
/// @dev Initiate a flash loan.
/// @param _receiver The receiver of the tokens in the loan, and the receiver of the callback.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @param _data Arbitrary data structure, intended to contain user-defined parameters.
function flashLoan(IERC3156FlashBorrower _receiver, address _token, uint256 _amount, bytes calldata _data)
external
returns (bool);
/// @dev The amount of currency available to be lent.
/// @param _token The loan currency.
/// @return The amount of `token` that can be borrowed.
function maxFlashLoan(address _token) external view returns (uint256);
/// @dev The fee to be charged for a given loan.
/// @param _token The loan currency.
/// @param _amount The amount of tokens lent.
/// @return The amount of `token` to be charged for the loan, on top of the returned principal.
function flashFee(address _token, uint256 _amount) external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
import {IERC721} from "openzeppelin5/interfaces/IERC721.sol";
import {ISiloConfig} from "./ISiloConfig.sol";
interface ISiloFactory is IERC721 {
struct Range {
uint128 min;
uint128 max;
}
/// @notice Emitted on the creation of a Silo.
/// @param implementation Address of the Silo implementation.
/// @param token0 Address of the first Silo token.
/// @param token1 Address of the second Silo token.
/// @param silo0 Address of the first Silo.
/// @param silo1 Address of the second Silo.
/// @param siloConfig Address of the SiloConfig.
event NewSilo(
address indexed implementation,
address indexed token0,
address indexed token1,
address silo0,
address silo1,
address siloConfig
);
event BaseURI(string newBaseURI);
/// @notice Emitted on the update of DAO fee.
/// @param minDaoFee Value of the new minimal DAO fee.
/// @param maxDaoFee Value of the new maximal DAO fee.
event DaoFeeChanged(uint128 minDaoFee, uint128 maxDaoFee);
/// @notice Emitted on the update of max deployer fee.
/// @param maxDeployerFee Value of the new max deployer fee.
event MaxDeployerFeeChanged(uint256 maxDeployerFee);
/// @notice Emitted on the update of max flashloan fee.
/// @param maxFlashloanFee Value of the new max flashloan fee.
event MaxFlashloanFeeChanged(uint256 maxFlashloanFee);
/// @notice Emitted on the update of max liquidation fee.
/// @param maxLiquidationFee Value of the new max liquidation fee.
event MaxLiquidationFeeChanged(uint256 maxLiquidationFee);
/// @notice Emitted on the change of DAO fee receiver.
/// @param daoFeeReceiver Address of the new DAO fee receiver.
event DaoFeeReceiverChanged(address daoFeeReceiver);
error MissingHookReceiver();
error ZeroAddress();
error DaoFeeReceiverZeroAddress();
error EmptyToken0();
error EmptyToken1();
error MaxFeeExceeded();
error InvalidFeeRange();
error SameAsset();
error SameRange();
error InvalidIrm();
error InvalidMaxLtv();
error InvalidLt();
error InvalidDeployer();
error DaoMinRangeExceeded();
error DaoMaxRangeExceeded();
error MaxDeployerFeeExceeded();
error MaxFlashloanFeeExceeded();
error MaxLiquidationFeeExceeded();
error InvalidCallBeforeQuote();
error OracleMisconfiguration();
error InvalidQuoteToken();
error HookIsZeroAddress();
error LiquidationTargetLtvTooHigh();
/// @notice Create a new Silo.
/// @param _initData Silo initialization data.
/// @param _siloConfig Silo configuration.
/// @param _siloImpl Address of the `Silo` implementation.
/// @param _shareProtectedCollateralTokenImpl Address of the `ShareProtectedCollateralToken` implementation.
/// @param _shareDebtTokenImpl Address of the `ShareDebtToken` implementation.
function createSilo(
ISiloConfig.InitData memory _initData,
ISiloConfig _siloConfig,
address _siloImpl,
address _shareProtectedCollateralTokenImpl,
address _shareDebtTokenImpl
)
external;
/// @notice NFT ownership represents the deployer fee receiver for the each Silo ID. After burning,
/// the deployer fee is sent to the DAO. Burning doesn't affect Silo's behavior. It is only about fee distribution.
/// @param _siloIdToBurn silo ID to burn.
function burn(uint256 _siloIdToBurn) external;
/// @notice Update the value of DAO fee. Updated value will be used only for a new Silos.
/// Previously deployed SiloConfigs are immutable.
/// @param _minFee Value of the new DAO minimal fee.
/// @param _maxFee Value of the new DAO maximal fee.
function setDaoFee(uint128 _minFee, uint128 _maxFee) external;
/// @notice Set the new DAO fee receiver.
/// @param _newDaoFeeReceiver Address of the new DAO fee receiver.
function setDaoFeeReceiver(address _newDaoFeeReceiver) external;
/// @notice Update the value of max deployer fee. Updated value will be used only for a new Silos max deployer
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxDeployerFee Value of the new max deployer fee.
function setMaxDeployerFee(uint256 _newMaxDeployerFee) external;
/// @notice Update the value of max flashloan fee. Updated value will be used only for a new Silos max flashloan
/// fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxFlashloanFee Value of the new max flashloan fee.
function setMaxFlashloanFee(uint256 _newMaxFlashloanFee) external;
/// @notice Update the value of max liquidation fee. Updated value will be used only for a new Silos max
/// liquidation fee validation. Previously deployed SiloConfigs are immutable.
/// @param _newMaxLiquidationFee Value of the new max liquidation fee.
function setMaxLiquidationFee(uint256 _newMaxLiquidationFee) external;
/// @notice Update the base URI.
/// @param _newBaseURI Value of the new base URI.
function setBaseURI(string calldata _newBaseURI) external;
/// @notice Acceptable DAO fee range for new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function daoFeeRange() external view returns (Range memory);
/// @notice Max deployer fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxDeployerFee() external view returns (uint256);
/// @notice Max flashloan fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxFlashloanFee() external view returns (uint256);
/// @notice Max liquidation fee for a new Silos. Denominated in 18 decimals points. 1e18 == 100%.
function maxLiquidationFee() external view returns (uint256);
/// @notice The recipient of DAO fees.
function daoFeeReceiver() external view returns (address);
/// @notice Get SiloConfig address by Silo id.
function idToSiloConfig(uint256 _id) external view returns (address);
/// @notice Do not use this method to check if silo is secure. Anyone can deploy silo with any configuration
/// and implementation. Most critical part of verification would be to check who deployed it.
/// @dev True if the address was deployed using SiloFactory.
function isSilo(address _silo) external view returns (bool);
/// @notice Id of a next Silo to be deployed. This is an ID of non-existing Silo outside of createSilo
/// function call. ID of a first Silo is 1.
function getNextSiloId() external view returns (uint256);
/// @notice Get the DAO and deployer fee receivers for a particular Silo address.
/// @param _silo Silo address.
/// @return dao DAO fee receiver.
/// @return deployer Deployer fee receiver.
function getFeeReceivers(address _silo) external view returns (address dao, address deployer);
/// @notice Validate InitData for a new Silo. Config will be checked for the fee limits, missing parameters.
/// @param _initData Silo init data.
function validateSiloInitData(ISiloConfig.InitData memory _initData) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return a == 0 ? 0 : (a - 1) / b + 1;
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
/// @solidity memory-safe-assembly
assembly {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
import {Rounding} from "../lib/Rounding.sol";
import {ISilo} from "../interfaces/ISilo.sol";
library SiloMathLib {
using Math for uint256;
uint256 internal constant _PRECISION_DECIMALS = 1e18;
uint256 internal constant _DECIMALS_OFFSET = 3;
/// @dev this is constant version of openzeppelin5/contracts/token/ERC20/extensions/ERC4626._decimalsOffset
uint256 internal constant _DECIMALS_OFFSET_POW = 10 ** _DECIMALS_OFFSET;
/// @notice Returns available liquidity to be borrowed
/// @dev Accrued interest is entirely added to `debtAssets` but only part of it is added to `collateralAssets`. The
/// difference is DAO's and deployer's cut. That means DAO's and deployer's cut is not considered a borrowable
/// liquidity.
function liquidity(uint256 _collateralAssets, uint256 _debtAssets) internal pure returns (uint256 liquidAssets) {
unchecked {
// we checked the underflow
liquidAssets = _debtAssets > _collateralAssets ? 0 : _collateralAssets - _debtAssets;
}
}
/// @notice Calculate collateral assets with accrued interest and associated fees
/// @param _collateralAssets The total amount of collateral assets
/// @param _debtAssets The total amount of debt assets
/// @param _rcomp Compound interest rate for debt
/// @param _daoFee The fee (in 18 decimals points) to be taken for the DAO
/// @param _deployerFee The fee (in 18 decimals points) to be taken for the deployer
/// @return collateralAssetsWithInterest The total collateral assets including the accrued interest
/// @return debtAssetsWithInterest The debt assets with accrued interest
/// @return daoAndDeployerRevenue Total fees amount to be split between DAO and deployer
/// @return accruedInterest The total accrued interest
function getCollateralAmountsWithInterest(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _rcomp,
uint256 _daoFee,
uint256 _deployerFee
)
internal
pure
returns (
uint256 collateralAssetsWithInterest,
uint256 debtAssetsWithInterest,
uint256 daoAndDeployerRevenue,
uint256 accruedInterest
)
{
(debtAssetsWithInterest, accruedInterest) = getDebtAmountsWithInterest(_debtAssets, _rcomp);
uint256 fees;
// _daoFee and _deployerFee are expected to be less than 1e18, so we will not overflow
unchecked { fees = _daoFee + _deployerFee; }
daoAndDeployerRevenue = mulDivOverflow(accruedInterest, fees, _PRECISION_DECIMALS);
// we will not underflow because daoAndDeployerRevenue is chunk of accruedInterest
uint256 collateralInterest = accruedInterest - daoAndDeployerRevenue;
// save to uncheck because variable can not be more than max
uint256 cap = type(uint256).max - _collateralAssets;
if (cap < collateralInterest) {
// avoid overflow on interest
collateralInterest = cap;
}
// safe to uncheck because of cap
unchecked { collateralAssetsWithInterest = _collateralAssets + collateralInterest; }
}
/// @notice Calculate the debt assets with accrued interest, it should never revert with over/under flow
/// @param _totalDebtAssets The total amount of debt assets before accrued interest
/// @param _rcomp Compound interest rate for the debt in 18 decimal precision
/// @return debtAssetsWithInterest The debt assets including the accrued interest
/// @return accruedInterest The total amount of interest accrued on the debt assets
function getDebtAmountsWithInterest(uint256 _totalDebtAssets, uint256 _rcomp)
internal
pure
returns (uint256 debtAssetsWithInterest, uint256 accruedInterest)
{
if (_totalDebtAssets == 0 || _rcomp == 0) {
return (_totalDebtAssets, 0);
}
accruedInterest = mulDivOverflow(_totalDebtAssets, _rcomp, _PRECISION_DECIMALS);
unchecked {
// We intentionally allow overflow here, to prevent transaction revert due to interest calculation.
debtAssetsWithInterest = _totalDebtAssets + accruedInterest;
// If overflow occurs, we skip accruing interest.
if (debtAssetsWithInterest < _totalDebtAssets) {
debtAssetsWithInterest = _totalDebtAssets;
accruedInterest = 0;
}
}
}
/// @notice Calculates fraction between borrowed and deposited amount of tokens denominated in percentage
/// @dev It assumes `_dp` = 100%.
/// @param _dp decimal points used by model
/// @param _collateralAssets current total deposits for assets
/// @param _debtAssets current total borrows for assets
/// @return utilization value, capped to 100%
/// Limiting utilization ratio by 100% max will allows us to perform better interest rate computations
/// and should not affect any other part of protocol. It is possible to go over 100% only when bad debt.
function calculateUtilization(uint256 _dp, uint256 _collateralAssets, uint256 _debtAssets)
internal
pure
returns (uint256 utilization)
{
if (_collateralAssets == 0 || _debtAssets == 0 || _dp == 0) return 0;
/*
how to prevent overflow on: _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST):
1. max > _debtAssets * _dp / _collateralAssets
2. max / _dp > _debtAssets / _collateralAssets
*/
if (type(uint256).max / _dp > _debtAssets / _collateralAssets) {
utilization = _debtAssets.mulDiv(_dp, _collateralAssets, Rounding.ACCRUED_INTEREST);
// cap at 100%
if (utilization > _dp) utilization = _dp;
} else {
// we have overflow
utilization = _dp;
}
}
function convertToAssetsOrToShares(
uint256 _assets,
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _roundingToAssets,
Math.Rounding _roundingToShares,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets, uint256 shares) {
if (_assets == 0) {
require(_shares != 0, ISilo.InputZeroShares());
shares = _shares;
assets = convertToAssets(_shares, _totalAssets, _totalShares, _roundingToAssets, _assetType);
require(assets != 0, ISilo.ReturnZeroAssets());
} else if (_shares == 0) {
shares = convertToShares(_assets, _totalAssets, _totalShares, _roundingToShares, _assetType);
assets = _assets;
require(shares != 0, ISilo.ReturnZeroShares());
} else {
revert ISilo.InputCanBeAssetsOrShares();
}
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToShares
function convertToShares(
uint256 _assets,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 shares) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because we are adding `+1` and offset in `_commonConvertTo`
if (totalShares == 0) return _assets;
shares = _assets.mulDiv(totalShares, totalAssets, _rounding);
}
/// @dev Math for collateral is exact copy of
/// openzeppelin5/contracts/token/ERC20/extensions/ERC4626._convertToAssets
function convertToAssets(
uint256 _shares,
uint256 _totalAssets,
uint256 _totalShares,
Math.Rounding _rounding,
ISilo.AssetType _assetType
) internal pure returns (uint256 assets) {
(uint256 totalShares, uint256 totalAssets) = _commonConvertTo(_totalAssets, _totalShares, _assetType);
// initially, in case of debt, if silo is empty we return shares==assets
// for collateral, this will never be the case, because of `+1` in line above
if (totalShares == 0) return _shares;
assets = _shares.mulDiv(totalAssets, totalShares, _rounding);
}
/// @param _collateralMaxLtv maxLTV in 18 decimals that is set for debt asset
/// @param _sumOfBorrowerCollateralValue borrower total collateral value (including protected)
/// @param _borrowerDebtValue total value of borrower debt
/// @return maxBorrowValue max borrow value yet available for borrower
function calculateMaxBorrowValue(
uint256 _collateralMaxLtv,
uint256 _sumOfBorrowerCollateralValue,
uint256 _borrowerDebtValue
) internal pure returns (uint256 maxBorrowValue) {
if (_sumOfBorrowerCollateralValue == 0) {
return 0;
}
uint256 maxDebtValue = _sumOfBorrowerCollateralValue.mulDiv(
_collateralMaxLtv, _PRECISION_DECIMALS, Rounding.MAX_BORROW_VALUE
);
unchecked {
// we will not underflow because we checking `maxDebtValue > _borrowerDebtValue`
maxBorrowValue = maxDebtValue > _borrowerDebtValue ? maxDebtValue - _borrowerDebtValue : 0;
}
}
/// @notice Calculate the maximum assets a borrower can withdraw without breaching the liquidation threshold
/// @param _sumOfCollateralsValue The combined value of collateral and protected assets of the borrower
/// @param _debtValue The total debt value of the borrower
/// @param _lt The liquidation threshold in 18 decimal points
/// @param _borrowerCollateralAssets The borrower's collateral assets before the withdrawal
/// @param _borrowerProtectedAssets The borrower's protected assets before the withdrawal
/// @return maxAssets The maximum assets the borrower can safely withdraw
function calculateMaxAssetsToWithdraw(
uint256 _sumOfCollateralsValue,
uint256 _debtValue,
uint256 _lt,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets
) internal pure returns (uint256 maxAssets) {
if (_sumOfCollateralsValue == 0) return 0;
if (_debtValue == 0) return _sumOfCollateralsValue;
if (_lt == 0) return 0;
// using Rounding.LT (up) to have highest collateralValue that we have to leave for user to stay solvent
uint256 minimumCollateralValue = _debtValue.mulDiv(_PRECISION_DECIMALS, _lt, Rounding.LTV);
// if we over LT, we can not withdraw
if (_sumOfCollateralsValue <= minimumCollateralValue) {
return 0;
}
uint256 spareCollateralValue;
// safe because we checked `if (_sumOfCollateralsValue <= minimumCollateralValue)`
unchecked { spareCollateralValue = _sumOfCollateralsValue - minimumCollateralValue; }
maxAssets = (_borrowerProtectedAssets + _borrowerCollateralAssets)
.mulDiv(spareCollateralValue, _sumOfCollateralsValue, Rounding.MAX_WITHDRAW_TO_ASSETS);
}
/// @notice Determines the maximum number of assets and corresponding shares a borrower can safely withdraw
/// @param _maxAssets The calculated limit on how many assets can be withdrawn without breaching the liquidation
/// threshold
/// @param _borrowerCollateralAssets Amount of collateral assets currently held by the borrower
/// @param _borrowerProtectedAssets Amount of protected assets currently held by the borrower
/// @param _collateralType Specifies whether the asset is of type Collateral or Protected
/// @param _totalAssets The entire quantity of assets available in the system for withdrawal
/// @param _assetTypeShareTokenTotalSupply Total supply of share tokens for the specified asset type
/// @param _liquidity Current liquidity in the system for the asset type
/// @return assets Maximum assets the borrower can withdraw
/// @return shares Corresponding number of shares for the derived `assets` amount
function maxWithdrawToAssetsAndShares(
uint256 _maxAssets,
uint256 _borrowerCollateralAssets,
uint256 _borrowerProtectedAssets,
ISilo.CollateralType _collateralType,
uint256 _totalAssets,
uint256 _assetTypeShareTokenTotalSupply,
uint256 _liquidity
) internal pure returns (uint256 assets, uint256 shares) {
if (_maxAssets == 0) return (0, 0);
if (_assetTypeShareTokenTotalSupply == 0) return (0, 0);
if (_collateralType == ISilo.CollateralType.Collateral) {
assets = _maxAssets > _borrowerCollateralAssets ? _borrowerCollateralAssets : _maxAssets;
if (assets > _liquidity) {
assets = _liquidity;
}
} else {
assets = _maxAssets > _borrowerProtectedAssets ? _borrowerProtectedAssets : _maxAssets;
}
shares = SiloMathLib.convertToShares(
assets,
_totalAssets,
_assetTypeShareTokenTotalSupply,
Rounding.MAX_WITHDRAW_TO_SHARES,
ISilo.AssetType(uint256(_collateralType))
);
}
/// @dev executed `_a * _b / _c`, reverts on _c == 0
/// @return mulDivResult on overflow returns 0
function mulDivOverflow(uint256 _a, uint256 _b, uint256 _c)
internal
pure
returns (uint256 mulDivResult)
{
if (_a == 0) return (0);
unchecked {
// we have to uncheck to detect overflow
mulDivResult = _a * _b;
if (mulDivResult / _a != _b) return 0;
mulDivResult /= _c;
}
}
/// @dev Debt calculations should not lower the result. Debt is a liability so protocol should not take any for
/// itself. It should return actual result and round it up.
function _commonConvertTo(
uint256 _totalAssets,
uint256 _totalShares,
ISilo.AssetType _assetType
) private pure returns (uint256 totalShares, uint256 totalAssets) {
if (_totalShares == 0) {
// silo is empty and we have dust to redistribute: this can only happen when everyone exits silo
// this case can happen only for collateral, because for collateral we rounding in favorite of protocol
// by resetting totalAssets, the dust that we have will go to first depositor and we starts from clean state
_totalAssets = 0;
}
(totalShares, totalAssets) = _assetType == ISilo.AssetType.Debt
? (_totalShares, _totalAssets)
: (_totalShares + _DECIMALS_OFFSET_POW, _totalAssets + 1);
}
}// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.28;
import {Math} from "openzeppelin5/utils/math/Math.sol";
// solhint-disable private-vars-leading-underscore
library Rounding {
Math.Rounding internal constant UP = (Math.Rounding.Ceil);
Math.Rounding internal constant DOWN = (Math.Rounding.Floor);
Math.Rounding internal constant DEBT_TO_ASSETS = (Math.Rounding.Ceil);
// COLLATERAL_TO_ASSETS is used to calculate borrower collateral (so we want to round down)
Math.Rounding internal constant COLLATERAL_TO_ASSETS = (Math.Rounding.Floor);
// why DEPOSIT_TO_ASSETS is Up if COLLATERAL_TO_ASSETS is Down?
// DEPOSIT_TO_ASSETS is used for preview deposit and deposit, based on provided shares we want to pull "more" tokens
// so we rounding up, "token flow" is in different direction than for COLLATERAL_TO_ASSETS, that's why
// different rounding policy
Math.Rounding internal constant DEPOSIT_TO_ASSETS = (Math.Rounding.Ceil);
Math.Rounding internal constant DEPOSIT_TO_SHARES = (Math.Rounding.Floor);
Math.Rounding internal constant BORROW_TO_ASSETS = (Math.Rounding.Floor);
Math.Rounding internal constant BORROW_TO_SHARES = (Math.Rounding.Ceil);
Math.Rounding internal constant MAX_BORROW_TO_ASSETS = (Math.Rounding.Floor);
Math.Rounding internal constant MAX_BORROW_TO_SHARES = (Math.Rounding.Floor);
Math.Rounding internal constant MAX_BORROW_VALUE = (Math.Rounding.Floor);
Math.Rounding internal constant REPAY_TO_ASSETS = (Math.Rounding.Ceil);
Math.Rounding internal constant REPAY_TO_SHARES = (Math.Rounding.Floor);
Math.Rounding internal constant MAX_REPAY_TO_ASSETS = (Math.Rounding.Ceil);
Math.Rounding internal constant WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
Math.Rounding internal constant WITHDRAW_TO_SHARES = (Math.Rounding.Ceil);
Math.Rounding internal constant MAX_WITHDRAW_TO_ASSETS = (Math.Rounding.Floor);
Math.Rounding internal constant MAX_WITHDRAW_TO_SHARES = (Math.Rounding.Floor);
Math.Rounding internal constant LIQUIDATE_TO_SHARES = (Math.Rounding.Floor);
Math.Rounding internal constant LTV = (Math.Rounding.Ceil);
Math.Rounding internal constant ACCRUED_INTEREST = (Math.Rounding.Floor);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface ISiloOracle {
/// @notice Hook function to call before `quote` function reads price
/// @dev This hook function can be used to change state right before the price is read. For example it can be used
/// for curve read only reentrancy protection. In majority of implementations this will be an empty function.
/// WARNING: reverts are propagated to Silo so if `beforeQuote` reverts, Silo reverts as well.
/// @param _baseToken Address of priced token
function beforeQuote(address _baseToken) external;
/// @return quoteAmount Returns quote price for _baseAmount of _baseToken
/// @param _baseAmount Amount of priced token
/// @param _baseToken Address of priced token
function quote(uint256 _baseAmount, address _baseToken) external view returns (uint256 quoteAmount);
/// @return address of token in which quote (price) is denominated
function quoteToken() external view returns (address);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.5.0;
interface IInterestRateModel {
event InterestRateModelError();
/// @dev Sets config address for all Silos that will use this model
/// @param _irmConfig address of IRM config contract
function initialize(address _irmConfig) external;
/// @dev get compound interest rate and update model storage for current block.timestamp
/// @param _collateralAssets total silo collateral assets
/// @param _debtAssets total silo debt assets
/// @param _interestRateTimestamp last IRM timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRateAndUpdate(
uint256 _collateralAssets,
uint256 _debtAssets,
uint256 _interestRateTimestamp
)
external
returns (uint256 rcomp);
/// @dev get compound interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcomp compounded interest rate from last update until now (1e18 == 100%)
function getCompoundInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcomp);
/// @dev get current annual interest rate
/// @param _silo address of Silo for which interest rate should be calculated
/// @param _blockTimestamp current block timestamp
/// @return rcur current annual interest rate (1e18 == 100%)
function getCurrentInterestRate(address _silo, uint256 _blockTimestamp)
external
view
returns (uint256 rcur);
/// @dev returns decimal points used by model
function decimals() external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.28;
import {IERC20Metadata} from "openzeppelin5/token/ERC20/extensions/IERC20Metadata.sol";
import {IsContract} from "./IsContract.sol";
library TokenHelper {
uint256 private constant _BYTES32_SIZE = 32;
error TokenIsNotAContract();
function assertAndGetDecimals(address _token) internal view returns (uint256) {
(bool hasMetadata, bytes memory data) =
_tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.decimals, ()));
// decimals() is optional in the ERC20 standard, so if metadata is not accessible
// we assume there are no decimals and use 0.
if (!hasMetadata) {
return 0;
}
return abi.decode(data, (uint8));
}
/// @dev Returns the symbol for the provided ERC20 token.
/// An empty string is returned if the call to the token didn't succeed.
/// @param _token address of the token to get the symbol for
/// @return assetSymbol the token symbol
function symbol(address _token) internal view returns (string memory assetSymbol) {
(bool hasMetadata, bytes memory data) =
_tokenMetadataCall(_token, abi.encodeCall(IERC20Metadata.symbol, ()));
if (!hasMetadata || data.length == 0) {
return "?";
} else if (data.length == _BYTES32_SIZE) {
return string(removeZeros(data));
} else {
return abi.decode(data, (string));
}
}
/// @dev Removes bytes with value equal to 0 from the provided byte array.
/// @param _data byte array from which to remove zeroes
/// @return result byte array with zeroes removed
function removeZeros(bytes memory _data) internal pure returns (bytes memory result) {
uint256 n = _data.length;
for (uint256 i; i < n; i++) {
if (_data[i] == 0) continue;
result = abi.encodePacked(result, _data[i]);
}
}
/// @dev Performs a staticcall to the token to get its metadata (symbol, decimals, name)
function _tokenMetadataCall(address _token, bytes memory _data) private view returns (bool, bytes memory) {
// We need to do this before the call, otherwise the call will succeed even for EOAs
require(IsContract.isContract(_token), TokenIsNotAContract());
(bool success, bytes memory result) = _token.staticcall(_data);
// If the call reverted we assume the token doesn't follow the metadata extension
if (!success) {
return (false, "");
}
return (true, result);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC721} from "../token/ERC721/IERC721.sol";// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
/// @solidity memory-safe-assembly
assembly {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.24;
library IsContract {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address _account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return _account.code.length > 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}{
"remappings": [
"forge-std/=gitmodules/forge-std/src/",
"silo-foundry-utils/=gitmodules/silo-foundry-utils/contracts/",
"properties/=gitmodules/crytic/properties/contracts/",
"silo-core/=silo-core/",
"silo-oracles/=silo-oracles/",
"silo-vaults/=silo-vaults/",
"ve-silo/=ve-silo/",
"@openzeppelin/=gitmodules/openzeppelin-contracts-5/contracts/",
"morpho-blue/=gitmodules/morpho-blue/src/",
"openzeppelin5/=gitmodules/openzeppelin-contracts-5/contracts/",
"openzeppelin5-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
"chainlink/=gitmodules/chainlink/contracts/src/",
"chainlink-ccip/=gitmodules/chainlink-ccip/contracts/src/",
"uniswap/=gitmodules/uniswap/",
"@uniswap/v3-core/=gitmodules/uniswap/v3-core/",
"balancer-labs/v2-solidity-utils/=external/balancer-v2-monorepo/pkg/solidity-utils/contracts/",
"balancer-labs/v2-interfaces/=external/balancer-v2-monorepo/pkg/interfaces/contracts/",
"balancer-labs/v2-liquidity-mining/=external/balancer-v2-monorepo/pkg/liquidity-mining/contracts/",
"pyth-sdk-solidity/=gitmodules/pyth-sdk-solidity/target_chains/ethereum/sdk/solidity/",
"@balancer-labs/=node_modules/@balancer-labs/",
"@ensdomains/=node_modules/@ensdomains/",
"@openzeppelin/contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable-5/contracts/",
"@openzeppelin/contracts/=gitmodules/openzeppelin-contracts-5/contracts/",
"@solidity-parser/=node_modules/@solidity-parser/",
"ERC4626/=gitmodules/crytic/properties/lib/ERC4626/contracts/",
"aave/=gitmodules/aave/",
"createx/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/src/",
"crytic/=gitmodules/crytic/",
"ds-test/=gitmodules/openzeppelin-contracts-5/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=gitmodules/openzeppelin-contracts-5/lib/erc4626-tests/",
"halmos-cheatcodes/=gitmodules/morpho-blue/lib/halmos-cheatcodes/src/",
"hardhat/=node_modules/hardhat/",
"layer-zero-examples/=gitmodules/layer-zero-examples/contracts/",
"lz_gauges/=gitmodules/lz_gauges/contracts/",
"openzeppelin-contracts-5/=gitmodules/openzeppelin-contracts-5/",
"openzeppelin-contracts-upgradeable-5/=gitmodules/openzeppelin-contracts-upgradeable-5/",
"openzeppelin-contracts-upgradeable/=gitmodules/openzeppelin-contracts-upgradeable/",
"[email protected]/=gitmodules/[email protected]/contracts/",
"openzeppelin-contracts/=gitmodules/openzeppelin-contracts/",
"openzeppelin/=gitmodules/openzeppelin-contracts-upgradeable/contracts/",
"prettier-plugin-solidity/=node_modules/prettier-plugin-solidity/",
"proposals/=node_modules/proposals/",
"solady/=gitmodules/pyth-sdk-solidity/lazer/contracts/evm/lib/createx/lib/solady/",
"solmate/=gitmodules/crytic/properties/lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {
"silo-core/contracts/lib/Actions.sol": {
"Actions": "0x01fc26773013b994640cAe6228bd495F7eD9dE34"
},
"silo-core/contracts/lib/ShareCollateralTokenLib.sol": {
"ShareCollateralTokenLib": "0x92EFCBAb5aeD466360A4A0CB3D5133d07044179E"
},
"silo-core/contracts/lib/ShareTokenLib.sol": {
"ShareTokenLib": "0x5f633a5A593443523016d1cdae0468543E06b8E1"
},
"silo-core/contracts/lib/SiloLendingLib.sol": {
"SiloLendingLib": "0x3a740E6F3b30a8bfc4C72AB771E2C0D8A48a52A2"
},
"silo-core/contracts/lib/Views.sol": {
"Views": "0xe4df9C07cb68c5e9FB725B08302CF35e837a31dc"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"name":"AboveMaxLtv","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"BorrowNotPossible","type":"error"},{"inputs":[],"name":"CollateralSiloAlreadySet","type":"error"},{"inputs":[],"name":"CrossReentrantCall","type":"error"},{"inputs":[],"name":"EarnedZero","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"FeeOverflow","type":"error"},{"inputs":[],"name":"FlashLoanNotPossible","type":"error"},{"inputs":[],"name":"FlashloanAmountTooBig","type":"error"},{"inputs":[],"name":"FlashloanFailed","type":"error"},{"inputs":[],"name":"InputCanBeAssetsOrShares","type":"error"},{"inputs":[],"name":"InputZeroShares","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"NoLiquidity","type":"error"},{"inputs":[],"name":"NotEnoughLiquidity","type":"error"},{"inputs":[],"name":"NotSolvent","type":"error"},{"inputs":[],"name":"NothingToWithdraw","type":"error"},{"inputs":[],"name":"RepayTooHigh","type":"error"},{"inputs":[],"name":"ReturnZeroAssets","type":"error"},{"inputs":[],"name":"ReturnZeroShares","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SiloInitialized","type":"error"},{"inputs":[],"name":"UnsupportedFlashloanToken","type":"error"},{"inputs":[],"name":"ZeroAmount","type":"error"}]Contract Creation Code
614e6a610034600b8282823980515f1a607314602857634e487b7160e01b5f525f60045260245ffd5b305f52607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100b1575f3560e01c8063891a2b0811610079578063891a2b08146101825780639a2f31f1146101a1578063a1ecef5c146101c0578063b0062139146101d6578063cad1aacf146101f5578063d3f2b14a14610225575f5ffd5b80633d72eb3c146100b55780635937128b146100f15780635af0d5b8146101255780635ca5797b146101445780637ca0c3c514610163575b5f5ffd5b8180156100c0575f5ffd5b506100d46100cf366004614391565b610254565b6040516001600160a01b0390911681526020015b60405180910390f35b8180156100fc575f5ffd5b5061011061010b366004614411565b610347565b604080519283526020830191909152016100e8565b818015610130575f5ffd5b5061011061013f366004614490565b6105f5565b81801561014f575f5ffd5b5061011061015e3660046144bc565b61087c565b81801561016e575f5ffd5b5061011061017d36600461452f565b610b33565b81801561018d575f5ffd5b5061011061019c366004614391565b610cdf565b8180156101ac575f5ffd5b506101106101bb366004614411565b610f46565b8180156101cb575f5ffd5b506101d46111e3565b005b8180156101e1575f5ffd5b506101106101f0366004614574565b6115c8565b818015610200575f5ffd5b5061020961190f565b6040805162ffffff9384168152929091166020830152016100e8565b818015610230575f5ffd5b5061024461023f3660046145bb565b611b5a565b60405190151581526020016100e8565b7f01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1201545f905f516020614db55f395f51905f52906001600160a01b0316156102ae57604051630e13a05360e31b815260040160405180910390fd5b60405163e48a5f7b60e01b81523060048201525f906001600160a01b0385169063e48a5f7b9060240161022060405180830381865afa1580156102f3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103179190614786565b600190920180546001600160a01b039095166001600160a01b0319909516949094179093556101e0015192915050565b5f5f610354836004611ed7565b5f61035d611fb5565b60608501516040516301c6052f60e11b81523060048201526001600160a01b03918216602482015291925082169063038c0a5e90604401602060405180830381865afa1580156103af573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103d391906147a1565b156103f1576040516301c08c7960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610429575f5ffd5b505af115801561043b573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610477575f5ffd5b505af1158015610489573d5f5f3e3d5ffd5b50505050606084015160405163f6f8174f60e01b81526001600160a01b0391821660048201529082169063f6f8174f906024015f604051808303815f87803b1580156104d3575f5ffd5b505af11580156104e5573d5f5f3e3d5ffd5b505050506104f16142f2565b6104f96142f2565b604051632e6da20560e01b81523060048201526001600160a01b03841690632e6da2059060240161044060405180830381865afa15801561053c573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061056091906147ba565b60c0810151606082015192945090925061057b913389611fe3565b809550819650505061059282828860600151612188565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156105ca575f5ffd5b505af11580156105dc573d5f5f3e3d5ffd5b505050506105ed86600487876121ee565b505050915091565b5f5f610600836122d3565b5f610609611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610643575f5ffd5b505af1158015610655573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610691575f5ffd5b505af11580156106a3573d5f5f3e3d5ffd5b50506040805160e0810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c081019190915291506106e69050565b6106ee6142f2565b6106f66142f2565b6001600160a01b038416631544a6db3061071660808b0160608c01614391565b6040516001600160e01b031960e085901b1681526001600160a01b0392831660048201529116602482015260440161052060405180830381865afa158015610760573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061078491906147ef565b602083015192955090935091506107e19060016107a760c08b0160a08c016148c0565b60018111156107b8576107b86148ac565b146107c75784606001516107cd565b84604001515b6107dc368b90038b018b6148d9565b6123b2565b604084015185519298509096506001600160a01b0390811691160361081a5761081a828261081560808b0160608c01614391565b612670565b836001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610852575f5ffd5b505af1158015610864573d5f5f3e3d5ffd5b505050506108738787876126d0565b50505050915091565b5f5f610887836127b0565b5f610890611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156108ca575f5ffd5b505af11580156108dc573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610918575f5ffd5b505af115801561092a573d5f5f3e3d5ffd5b505050506020840151604051631544a6db60e01b81523060048201526001600160a01b0391821660248201525f9182918291851690631544a6db9060440161052060405180830381865afa158015610984573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109a891906147ef565b919450925090505f806001896040015160018111156109c9576109c96148ac565b146109d85784606001516109de565b84604001515b9050610a515f826040518060c001604052805f81526020018d5f015181526020018d602001516001600160a01b031681526020018d602001516001600160a01b03168152602001336001600160a01b031681526020018d604001516001811115610a4a57610a4a6148ac565b90526123b2565b90985091505f8060018b604001516001811115610a7057610a706148ac565b14610a815760018760400151610a88565b5f87606001515b91509150610a9f5f338c5f8f602001518688612827565b60408801518951929c50909a506001600160a01b03908116911603610acd57610acd86868d60200151612670565b876001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610b05575f5ffd5b505af1158015610b17573d5f5f3e3d5ffd5b50505050610b268b8a8c612a10565b5050505050505050915091565b5f5f610b4183878787612a90565b5f610b4a611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610b84575f5ffd5b505af1158015610b96573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b158015610bd8575f5ffd5b505af1158015610bea573d5f5f3e3d5ffd5b505050505f5f826001600160a01b0316634b82d63d30886040518363ffffffff1660e01b8152600401610c1e92919061497c565b6040805180830381865afa158015610c38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c5c91906149a9565b91509150610c6f81338b8b8b878c612827565b8095508196505050826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610caf575f5ffd5b505af1158015610cc1573d5f5f3e3d5ffd5b50505050610cd3868a8a8a8989612b75565b50505094509492505050565b5f5f5f610cea611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610d24575f5ffd5b505af1158015610d36573d5f5f3e3d5ffd5b505050505f610d4f5f516020614dd55f395f51905f5290565b80549091506001600160c01b03165f819003610d7d5760405162e7b56b60e41b815260040160405180910390fd5b5f5f5f5f5f610d8b8b612c6b565b6040516370a0823160e01b8152306004820152949950929750909550935091505f9081906001600160a01b038416906370a0823190602401602060405180830381865afa158015610dde573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0291906149e1565b5f80805260018b016020526040902054909150818111610e2457808203610e26565b5f5b9250825f03610e4857604051636180f03f60e11b815260040160405180910390fd5b82891115610e54578298505b89546001600160c01b038082168b9003166001600160c01b0319909116178a556001600160a01b038716610e9b57610e966001600160a01b038516898b612e1f565b610ee8565b610ea5868a614a0c565b9c508486018d81610eb857610eb8614a23565b049c508c89039b50610ed46001600160a01b038516898f612e1f565b610ee86001600160a01b038516888e612e1f565b8a6001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610f20575f5ffd5b505af1158015610f32573d5f5f3e3d5ffd5b505050505050505050505050505050915091565b5f5f610f53836008611ed7565b5f610f5c611fb5565b60608501516040516301c6052f60e11b81523060048201526001600160a01b03918216602482015291925082169063038c0a5e90604401602060405180830381865afa158015610fae573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fd291906147a1565b15610ff0576040516301c08c7960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611028575f5ffd5b505af115801561103a573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b15801561107c575f5ffd5b505af115801561108e573d5f5f3e3d5ffd5b5050505060608401516040516340c755e160e01b81526001600160a01b039182166004820152908216906340c755e1906024015f604051808303815f87803b1580156110d8575f5ffd5b505af11580156110ea573d5f5f3e3d5ffd5b505060405163e48a5f7b60e01b81523060048201525f92506001600160a01b038416915063e48a5f7b9060240161022060405180830381865afa158015611133573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111579190614786565b90505f8190506111718160c0015182606001513389611fe3565b809550819650505061118882828860600151612188565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156111c0575f5ffd5b505af11580156111d2573d5f5f3e3d5ffd5b505050506105ed86600887876121ee565b5f516020614e155f395f51905f52545f516020614db55f395f51905f52906101009061121b90600160a01b900462ffffff1682612e83565b156112a9576002820154604080513360601b6001600160601b03191660208201528151601481830301815260348201928390526335cb109960e01b9092526001600160a01b03909216916335cb10999161127b9130918691603801614a37565b5f604051808303815f87803b158015611292575f5ffd5b505af11580156112a4573d5f5f3e3d5ffd5b505050505b60018201546040516352d5e34560e11b81523360048201526001600160a01b03909116903090829063a5abc68a90602401602060405180830381865afa1580156112f5573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113199190614a82565b6001600160a01b0316036113405760405163369ce57360e01b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611378575f5ffd5b505af115801561138a573d5f5f3e3d5ffd5b50506040516340c755e160e01b81523360048201526001600160a01b03841692506340c755e191506024015f604051808303815f87803b1580156113cc575f5ffd5b505af11580156113de573d5f5f3e3d5ffd5b505050506113ea6142f2565b6113f26142f2565b6040516394c0527d60e01b81523360048201526001600160a01b038416906394c0527d9060240161044060405180830381865afa158015611435573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061145991906147ba565b604081015191935091506001600160a01b0316156114ca57826001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156114a9575f5ffd5b505af11580156114bb573d5f5f3e3d5ffd5b505050506114ca828233612670565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611502575f5ffd5b505af1158015611514573d5f5f3e3d5ffd5b50505050600285015461153390600160b81b900462ffffff1685612e83565b156115c1576002850154604080513360601b6001600160601b031916602082015281516014818303018152603482019283905263aef2823560e01b9092526001600160a01b039092169163aef28235916115939130918991603801614a37565b5f604051808303815f87803b1580156115aa575f5ffd5b505af11580156115bc573d5f5f3e3d5ffd5b505050505b5050505050565b5f516020614e155f395f51905f52545f9081905f516020614db55f395f51905f529061160190600160a01b900462ffffff166010612e83565b156116a95760408051602081018990528082018890526001600160601b0319606088811b82168184015287901b16607482015281518082036068018152608882019283905260028401546335cb109960e01b909352916001600160a01b0316906335cb10999061167a9030906010908690608c01614a37565b5f604051808303815f87803b158015611691575f5ffd5b505af11580156116a3573d5f5f3e3d5ffd5b50505050505b6001810154604080516309dd413360e41b815290516001600160a01b03909216918291639dd41330916004808301925f92919082900301818387803b1580156116f0575f5ffd5b505af1158015611702573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b158015611744575f5ffd5b505af1158015611756573d5f5f3e3d5ffd5b5050604051631e1f560960e11b81523060048201525f92508291506001600160a01b03841690633c3eac12906024016040805180830381865afa15801561179f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117c391906149a9565b915091506117d582828c8c8c8c612e8f565b8096508197505050826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611815575f5ffd5b505af1158015611827573d5f5f3e3d5ffd5b50505050600284015461184790600160b81b900462ffffff166010612e83565b156119025760408051602081018c90529081018a90526001600160601b031960608a811b82168184015289901b1660748201526088810187905260a881018690525f9060c80160408051601f1981840301815290829052600287015463aef2823560e01b83529092506001600160a01b03169063aef28235906118d39030906010908690600401614a37565b5f604051808303815f87803b1580156118ea575f5ffd5b505af11580156118fc573d5f5f3e3d5ffd5b50505050505b5050505094509492505050565b5f5f5f61191a611fb5565b90506119258161303b565b60405163e48a5f7b60e01b81523060048201525f906001600160a01b0383169063e48a5f7b9060240161022060405180830381865afa15801561196a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061198e9190614786565b6101e08101519091506001600160a01b03166119af57505f93849350915050565b6101e081015160405163e4784fa960e01b81523060048201526001600160a01b039091169063e4784fa9906024016040805180830381865afa1580156119f7573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a1b9190614aaf565b60a083015160405163131ec3cf60e21b815262ffffff8085166004830152831660248201529296509094506001600160a01b031690634c7b0f3c906044015f604051808303815f87803b158015611a70575f5ffd5b505af1158015611a82573d5f5f3e3d5ffd5b505050608082015160405163131ec3cf60e21b815262ffffff8088166004830152861660248201526001600160a01b039091169150634c7b0f3c906044015f604051808303815f87803b158015611ad7575f5ffd5b505af1158015611ae9573d5f5f3e3d5ffd5b50505060c082015160405163131ec3cf60e21b815262ffffff8088166004830152861660248201526001600160a01b039091169150634c7b0f3c906044015f604051808303815f87803b158015611b3e575f5ffd5b505af1158015611b50573d5f5f3e3d5ffd5b5050505050509091565b5f835f03611b7b57604051631f2a200560e01b815260040160405180910390fd5b5f516020614e155f395f51905f52545f516020614db55f395f51905f5290611bb090600160a01b900462ffffff166040612e83565b15611c54576040516001600160601b0319606089811b8216602084015288901b166034820152604881018690525f9060680160408051601f1981840301815282825260028501546335cb109960e01b84529093506001600160a01b0316916335cb109991611c25913091908690600401614a37565b5f604051808303815f87803b158015611c3c575f5ffd5b505af1158015611c4e573d5f5f3e3d5ffd5b50505050505b60018101545f90611c6f906001600160a01b031688886130bc565b90506001600160c01b03811115611c99576040516340c0d6e560e11b815260040160405180910390fd5b611ca2876131e4565b861115611cc25760405163435564db60e01b815260040160405180910390fd5b805f516020614dd55f395f51905f5280545f90611ce99084906001600160c01b0316614ad7565b92506101000a8154816001600160c01b0302191690836001600160c01b03160217905550611d2b8887896001600160a01b0316612e1f9092919063ffffffff16565b6040516323e30c8b60e01b81527f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9906001600160a01b038a16906323e30c8b90611d839033908c908c9088908d908d90600401614af6565b6020604051808303815f875af1158015611d9f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dc391906149e1565b14611de1576040516301fabd5b60e71b815260040160405180910390fd5b611e028830611df0848a614b4e565b6001600160a01b038b16929190613343565b6002820154611e1e90600160b81b900462ffffff166040612e83565b15611ec9576040516001600160601b031960608a811b8216602084015289901b16603482015260488101879052606881018290525f9060880160408051601f19818403018152828252600286015463aef2823560e01b84529093506001600160a01b03169163aef2823591611e9a913091908690600401614a37565b5f604051808303815f87803b158015611eb1575f5ffd5b505af1158015611ec3573d5f5f3e3d5ffd5b50505050505b506001979650505050505050565b5f516020614e155f395f51905f52545f516020614db55f395f51905f5290611f0b90600160a01b900462ffffff1683612e83565b611f1457505050565b5f835f015184602001518560400151866060015133604051602001611f3d959493929190614b61565b60408051601f198184030181529082905260028401546335cb109960e01b83529092506001600160a01b0316906335cb109990611f8290309087908690600401614a37565b5f604051808303815f87803b158015611f99575f5ffd5b505af1158015611fab573d5f5f3e3d5ffd5b5050505050505050565b7f01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1201546001600160a01b031690565b5f805f516020614dd55f395f51905f52815f516020614df55f395f51905f5281600281526020019081526020015f2054905061208c855f01518660200151838b6001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561205e573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061208291906149e1565b5f6001600261336b565b60015f818152908501602052604090205491955093506001600160a01b03881615806120c157506120bd8183613428565b8511155b6120de57604051634323a55560e01b815260040160405180910390fd5b6120e88583614b4e565b60025f908152600185016020526040908190209190915560608701519051636361ddf360e11b81526001600160a01b038b169163c6c3bbe69161213291908b908990600401614b9a565b5f604051808303815f87803b158015612149575f5ffd5b505af115801561215b573d5f5f3e3d5ffd5b505050506001600160a01b03881615610cd3576040860151610cd3906001600160a01b038a169087612e1f565b81604001516001600160a01b031683604001516001600160a01b0316146121bb576121b283613440565b6121bb82613440565b5f6121c88484845f6134c2565b9050806121e85760405163950c033560e01b815260040160405180910390fd5b50505050565b5f516020614e155f395f51905f52545f516020614db55f395f51905f529061222290600160b81b900462ffffff1685612e83565b61222c57506121e8565b5f855f01518660200151876040015188606001513388886040516020016122599796959493929190614bbe565b60408051601f1981840301815290829052600284015463aef2823560e01b83529092506001600160a01b03169063aef282359061229e90309089908690600401614a37565b5f604051808303815f87803b1580156122b5575f5ffd5b505af11580156122c7573d5f5f3e3d5ffd5b50505050505050505050565b5f516020614db55f395f51905f525f6122fa6122f560c0850160a086016148c0565b61356b565b600283015490915061231890600160a01b900462ffffff1682612e83565b61232157505050565b5f833560208501356123396060870160408801614391565b6123496080880160608901614391565b61235960a0890160808a01614391565b60405160200161236d959493929190614b61565b60408051601f198184030181529082905260028501546335cb109960e01b83529092506001600160a01b0316906335cb109990611f8290309086908690600401614a37565b5f5f5f846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156123f1573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061241591906149e1565b9050805f0361243757604051630686827b60e51b815260040160405180910390fd5b60a08401515f516020614dd55f395f51905f52905f905f516020614df55f395f51905f52908290600181111561246f5761246f6148ac565b6002811115612480576124806148ac565b6002811115612491576124916148ac565b60028111156124a2576124a26148ac565b81526020019081526020015f205490506124ef865f0151876020015183865f60018c60a0015160018111156124d9576124d96148ac565b60028111156124ea576124ea6148ac565b61336b565b90955093505f60018760a00151600181111561250d5761250d6148ac565b14612527575f80805260018401602052604090205461254a565b60015f8181529084016020526040808220546002835291205461254a9190613428565b90508086111561256d57604051634323a55560e01b815260040160405180910390fd5b6125778683614c00565b836001015f8960a001516001811115612592576125926148ac565b60028111156125a3576125a36148ac565b60028111156125b4576125b46148ac565b60028111156125c5576125c56148ac565b81526020019081526020015f20819055505050856001600160a01b031663f6b911bc86606001518760800151866040518463ffffffff1660e01b815260040161261093929190614b9a565b5f604051808303815f87803b158015612627575f5ffd5b505af1158015612639573d5f5f3e3d5ffd5b505050506001600160a01b03871615612666576040850151612666906001600160a01b0389169086612e1f565b5050935093915050565b82604001516001600160a01b031682604001516001600160a01b0316146126a35761269a8361359a565b6126a38261359a565b5f6126b08484845f6135f5565b9050806121e85760405163e081c8f360e01b815260040160405180910390fd5b5f516020614db55f395f51905f525f6126f26122f560c0870160a088016148c0565b600283015490915061271090600160b81b900462ffffff1682612e83565b61271b575050505050565b5f853560208701356127336060890160408a01614391565b61274360808a0160608b01614391565b61275360a08b0160808c01614391565b898960405160200161276b9796959493929190614bbe565b60408051601f1981840301815290829052600285015463aef2823560e01b83529092506001600160a01b03169063aef282359061229e90309086908690600401614a37565b5f5f516020614db55f395f51905f5290505f6127cf83604001516136a5565b60028301549091506127ed90600160a01b900462ffffff1682612e83565b6127f657505050565b5f835f0151846020015160405160200161236d92919091825260601b6001600160601b031916602082015260340190565b5f805f516020614dd55f395f51905f52815f516020614df55f395f51905f5281866001811115612859576128596148ac565b600281111561286a5761286a6148ac565b600281111561287b5761287b6148ac565b600281111561288c5761288c6148ac565b81526020019081526020015f20549050612917898983896001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061290291906149e1565b60015f8b60018111156124d9576124d96148ac565b90945092506129268482614b4e565b826001015f87600181111561293d5761293d6148ac565b600281111561294e5761294e6148ac565b600281111561295f5761295f6148ac565b6002811115612970576129706148ac565b81526020019081526020015f2081905550856001600160a01b031663c6c3bbe6888c866040518463ffffffff1660e01b81526004016129b193929190614b9a565b5f604051808303815f87803b1580156129c8575f5ffd5b505af11580156129da573d5f5f3e3d5ffd5b505050506001600160a01b038b1615612a0257612a026001600160a01b038c168b3087613343565b505097509795505050505050565b5f5f516020614db55f395f51905f5290505f612a2f85604001516136a5565b6002830154909150612a4d90600160b81b900462ffffff1682612e83565b612a58575050505050565b5f8486602001518560405160200161276b9392919092835260609190911b6001600160601b0319166020830152603482015260540190565b5f516020614db55f395f51905f525f612aa8866136d4565b6002830154909150612ac690600160a01b900462ffffff1682612e83565b612ad15750506121e8565b6040805160208101879052908101859052606084811b6001600160601b031916908201525f9060740160408051601f198184030181529082905260028501546335cb109960e01b83529092506001600160a01b0316906335cb109990612b3f90309086908690600401614a37565b5f604051808303815f87803b158015612b56575f5ffd5b505af1158015612b68573d5f5f3e3d5ffd5b5050505050505050505050565b5f516020614db55f395f51905f525f612b8d886136d4565b6002830154909150612bab90600160b81b900462ffffff1682612e83565b612bb6575050612c63565b6040805160208101899052908101879052606086811b6001600160601b0319169082015260748101859052609481018490525f9060b40160408051601f1981840301815290829052600285015463aef2823560e01b83529092506001600160a01b03169063aef2823590612c3290309086908690600401614a37565b5f604051808303815f87803b158015612c49575f5ffd5b505af1158015612c5b573d5f5f3e3d5ffd5b505050505050505b505050505050565b5f5f5f5f5f856001600160a01b03166379502c556040518163ffffffff1660e01b8152600401602060405180830381865afa158015612cac573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612cd09190614a82565b604051630509af0560e51b81526001600160a01b038881166004830152919091169063a135e0a090602401608060405180830381865afa158015612d16573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612d3a9190614c13565b9050809350819450829550505050856001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015612d84573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612da89190614a82565b604051630c0d053960e11b81526001600160a01b038881166004830152919091169063181a0a72906024016040805180830381865afa158015612ded573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612e1191906149a9565b909790965092945090925090565b6040516001600160a01b03838116602483015260448201839052612e7e91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050613703565b505050565b81811681145b92915050565b60025f9081525f516020614df55f395f51905f526020527f48b831d600d3a8486411d9e9b2dcae2eea5dd7e8bc9c97a119670ecbb2e7f7635460405163dce5c2db60e01b81526001600160a01b03858116600483015283925f516020614dd55f395f51905f52929091849182918d169063dce5c2db906024016040805180830381865afa158015612f22573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f469190614c48565b91509150612f5b8a8a858460015f600261336b565b909650945081851115612f8257819450612f7c5f86858460015f600261336b565b90965094505b85831015612fa357604051635fb6774960e01b815260040160405180910390fd5b60025f90815260018501602052604090819020878503905551633dae446f60e21b81526001600160a01b038d169063f6b911bc90612fe9908b908b908a90600401614b9a565b5f604051808303815f87803b158015613000575f5ffd5b505af1158015613012573d5f5f3e3d5ffd5b5061302c925050506001600160a01b038c16883089613343565b50505050965096945050505050565b806001600160a01b031663d2c725e06040518163ffffffff1660e01b8152600401602060405180830381865afa158015613077573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061309b91906147a1565b156130b95760405163e17fbf8960e01b815260040160405180910390fd5b50565b5f815f036130cb57505f6131dd565b604051630509af0560e51b81523060048201525f9081906001600160a01b0387169063a135e0a090602401608060405180830381865afa158015613111573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906131359190614c13565b935093505050806001600160a01b0316856001600160a01b03161461316d5760405163d7df47b560e01b815260040160405180910390fd5b815f0361317e575f925050506131dd565b8161318a855f19614c6a565b10156131a9576040516374bcc3c960e01b815260040160405180910390fd5b670de0b6b3a76400006131bc8386614a0c565b6131c69190614c6a565b9250825f036131da576001925050506131dd565b50505b9392505050565b5f6131ed611fb5565b6040516307439b4960e01b81523060048201526001600160a01b0391909116906307439b4990602401602060405180830381865afa158015613231573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906132559190614a82565b6001600160a01b0316826001600160a01b03161461327457505f919050565b5f8080525f516020614df55f395f51905f5260209081527f4d2d7760e154c15f5300cc4c37d05178e23007d6f2160bcd750c6af7887140f654604080516370a0823160e01b815230600482015290515f516020614dd55f395f51905f529492936001600160a01b038816926370a0823192602480830193928290030181865afa158015613303573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061332791906149e1565b9050818111613336575f61333a565b8181035b95945050505050565b6121e884856001600160a01b03166323b872dd868686604051602401612e4c93929190614b9a565b5f5f885f036133ca57875f0361339457604051636536c9a760e01b815260040160405180910390fd5b50866133a38188888887613769565b9150815f036133c55760405163284fe51560e01b815260040160405180910390fd5b61341c565b875f03613403576133de89888887876137a4565b9050889150805f036133c55760405163648361af60e01b815260040160405180910390fd5b60405163785e338960e11b815260040160405180910390fd5b97509795505050505050565b5f828211613438578183036131dd565b5f9392505050565b806102000151801561345f57506101008101516001600160a01b031615155b156130b9576101008101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015b5f604051808303815f87803b1580156134b0575f5ffd5b505af11580156115c1573d5f5f3e3d5ffd5b60c08301516040516370a0823160e01b81526001600160a01b0384811660048301525f9283929116906370a0823190602401602060405180830381865afa15801561350f573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061353391906149e1565b9050805f03613546576001915050613563565b5f613556878787600188876137d3565b6101408801511015925050505b949350505050565b5f6001826001811115613580576135806148ac565b1461358d57611000613591565b6108005b60201792915050565b80610200015180156135b8575060e08101516001600160a01b031615155b156130b95760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a90602401613499565b60408301515f906001600160a01b031661361157506001613563565b60c08401516040516370a0823160e01b81526001600160a01b0380861660048301525f926136929289928992899287928a9216906370a0823190602401602060405180830381865afa158015613669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061368d91906149e1565b6137d3565b6101608701511015915050949350505050565b5f60018260018111156136ba576136ba6148ac565b146136c7576110006136cb565b6108005b60801792915050565b5f60018260018111156136e9576136e96148ac565b146136f6576110006136fa565b6108005b60021792915050565b5f6137176001600160a01b0384168361382a565b905080515f1415801561373b57508080602001905181019061373991906147a1565b155b15612e7e57604051635274afe760e01b81526001600160a01b03841660048201526024015b60405180910390fd5b5f5f5f613777878786613837565b91509150815f0361378c57879250505061333a565b61379888828488613892565b98975050505050505050565b5f5f5f6137b2878786613837565b91509150815f036137c757879250505061333a565b61379888838388613892565b5f815f036137e257505f613820565b5f6137f18888888888886138d4565b905080608001515f03613807575f915050613820565b61381a8189606001518960600151613b51565b93505050505b9695505050505050565b60606131dd83835f613ba7565b5f5f835f03613844575f94505b6002836002811115613858576138586148ac565b14613883576138696003600a614d58565b6138739085614b4e565b61387e866001614b4e565b613886565b83855b90969095509350505050565b5f6138bf61389f83613c3d565b80156138ba57505f84806138b5576138b5614a23565b868809115b151590565b6138ca868686613c69565b61333a9190614b4e565b6139136040518060a001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81525090565b85606001516001600160a01b031687606001516001600160a01b03161461397d576001846001811115613948576139486148ac565b1461395c578660e001518660e00151613969565b8661010001518661010001515b6001600160a01b0390811660208401521681525b5f5f61398e8960800151885f613d26565b80935081925050505f5f8a604001516001600160a01b031663ffbaaf7a6040518163ffffffff1660e01b81526004016040805180830381865afa1580156139d7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906139fb9190614c48565b91509150613a0c8382865f5f613769565b604086015260a08b0151613a21908a5f613d26565b945092506001876001811115613a3957613a396148ac565b14613a445781613a60565b613a608b604001518c61012001518d5f01518e60200151613e0e565b9150613a708383865f6001613769565b606086015260c08a0151613a85908a88613d26565b945092505f6001886001811115613a9e57613a9e6148ac565b14613b18578a604001516001600160a01b031663b6d821c760026040518263ffffffff1660e01b8152600401613ad49190614d63565b602060405180830381865afa158015613aef573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613b1391906149e1565b613b2b565b613b2b8b604001518c6101200151613f04565b9050613b3c84828760016002613769565b608087015250939a9950505050505050505050565b5f5f5f613b5f868686613ff7565b909350915082158015613b70575081155b15613b8257505f915081905080613b9e565b825f03613b9157505f19613b9e565b613b9b828461414d565b90505b93509350939050565b606081471015613bd35760405163cf47918160e01b815247600482015260248101839052604401613760565b5f5f856001600160a01b03168486604051613bee9190614d7d565b5f6040518083038185875af1925050503d805f8114613c28576040519150601f19603f3d011682016040523d82523d5f602084013e613c2d565b606091505b5091509150613820868383614163565b5f6002826003811115613c5257613c526148ac565b613c5c9190614d93565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03613c9d57838281613c9357613c93614a23565b04925050506131dd565b808411613cbb57613cbb8415613cb45760116141bf565b60126141bf565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f5f825f03613da05760405163dce5c2db60e01b81526001600160a01b03858116600483015286169063dce5c2db906024016040805180830381865afa158015613d72573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613d969190614c48565b9092509050613e06565b829150846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015613ddf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613e0391906149e1565b90505b935093915050565b6040516367efe7fd60e11b81526001600160a01b0385811660048301524260248301525f91829186169063cfdfcffa90604401602060405180830381865afa925050508015613e7a575060408051601f3d908101601f19168201909252613e77918101906149e1565b60015b15613e825790505b5f5f876001600160a01b03166339c5c5056040518163ffffffff1660e01b81526004016040805180830381865afa158015613ebf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613ee39190614c48565b91509150613ef482828589896141d0565b50919a9950505050505050505050565b6040516367efe7fd60e11b81526001600160a01b0383811660048301524260248301525f91829184169063cfdfcffa90604401602060405180830381865afa925050508015613f70575060408051601f3d908101601f19168201909252613f6d918101906149e1565b60015b15613f785790505b60405163b6d821c760e01b8152613fee906001600160a01b0386169063b6d821c790613fa990600290600401614d63565b602060405180830381865afa158015613fc4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613fe891906149e1565b82614236565b50949350505050565b5f5f5f8560600151866040015161400e9190614b4e565b905080156140a05785516001600160a01b031661402b578061409d565b85516040516313b0be3360e01b8152600481018390526001600160a01b038781166024830152909116906313b0be3390604401602060405180830381865afa158015614079573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061409d91906149e1565b92505b6080860151156141445760208601516001600160a01b03166140c6578560800151614141565b602086015160808701516040516313b0be3360e01b815260048101919091526001600160a01b038681166024830152909116906313b0be3390604401602060405180830381865afa15801561411d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061414191906149e1565b91505b50935093915050565b5f6131dd83670de0b6b3a7640000846001613892565b6060826141785761417382614281565b6131dd565b815115801561418f57506001600160a01b0384163b155b156141b857604051639996b31560e01b81526001600160a01b0385166004820152602401613760565b50806131dd565b634e487b715f52806020526024601cfd5b5f5f5f5f6141de8888614236565b90935090508585016141f98282670de0b6b3a76400006142aa565b92505f6142068484614c00565b90505f6142148c5f19614c00565b905081811015614222578091505b818c01965050505095509550955095915050565b5f80831580614243575082155b1561425257508290505f61427a565b6142658484670de0b6b3a76400006142aa565b905080840191508382101561427a57508290505f5b9250929050565b8051156142915780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b5f835f036142b957505f6131dd565b50828202828482816142cd576142cd614a23565b04146142da57505f6131dd565b8181816142e9576142e9614a23565b04949350505050565b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b03811681146130b9575f5ffd5b5f602082840312156143a1575f5ffd5b81356131dd8161437d565b604051610220810167ffffffffffffffff811182821017156143dc57634e487b7160e01b5f52604160045260245ffd5b60405290565b60405160e0810167ffffffffffffffff811182821017156143dc57634e487b7160e01b5f52604160045260245ffd5b5f6080828403128015614422575f5ffd5b506040516080810167ffffffffffffffff8111828210171561445257634e487b7160e01b5f52604160045260245ffd5b604090815283358252602080850135908301528301356144718161437d565b604082015260608301356144848161437d565b60608201529392505050565b5f60c08284031280156144a1575f5ffd5b509092915050565b8035600281106144b7575f5ffd5b919050565b5f60608284031280156144cd575f5ffd5b506040516060810167ffffffffffffffff811182821017156144fd57634e487b7160e01b5f52604160045260245ffd5b6040528235815260208301356145128161437d565b6020820152614523604084016144a9565b60408201529392505050565b5f5f5f5f60808587031215614542575f5ffd5b8435935060208501359250604085013561455b8161437d565b9150614569606086016144a9565b905092959194509250565b5f5f5f5f60808587031215614587575f5ffd5b843593506020850135925060408501356145a08161437d565b915060608501356145b08161437d565b939692955090935050565b5f5f5f5f5f608086880312156145cf575f5ffd5b85356145da8161437d565b945060208601356145ea8161437d565b935060408601359250606086013567ffffffffffffffff81111561460c575f5ffd5b8601601f8101881361461c575f5ffd5b803567ffffffffffffffff811115614632575f5ffd5b886020828401011115614643575f5ffd5b959894975092955050506020019190565b80516144b78161437d565b805180151581146144b7575f5ffd5b5f610220828403121561467f575f5ffd5b6146876143ac565b825181526020808401519082015290506146a360408301614654565b60408201526146b460608301614654565b60608201526146c560808301614654565b60808201526146d660a08301614654565b60a08201526146e760c08301614654565b60c08201526146f860e08301614654565b60e082015261470a6101008301614654565b61010082015261471d6101208301614654565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526147676101e08301614654565b6101e082015261477a610200830161465f565b61020082015292915050565b5f6102208284031215614797575f5ffd5b6131dd838361466e565b5f602082840312156147b1575f5ffd5b6131dd8261465f565b5f5f61044083850312156147cc575f5ffd5b6147d6848461466e565b91506147e684610220850161466e565b90509250929050565b5f5f5f838503610520811215614803575f5ffd5b60e0811215614810575f5ffd5b506148196143e2565b84516148248161437d565b815260208501516148348161437d565b602082015260408501516148478161437d565b6040820152606085015161485a8161437d565b60608201526080858101519082015260a0808601519082015261487f60c08601614654565b60c082015292506148938560e0860161466e565b91506148a385610300860161466e565b90509250925092565b634e487b7160e01b5f52602160045260245ffd5b5f602082840312156148d0575f5ffd5b6131dd826144a9565b5f60c08284031280156148ea575f5ffd5b5060405160c0810167ffffffffffffffff8111828210171561491a57634e487b7160e01b5f52604160045260245ffd5b604090815283358252602080850135908301528301356149398161437d565b6040820152606083013561494c8161437d565b6060820152608083013561495f8161437d565b608082015261497060a084016144a9565b60a08201529392505050565b6001600160a01b0383168152604081016002831061499c5761499c6148ac565b8260208301529392505050565b5f5f604083850312156149ba575f5ffd5b82516149c58161437d565b60208401519092506149d68161437d565b809150509250929050565b5f602082840312156149f1575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b8082028115828204841417612e8957612e896149f8565b634e487b7160e01b5f52601260045260245ffd5b60018060a01b0384168152826020820152606060408201525f82518060608401528060208501608085015e5f608082850101526080601f19601f830116840101915050949350505050565b5f60208284031215614a92575f5ffd5b81516131dd8161437d565b805162ffffff811681146144b7575f5ffd5b5f5f60408385031215614ac0575f5ffd5b614ac983614a9d565b91506147e660208401614a9d565b6001600160c01b038181168382160190811115612e8957612e896149f8565b6001600160a01b03878116825286166020820152604081018590526060810184905260a0608082018190528101829052818360c08301375f81830160c090810191909152601f909201601f1916010195945050505050565b80820180821115612e8957612e896149f8565b94855260208501939093526001600160601b0319606092831b8116604086015290821b8116605485015291901b166068820152607c0190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b96875260208701959095526001600160601b0319606094851b8116604088015292841b83166054870152921b166068840152607c830152609c82015260bc0190565b81810381811115612e8957612e896149f8565b5f5f5f5f60808587031215614c26575f5ffd5b845160208601516040870151606088015192965090945092506145b08161437d565b5f5f60408385031215614c59575f5ffd5b505080516020909101519092909150565b5f82614c7857614c78614a23565b500490565b6001815b6001841115613e0657808504811115614c9c57614c9c6149f8565b6001841615614caa57908102905b60019390931c928002614c81565b5f82614cc657506001612e89565b81614cd257505f612e89565b8160018114614ce85760028114614cf257614d0e565b6001915050612e89565b60ff841115614d0357614d036149f8565b50506001821b612e89565b5060208310610133831016604e8410600b8410161715614d31575081810a612e89565b614d3d5f198484614c7d565b805f1904821115614d5057614d506149f8565b029392505050565b5f6131dd8383614cb8565b6020810160038310614d7757614d776148ac565b91905290565b5f82518060208501845e5f920191825250919050565b5f60ff831680614da557614da5614a23565b8060ff8416069150509291505056fe01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1200d7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f8300d7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f830101b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1202a2646970667358221220bb78473cded9ce19b0fb51e55c6e9ab33afafa5b99180505a238de12c2c5c12764736f6c634300081c0033
Deployed Bytecode
0x7301fc26773013b994640cae6228bd495f7ed9de3430146080604052600436106100b1575f3560e01c8063891a2b0811610079578063891a2b08146101825780639a2f31f1146101a1578063a1ecef5c146101c0578063b0062139146101d6578063cad1aacf146101f5578063d3f2b14a14610225575f5ffd5b80633d72eb3c146100b55780635937128b146100f15780635af0d5b8146101255780635ca5797b146101445780637ca0c3c514610163575b5f5ffd5b8180156100c0575f5ffd5b506100d46100cf366004614391565b610254565b6040516001600160a01b0390911681526020015b60405180910390f35b8180156100fc575f5ffd5b5061011061010b366004614411565b610347565b604080519283526020830191909152016100e8565b818015610130575f5ffd5b5061011061013f366004614490565b6105f5565b81801561014f575f5ffd5b5061011061015e3660046144bc565b61087c565b81801561016e575f5ffd5b5061011061017d36600461452f565b610b33565b81801561018d575f5ffd5b5061011061019c366004614391565b610cdf565b8180156101ac575f5ffd5b506101106101bb366004614411565b610f46565b8180156101cb575f5ffd5b506101d46111e3565b005b8180156101e1575f5ffd5b506101106101f0366004614574565b6115c8565b818015610200575f5ffd5b5061020961190f565b6040805162ffffff9384168152929091166020830152016100e8565b818015610230575f5ffd5b5061024461023f3660046145bb565b611b5a565b60405190151581526020016100e8565b7f01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1201545f905f516020614db55f395f51905f52906001600160a01b0316156102ae57604051630e13a05360e31b815260040160405180910390fd5b60405163e48a5f7b60e01b81523060048201525f906001600160a01b0385169063e48a5f7b9060240161022060405180830381865afa1580156102f3573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103179190614786565b600190920180546001600160a01b039095166001600160a01b0319909516949094179093556101e0015192915050565b5f5f610354836004611ed7565b5f61035d611fb5565b60608501516040516301c6052f60e11b81523060048201526001600160a01b03918216602482015291925082169063038c0a5e90604401602060405180830381865afa1580156103af573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103d391906147a1565b156103f1576040516301c08c7960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610429575f5ffd5b505af115801561043b573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610477575f5ffd5b505af1158015610489573d5f5f3e3d5ffd5b50505050606084015160405163f6f8174f60e01b81526001600160a01b0391821660048201529082169063f6f8174f906024015f604051808303815f87803b1580156104d3575f5ffd5b505af11580156104e5573d5f5f3e3d5ffd5b505050506104f16142f2565b6104f96142f2565b604051632e6da20560e01b81523060048201526001600160a01b03841690632e6da2059060240161044060405180830381865afa15801561053c573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061056091906147ba565b60c0810151606082015192945090925061057b913389611fe3565b809550819650505061059282828860600151612188565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156105ca575f5ffd5b505af11580156105dc573d5f5f3e3d5ffd5b505050506105ed86600487876121ee565b505050915091565b5f5f610600836122d3565b5f610609611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610643575f5ffd5b505af1158015610655573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610691575f5ffd5b505af11580156106a3573d5f5f3e3d5ffd5b50506040805160e0810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c081019190915291506106e69050565b6106ee6142f2565b6106f66142f2565b6001600160a01b038416631544a6db3061071660808b0160608c01614391565b6040516001600160e01b031960e085901b1681526001600160a01b0392831660048201529116602482015260440161052060405180830381865afa158015610760573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061078491906147ef565b602083015192955090935091506107e19060016107a760c08b0160a08c016148c0565b60018111156107b8576107b86148ac565b146107c75784606001516107cd565b84604001515b6107dc368b90038b018b6148d9565b6123b2565b604084015185519298509096506001600160a01b0390811691160361081a5761081a828261081560808b0160608c01614391565b612670565b836001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610852575f5ffd5b505af1158015610864573d5f5f3e3d5ffd5b505050506108738787876126d0565b50505050915091565b5f5f610887836127b0565b5f610890611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156108ca575f5ffd5b505af11580156108dc573d5f5f3e3d5ffd5b50505050806001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610918575f5ffd5b505af115801561092a573d5f5f3e3d5ffd5b505050506020840151604051631544a6db60e01b81523060048201526001600160a01b0391821660248201525f9182918291851690631544a6db9060440161052060405180830381865afa158015610984573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109a891906147ef565b919450925090505f806001896040015160018111156109c9576109c96148ac565b146109d85784606001516109de565b84604001515b9050610a515f826040518060c001604052805f81526020018d5f015181526020018d602001516001600160a01b031681526020018d602001516001600160a01b03168152602001336001600160a01b031681526020018d604001516001811115610a4a57610a4a6148ac565b90526123b2565b90985091505f8060018b604001516001811115610a7057610a706148ac565b14610a815760018760400151610a88565b5f87606001515b91509150610a9f5f338c5f8f602001518688612827565b60408801518951929c50909a506001600160a01b03908116911603610acd57610acd86868d60200151612670565b876001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610b05575f5ffd5b505af1158015610b17573d5f5f3e3d5ffd5b50505050610b268b8a8c612a10565b5050505050505050915091565b5f5f610b4183878787612a90565b5f610b4a611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610b84575f5ffd5b505af1158015610b96573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b158015610bd8575f5ffd5b505af1158015610bea573d5f5f3e3d5ffd5b505050505f5f826001600160a01b0316634b82d63d30886040518363ffffffff1660e01b8152600401610c1e92919061497c565b6040805180830381865afa158015610c38573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c5c91906149a9565b91509150610c6f81338b8b8b878c612827565b8095508196505050826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610caf575f5ffd5b505af1158015610cc1573d5f5f3e3d5ffd5b50505050610cd3868a8a8a8989612b75565b50505094509492505050565b5f5f5f610cea611fb5565b9050806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610d24575f5ffd5b505af1158015610d36573d5f5f3e3d5ffd5b505050505f610d4f5f516020614dd55f395f51905f5290565b80549091506001600160c01b03165f819003610d7d5760405162e7b56b60e41b815260040160405180910390fd5b5f5f5f5f5f610d8b8b612c6b565b6040516370a0823160e01b8152306004820152949950929750909550935091505f9081906001600160a01b038416906370a0823190602401602060405180830381865afa158015610dde573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e0291906149e1565b5f80805260018b016020526040902054909150818111610e2457808203610e26565b5f5b9250825f03610e4857604051636180f03f60e11b815260040160405180910390fd5b82891115610e54578298505b89546001600160c01b038082168b9003166001600160c01b0319909116178a556001600160a01b038716610e9b57610e966001600160a01b038516898b612e1f565b610ee8565b610ea5868a614a0c565b9c508486018d81610eb857610eb8614a23565b049c508c89039b50610ed46001600160a01b038516898f612e1f565b610ee86001600160a01b038516888e612e1f565b8a6001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015610f20575f5ffd5b505af1158015610f32573d5f5f3e3d5ffd5b505050505050505050505050505050915091565b5f5f610f53836008611ed7565b5f610f5c611fb5565b60608501516040516301c6052f60e11b81523060048201526001600160a01b03918216602482015291925082169063038c0a5e90604401602060405180830381865afa158015610fae573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fd291906147a1565b15610ff0576040516301c08c7960e11b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611028575f5ffd5b505af115801561103a573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b15801561107c575f5ffd5b505af115801561108e573d5f5f3e3d5ffd5b5050505060608401516040516340c755e160e01b81526001600160a01b039182166004820152908216906340c755e1906024015f604051808303815f87803b1580156110d8575f5ffd5b505af11580156110ea573d5f5f3e3d5ffd5b505060405163e48a5f7b60e01b81523060048201525f92506001600160a01b038416915063e48a5f7b9060240161022060405180830381865afa158015611133573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111579190614786565b90505f8190506111718160c0015182606001513389611fe3565b809550819650505061118882828860600151612188565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156111c0575f5ffd5b505af11580156111d2573d5f5f3e3d5ffd5b505050506105ed86600887876121ee565b5f516020614e155f395f51905f52545f516020614db55f395f51905f52906101009061121b90600160a01b900462ffffff1682612e83565b156112a9576002820154604080513360601b6001600160601b03191660208201528151601481830301815260348201928390526335cb109960e01b9092526001600160a01b03909216916335cb10999161127b9130918691603801614a37565b5f604051808303815f87803b158015611292575f5ffd5b505af11580156112a4573d5f5f3e3d5ffd5b505050505b60018201546040516352d5e34560e11b81523360048201526001600160a01b03909116903090829063a5abc68a90602401602060405180830381865afa1580156112f5573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113199190614a82565b6001600160a01b0316036113405760405163369ce57360e01b815260040160405180910390fd5b806001600160a01b0316639dd413306040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611378575f5ffd5b505af115801561138a573d5f5f3e3d5ffd5b50506040516340c755e160e01b81523360048201526001600160a01b03841692506340c755e191506024015f604051808303815f87803b1580156113cc575f5ffd5b505af11580156113de573d5f5f3e3d5ffd5b505050506113ea6142f2565b6113f26142f2565b6040516394c0527d60e01b81523360048201526001600160a01b038416906394c0527d9060240161044060405180830381865afa158015611435573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061145991906147ba565b604081015191935091506001600160a01b0316156114ca57826001600160a01b0316637d16b1f56040518163ffffffff1660e01b81526004015f604051808303815f87803b1580156114a9575f5ffd5b505af11580156114bb573d5f5f3e3d5ffd5b505050506114ca828233612670565b826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611502575f5ffd5b505af1158015611514573d5f5f3e3d5ffd5b50505050600285015461153390600160b81b900462ffffff1685612e83565b156115c1576002850154604080513360601b6001600160601b031916602082015281516014818303018152603482019283905263aef2823560e01b9092526001600160a01b039092169163aef28235916115939130918991603801614a37565b5f604051808303815f87803b1580156115aa575f5ffd5b505af11580156115bc573d5f5f3e3d5ffd5b505050505b5050505050565b5f516020614e155f395f51905f52545f9081905f516020614db55f395f51905f529061160190600160a01b900462ffffff166010612e83565b156116a95760408051602081018990528082018890526001600160601b0319606088811b82168184015287901b16607482015281518082036068018152608882019283905260028401546335cb109960e01b909352916001600160a01b0316906335cb10999061167a9030906010908690608c01614a37565b5f604051808303815f87803b158015611691575f5ffd5b505af11580156116a3573d5f5f3e3d5ffd5b50505050505b6001810154604080516309dd413360e41b815290516001600160a01b03909216918291639dd41330916004808301925f92919082900301818387803b1580156116f0575f5ffd5b505af1158015611702573d5f5f3e3d5ffd5b50506040516304abae1960e31b81523060048201526001600160a01b038416925063255d70c891506024015f604051808303815f87803b158015611744575f5ffd5b505af1158015611756573d5f5f3e3d5ffd5b5050604051631e1f560960e11b81523060048201525f92508291506001600160a01b03841690633c3eac12906024016040805180830381865afa15801561179f573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117c391906149a9565b915091506117d582828c8c8c8c612e8f565b8096508197505050826001600160a01b03166362402b046040518163ffffffff1660e01b81526004015f604051808303815f87803b158015611815575f5ffd5b505af1158015611827573d5f5f3e3d5ffd5b50505050600284015461184790600160b81b900462ffffff166010612e83565b156119025760408051602081018c90529081018a90526001600160601b031960608a811b82168184015289901b1660748201526088810187905260a881018690525f9060c80160408051601f1981840301815290829052600287015463aef2823560e01b83529092506001600160a01b03169063aef28235906118d39030906010908690600401614a37565b5f604051808303815f87803b1580156118ea575f5ffd5b505af11580156118fc573d5f5f3e3d5ffd5b50505050505b5050505094509492505050565b5f5f5f61191a611fb5565b90506119258161303b565b60405163e48a5f7b60e01b81523060048201525f906001600160a01b0383169063e48a5f7b9060240161022060405180830381865afa15801561196a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061198e9190614786565b6101e08101519091506001600160a01b03166119af57505f93849350915050565b6101e081015160405163e4784fa960e01b81523060048201526001600160a01b039091169063e4784fa9906024016040805180830381865afa1580156119f7573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611a1b9190614aaf565b60a083015160405163131ec3cf60e21b815262ffffff8085166004830152831660248201529296509094506001600160a01b031690634c7b0f3c906044015f604051808303815f87803b158015611a70575f5ffd5b505af1158015611a82573d5f5f3e3d5ffd5b505050608082015160405163131ec3cf60e21b815262ffffff8088166004830152861660248201526001600160a01b039091169150634c7b0f3c906044015f604051808303815f87803b158015611ad7575f5ffd5b505af1158015611ae9573d5f5f3e3d5ffd5b50505060c082015160405163131ec3cf60e21b815262ffffff8088166004830152861660248201526001600160a01b039091169150634c7b0f3c906044015f604051808303815f87803b158015611b3e575f5ffd5b505af1158015611b50573d5f5f3e3d5ffd5b5050505050509091565b5f835f03611b7b57604051631f2a200560e01b815260040160405180910390fd5b5f516020614e155f395f51905f52545f516020614db55f395f51905f5290611bb090600160a01b900462ffffff166040612e83565b15611c54576040516001600160601b0319606089811b8216602084015288901b166034820152604881018690525f9060680160408051601f1981840301815282825260028501546335cb109960e01b84529093506001600160a01b0316916335cb109991611c25913091908690600401614a37565b5f604051808303815f87803b158015611c3c575f5ffd5b505af1158015611c4e573d5f5f3e3d5ffd5b50505050505b60018101545f90611c6f906001600160a01b031688886130bc565b90506001600160c01b03811115611c99576040516340c0d6e560e11b815260040160405180910390fd5b611ca2876131e4565b861115611cc25760405163435564db60e01b815260040160405180910390fd5b805f516020614dd55f395f51905f5280545f90611ce99084906001600160c01b0316614ad7565b92506101000a8154816001600160c01b0302191690836001600160c01b03160217905550611d2b8887896001600160a01b0316612e1f9092919063ffffffff16565b6040516323e30c8b60e01b81527f439148f0bbc682ca079e46d6e2c2f0c1e3b820f1a291b069d8882abf8cf18dd9906001600160a01b038a16906323e30c8b90611d839033908c908c9088908d908d90600401614af6565b6020604051808303815f875af1158015611d9f573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611dc391906149e1565b14611de1576040516301fabd5b60e71b815260040160405180910390fd5b611e028830611df0848a614b4e565b6001600160a01b038b16929190613343565b6002820154611e1e90600160b81b900462ffffff166040612e83565b15611ec9576040516001600160601b031960608a811b8216602084015289901b16603482015260488101879052606881018290525f9060880160408051601f19818403018152828252600286015463aef2823560e01b84529093506001600160a01b03169163aef2823591611e9a913091908690600401614a37565b5f604051808303815f87803b158015611eb1575f5ffd5b505af1158015611ec3573d5f5f3e3d5ffd5b50505050505b506001979650505050505050565b5f516020614e155f395f51905f52545f516020614db55f395f51905f5290611f0b90600160a01b900462ffffff1683612e83565b611f1457505050565b5f835f015184602001518560400151866060015133604051602001611f3d959493929190614b61565b60408051601f198184030181529082905260028401546335cb109960e01b83529092506001600160a01b0316906335cb109990611f8290309087908690600401614a37565b5f604051808303815f87803b158015611f99575f5ffd5b505af1158015611fab573d5f5f3e3d5ffd5b5050505050505050565b7f01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1201546001600160a01b031690565b5f805f516020614dd55f395f51905f52815f516020614df55f395f51905f5281600281526020019081526020015f2054905061208c855f01518660200151838b6001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561205e573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061208291906149e1565b5f6001600261336b565b60015f818152908501602052604090205491955093506001600160a01b03881615806120c157506120bd8183613428565b8511155b6120de57604051634323a55560e01b815260040160405180910390fd5b6120e88583614b4e565b60025f908152600185016020526040908190209190915560608701519051636361ddf360e11b81526001600160a01b038b169163c6c3bbe69161213291908b908990600401614b9a565b5f604051808303815f87803b158015612149575f5ffd5b505af115801561215b573d5f5f3e3d5ffd5b505050506001600160a01b03881615610cd3576040860151610cd3906001600160a01b038a169087612e1f565b81604001516001600160a01b031683604001516001600160a01b0316146121bb576121b283613440565b6121bb82613440565b5f6121c88484845f6134c2565b9050806121e85760405163950c033560e01b815260040160405180910390fd5b50505050565b5f516020614e155f395f51905f52545f516020614db55f395f51905f529061222290600160b81b900462ffffff1685612e83565b61222c57506121e8565b5f855f01518660200151876040015188606001513388886040516020016122599796959493929190614bbe565b60408051601f1981840301815290829052600284015463aef2823560e01b83529092506001600160a01b03169063aef282359061229e90309089908690600401614a37565b5f604051808303815f87803b1580156122b5575f5ffd5b505af11580156122c7573d5f5f3e3d5ffd5b50505050505050505050565b5f516020614db55f395f51905f525f6122fa6122f560c0850160a086016148c0565b61356b565b600283015490915061231890600160a01b900462ffffff1682612e83565b61232157505050565b5f833560208501356123396060870160408801614391565b6123496080880160608901614391565b61235960a0890160808a01614391565b60405160200161236d959493929190614b61565b60408051601f198184030181529082905260028501546335cb109960e01b83529092506001600160a01b0316906335cb109990611f8290309086908690600401614a37565b5f5f5f846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156123f1573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061241591906149e1565b9050805f0361243757604051630686827b60e51b815260040160405180910390fd5b60a08401515f516020614dd55f395f51905f52905f905f516020614df55f395f51905f52908290600181111561246f5761246f6148ac565b6002811115612480576124806148ac565b6002811115612491576124916148ac565b60028111156124a2576124a26148ac565b81526020019081526020015f205490506124ef865f0151876020015183865f60018c60a0015160018111156124d9576124d96148ac565b60028111156124ea576124ea6148ac565b61336b565b90955093505f60018760a00151600181111561250d5761250d6148ac565b14612527575f80805260018401602052604090205461254a565b60015f8181529084016020526040808220546002835291205461254a9190613428565b90508086111561256d57604051634323a55560e01b815260040160405180910390fd5b6125778683614c00565b836001015f8960a001516001811115612592576125926148ac565b60028111156125a3576125a36148ac565b60028111156125b4576125b46148ac565b60028111156125c5576125c56148ac565b81526020019081526020015f20819055505050856001600160a01b031663f6b911bc86606001518760800151866040518463ffffffff1660e01b815260040161261093929190614b9a565b5f604051808303815f87803b158015612627575f5ffd5b505af1158015612639573d5f5f3e3d5ffd5b505050506001600160a01b03871615612666576040850151612666906001600160a01b0389169086612e1f565b5050935093915050565b82604001516001600160a01b031682604001516001600160a01b0316146126a35761269a8361359a565b6126a38261359a565b5f6126b08484845f6135f5565b9050806121e85760405163e081c8f360e01b815260040160405180910390fd5b5f516020614db55f395f51905f525f6126f26122f560c0870160a088016148c0565b600283015490915061271090600160b81b900462ffffff1682612e83565b61271b575050505050565b5f853560208701356127336060890160408a01614391565b61274360808a0160608b01614391565b61275360a08b0160808c01614391565b898960405160200161276b9796959493929190614bbe565b60408051601f1981840301815290829052600285015463aef2823560e01b83529092506001600160a01b03169063aef282359061229e90309086908690600401614a37565b5f5f516020614db55f395f51905f5290505f6127cf83604001516136a5565b60028301549091506127ed90600160a01b900462ffffff1682612e83565b6127f657505050565b5f835f0151846020015160405160200161236d92919091825260601b6001600160601b031916602082015260340190565b5f805f516020614dd55f395f51905f52815f516020614df55f395f51905f5281866001811115612859576128596148ac565b600281111561286a5761286a6148ac565b600281111561287b5761287b6148ac565b600281111561288c5761288c6148ac565b81526020019081526020015f20549050612917898983896001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156128de573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061290291906149e1565b60015f8b60018111156124d9576124d96148ac565b90945092506129268482614b4e565b826001015f87600181111561293d5761293d6148ac565b600281111561294e5761294e6148ac565b600281111561295f5761295f6148ac565b6002811115612970576129706148ac565b81526020019081526020015f2081905550856001600160a01b031663c6c3bbe6888c866040518463ffffffff1660e01b81526004016129b193929190614b9a565b5f604051808303815f87803b1580156129c8575f5ffd5b505af11580156129da573d5f5f3e3d5ffd5b505050506001600160a01b038b1615612a0257612a026001600160a01b038c168b3087613343565b505097509795505050505050565b5f5f516020614db55f395f51905f5290505f612a2f85604001516136a5565b6002830154909150612a4d90600160b81b900462ffffff1682612e83565b612a58575050505050565b5f8486602001518560405160200161276b9392919092835260609190911b6001600160601b0319166020830152603482015260540190565b5f516020614db55f395f51905f525f612aa8866136d4565b6002830154909150612ac690600160a01b900462ffffff1682612e83565b612ad15750506121e8565b6040805160208101879052908101859052606084811b6001600160601b031916908201525f9060740160408051601f198184030181529082905260028501546335cb109960e01b83529092506001600160a01b0316906335cb109990612b3f90309086908690600401614a37565b5f604051808303815f87803b158015612b56575f5ffd5b505af1158015612b68573d5f5f3e3d5ffd5b5050505050505050505050565b5f516020614db55f395f51905f525f612b8d886136d4565b6002830154909150612bab90600160b81b900462ffffff1682612e83565b612bb6575050612c63565b6040805160208101899052908101879052606086811b6001600160601b0319169082015260748101859052609481018490525f9060b40160408051601f1981840301815290829052600285015463aef2823560e01b83529092506001600160a01b03169063aef2823590612c3290309086908690600401614a37565b5f604051808303815f87803b158015612c49575f5ffd5b505af1158015612c5b573d5f5f3e3d5ffd5b505050505050505b505050505050565b5f5f5f5f5f856001600160a01b03166379502c556040518163ffffffff1660e01b8152600401602060405180830381865afa158015612cac573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612cd09190614a82565b604051630509af0560e51b81526001600160a01b038881166004830152919091169063a135e0a090602401608060405180830381865afa158015612d16573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612d3a9190614c13565b9050809350819450829550505050856001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015612d84573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612da89190614a82565b604051630c0d053960e11b81526001600160a01b038881166004830152919091169063181a0a72906024016040805180830381865afa158015612ded573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612e1191906149a9565b909790965092945090925090565b6040516001600160a01b03838116602483015260448201839052612e7e91859182169063a9059cbb906064015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050613703565b505050565b81811681145b92915050565b60025f9081525f516020614df55f395f51905f526020527f48b831d600d3a8486411d9e9b2dcae2eea5dd7e8bc9c97a119670ecbb2e7f7635460405163dce5c2db60e01b81526001600160a01b03858116600483015283925f516020614dd55f395f51905f52929091849182918d169063dce5c2db906024016040805180830381865afa158015612f22573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190612f469190614c48565b91509150612f5b8a8a858460015f600261336b565b909650945081851115612f8257819450612f7c5f86858460015f600261336b565b90965094505b85831015612fa357604051635fb6774960e01b815260040160405180910390fd5b60025f90815260018501602052604090819020878503905551633dae446f60e21b81526001600160a01b038d169063f6b911bc90612fe9908b908b908a90600401614b9a565b5f604051808303815f87803b158015613000575f5ffd5b505af1158015613012573d5f5f3e3d5ffd5b5061302c925050506001600160a01b038c16883089613343565b50505050965096945050505050565b806001600160a01b031663d2c725e06040518163ffffffff1660e01b8152600401602060405180830381865afa158015613077573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061309b91906147a1565b156130b95760405163e17fbf8960e01b815260040160405180910390fd5b50565b5f815f036130cb57505f6131dd565b604051630509af0560e51b81523060048201525f9081906001600160a01b0387169063a135e0a090602401608060405180830381865afa158015613111573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906131359190614c13565b935093505050806001600160a01b0316856001600160a01b03161461316d5760405163d7df47b560e01b815260040160405180910390fd5b815f0361317e575f925050506131dd565b8161318a855f19614c6a565b10156131a9576040516374bcc3c960e01b815260040160405180910390fd5b670de0b6b3a76400006131bc8386614a0c565b6131c69190614c6a565b9250825f036131da576001925050506131dd565b50505b9392505050565b5f6131ed611fb5565b6040516307439b4960e01b81523060048201526001600160a01b0391909116906307439b4990602401602060405180830381865afa158015613231573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906132559190614a82565b6001600160a01b0316826001600160a01b03161461327457505f919050565b5f8080525f516020614df55f395f51905f5260209081527f4d2d7760e154c15f5300cc4c37d05178e23007d6f2160bcd750c6af7887140f654604080516370a0823160e01b815230600482015290515f516020614dd55f395f51905f529492936001600160a01b038816926370a0823192602480830193928290030181865afa158015613303573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061332791906149e1565b9050818111613336575f61333a565b8181035b95945050505050565b6121e884856001600160a01b03166323b872dd868686604051602401612e4c93929190614b9a565b5f5f885f036133ca57875f0361339457604051636536c9a760e01b815260040160405180910390fd5b50866133a38188888887613769565b9150815f036133c55760405163284fe51560e01b815260040160405180910390fd5b61341c565b875f03613403576133de89888887876137a4565b9050889150805f036133c55760405163648361af60e01b815260040160405180910390fd5b60405163785e338960e11b815260040160405180910390fd5b97509795505050505050565b5f828211613438578183036131dd565b5f9392505050565b806102000151801561345f57506101008101516001600160a01b031615155b156130b9576101008101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a906024015b5f604051808303815f87803b1580156134b0575f5ffd5b505af11580156115c1573d5f5f3e3d5ffd5b60c08301516040516370a0823160e01b81526001600160a01b0384811660048301525f9283929116906370a0823190602401602060405180830381865afa15801561350f573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061353391906149e1565b9050805f03613546576001915050613563565b5f613556878787600188876137d3565b6101408801511015925050505b949350505050565b5f6001826001811115613580576135806148ac565b1461358d57611000613591565b6108005b60201792915050565b80610200015180156135b8575060e08101516001600160a01b031615155b156130b95760e08101516060820151604051637cfd30cd60e11b81526001600160a01b03918216600482015291169063f9fa619a90602401613499565b60408301515f906001600160a01b031661361157506001613563565b60c08401516040516370a0823160e01b81526001600160a01b0380861660048301525f926136929289928992899287928a9216906370a0823190602401602060405180830381865afa158015613669573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061368d91906149e1565b6137d3565b6101608701511015915050949350505050565b5f60018260018111156136ba576136ba6148ac565b146136c7576110006136cb565b6108005b60801792915050565b5f60018260018111156136e9576136e96148ac565b146136f6576110006136fa565b6108005b60021792915050565b5f6137176001600160a01b0384168361382a565b905080515f1415801561373b57508080602001905181019061373991906147a1565b155b15612e7e57604051635274afe760e01b81526001600160a01b03841660048201526024015b60405180910390fd5b5f5f5f613777878786613837565b91509150815f0361378c57879250505061333a565b61379888828488613892565b98975050505050505050565b5f5f5f6137b2878786613837565b91509150815f036137c757879250505061333a565b61379888838388613892565b5f815f036137e257505f613820565b5f6137f18888888888886138d4565b905080608001515f03613807575f915050613820565b61381a8189606001518960600151613b51565b93505050505b9695505050505050565b60606131dd83835f613ba7565b5f5f835f03613844575f94505b6002836002811115613858576138586148ac565b14613883576138696003600a614d58565b6138739085614b4e565b61387e866001614b4e565b613886565b83855b90969095509350505050565b5f6138bf61389f83613c3d565b80156138ba57505f84806138b5576138b5614a23565b868809115b151590565b6138ca868686613c69565b61333a9190614b4e565b6139136040518060a001604052805f6001600160a01b031681526020015f6001600160a01b031681526020015f81526020015f81526020015f81525090565b85606001516001600160a01b031687606001516001600160a01b03161461397d576001846001811115613948576139486148ac565b1461395c578660e001518660e00151613969565b8661010001518661010001515b6001600160a01b0390811660208401521681525b5f5f61398e8960800151885f613d26565b80935081925050505f5f8a604001516001600160a01b031663ffbaaf7a6040518163ffffffff1660e01b81526004016040805180830381865afa1580156139d7573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906139fb9190614c48565b91509150613a0c8382865f5f613769565b604086015260a08b0151613a21908a5f613d26565b945092506001876001811115613a3957613a396148ac565b14613a445781613a60565b613a608b604001518c61012001518d5f01518e60200151613e0e565b9150613a708383865f6001613769565b606086015260c08a0151613a85908a88613d26565b945092505f6001886001811115613a9e57613a9e6148ac565b14613b18578a604001516001600160a01b031663b6d821c760026040518263ffffffff1660e01b8152600401613ad49190614d63565b602060405180830381865afa158015613aef573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613b1391906149e1565b613b2b565b613b2b8b604001518c6101200151613f04565b9050613b3c84828760016002613769565b608087015250939a9950505050505050505050565b5f5f5f613b5f868686613ff7565b909350915082158015613b70575081155b15613b8257505f915081905080613b9e565b825f03613b9157505f19613b9e565b613b9b828461414d565b90505b93509350939050565b606081471015613bd35760405163cf47918160e01b815247600482015260248101839052604401613760565b5f5f856001600160a01b03168486604051613bee9190614d7d565b5f6040518083038185875af1925050503d805f8114613c28576040519150601f19603f3d011682016040523d82523d5f602084013e613c2d565b606091505b5091509150613820868383614163565b5f6002826003811115613c5257613c526148ac565b613c5c9190614d93565b60ff166001149050919050565b5f838302815f1985870982811083820303915050805f03613c9d57838281613c9357613c93614a23565b04925050506131dd565b808411613cbb57613cbb8415613cb45760116141bf565b60126141bf565b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f5f825f03613da05760405163dce5c2db60e01b81526001600160a01b03858116600483015286169063dce5c2db906024016040805180830381865afa158015613d72573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613d969190614c48565b9092509050613e06565b829150846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015613ddf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613e0391906149e1565b90505b935093915050565b6040516367efe7fd60e11b81526001600160a01b0385811660048301524260248301525f91829186169063cfdfcffa90604401602060405180830381865afa925050508015613e7a575060408051601f3d908101601f19168201909252613e77918101906149e1565b60015b15613e825790505b5f5f876001600160a01b03166339c5c5056040518163ffffffff1660e01b81526004016040805180830381865afa158015613ebf573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613ee39190614c48565b91509150613ef482828589896141d0565b50919a9950505050505050505050565b6040516367efe7fd60e11b81526001600160a01b0383811660048301524260248301525f91829184169063cfdfcffa90604401602060405180830381865afa925050508015613f70575060408051601f3d908101601f19168201909252613f6d918101906149e1565b60015b15613f785790505b60405163b6d821c760e01b8152613fee906001600160a01b0386169063b6d821c790613fa990600290600401614d63565b602060405180830381865afa158015613fc4573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190613fe891906149e1565b82614236565b50949350505050565b5f5f5f8560600151866040015161400e9190614b4e565b905080156140a05785516001600160a01b031661402b578061409d565b85516040516313b0be3360e01b8152600481018390526001600160a01b038781166024830152909116906313b0be3390604401602060405180830381865afa158015614079573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061409d91906149e1565b92505b6080860151156141445760208601516001600160a01b03166140c6578560800151614141565b602086015160808701516040516313b0be3360e01b815260048101919091526001600160a01b038681166024830152909116906313b0be3390604401602060405180830381865afa15801561411d573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061414191906149e1565b91505b50935093915050565b5f6131dd83670de0b6b3a7640000846001613892565b6060826141785761417382614281565b6131dd565b815115801561418f57506001600160a01b0384163b155b156141b857604051639996b31560e01b81526001600160a01b0385166004820152602401613760565b50806131dd565b634e487b715f52806020526024601cfd5b5f5f5f5f6141de8888614236565b90935090508585016141f98282670de0b6b3a76400006142aa565b92505f6142068484614c00565b90505f6142148c5f19614c00565b905081811015614222578091505b818c01965050505095509550955095915050565b5f80831580614243575082155b1561425257508290505f61427a565b6142658484670de0b6b3a76400006142aa565b905080840191508382101561427a57508290505f5b9250929050565b8051156142915780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b5f835f036142b957505f6131dd565b50828202828482816142cd576142cd614a23565b04146142da57505f6131dd565b8181816142e9576142e9614a23565b04949350505050565b60408051610220810182525f80825260208201819052918101829052606081018290526080810182905260a0810182905260c0810182905260e08101829052610100810182905261012081018290526101408101829052610160810182905261018081018290526101a081018290526101c081018290526101e0810182905261020081019190915290565b6001600160a01b03811681146130b9575f5ffd5b5f602082840312156143a1575f5ffd5b81356131dd8161437d565b604051610220810167ffffffffffffffff811182821017156143dc57634e487b7160e01b5f52604160045260245ffd5b60405290565b60405160e0810167ffffffffffffffff811182821017156143dc57634e487b7160e01b5f52604160045260245ffd5b5f6080828403128015614422575f5ffd5b506040516080810167ffffffffffffffff8111828210171561445257634e487b7160e01b5f52604160045260245ffd5b604090815283358252602080850135908301528301356144718161437d565b604082015260608301356144848161437d565b60608201529392505050565b5f60c08284031280156144a1575f5ffd5b509092915050565b8035600281106144b7575f5ffd5b919050565b5f60608284031280156144cd575f5ffd5b506040516060810167ffffffffffffffff811182821017156144fd57634e487b7160e01b5f52604160045260245ffd5b6040528235815260208301356145128161437d565b6020820152614523604084016144a9565b60408201529392505050565b5f5f5f5f60808587031215614542575f5ffd5b8435935060208501359250604085013561455b8161437d565b9150614569606086016144a9565b905092959194509250565b5f5f5f5f60808587031215614587575f5ffd5b843593506020850135925060408501356145a08161437d565b915060608501356145b08161437d565b939692955090935050565b5f5f5f5f5f608086880312156145cf575f5ffd5b85356145da8161437d565b945060208601356145ea8161437d565b935060408601359250606086013567ffffffffffffffff81111561460c575f5ffd5b8601601f8101881361461c575f5ffd5b803567ffffffffffffffff811115614632575f5ffd5b886020828401011115614643575f5ffd5b959894975092955050506020019190565b80516144b78161437d565b805180151581146144b7575f5ffd5b5f610220828403121561467f575f5ffd5b6146876143ac565b825181526020808401519082015290506146a360408301614654565b60408201526146b460608301614654565b60608201526146c560808301614654565b60808201526146d660a08301614654565b60a08201526146e760c08301614654565b60c08201526146f860e08301614654565b60e082015261470a6101008301614654565b61010082015261471d6101208301614654565b6101208201526101408281015190820152610160808301519082015261018080830151908201526101a080830151908201526101c080830151908201526147676101e08301614654565b6101e082015261477a610200830161465f565b61020082015292915050565b5f6102208284031215614797575f5ffd5b6131dd838361466e565b5f602082840312156147b1575f5ffd5b6131dd8261465f565b5f5f61044083850312156147cc575f5ffd5b6147d6848461466e565b91506147e684610220850161466e565b90509250929050565b5f5f5f838503610520811215614803575f5ffd5b60e0811215614810575f5ffd5b506148196143e2565b84516148248161437d565b815260208501516148348161437d565b602082015260408501516148478161437d565b6040820152606085015161485a8161437d565b60608201526080858101519082015260a0808601519082015261487f60c08601614654565b60c082015292506148938560e0860161466e565b91506148a385610300860161466e565b90509250925092565b634e487b7160e01b5f52602160045260245ffd5b5f602082840312156148d0575f5ffd5b6131dd826144a9565b5f60c08284031280156148ea575f5ffd5b5060405160c0810167ffffffffffffffff8111828210171561491a57634e487b7160e01b5f52604160045260245ffd5b604090815283358252602080850135908301528301356149398161437d565b6040820152606083013561494c8161437d565b6060820152608083013561495f8161437d565b608082015261497060a084016144a9565b60a08201529392505050565b6001600160a01b0383168152604081016002831061499c5761499c6148ac565b8260208301529392505050565b5f5f604083850312156149ba575f5ffd5b82516149c58161437d565b60208401519092506149d68161437d565b809150509250929050565b5f602082840312156149f1575f5ffd5b5051919050565b634e487b7160e01b5f52601160045260245ffd5b8082028115828204841417612e8957612e896149f8565b634e487b7160e01b5f52601260045260245ffd5b60018060a01b0384168152826020820152606060408201525f82518060608401528060208501608085015e5f608082850101526080601f19601f830116840101915050949350505050565b5f60208284031215614a92575f5ffd5b81516131dd8161437d565b805162ffffff811681146144b7575f5ffd5b5f5f60408385031215614ac0575f5ffd5b614ac983614a9d565b91506147e660208401614a9d565b6001600160c01b038181168382160190811115612e8957612e896149f8565b6001600160a01b03878116825286166020820152604081018590526060810184905260a0608082018190528101829052818360c08301375f81830160c090810191909152601f909201601f1916010195945050505050565b80820180821115612e8957612e896149f8565b94855260208501939093526001600160601b0319606092831b8116604086015290821b8116605485015291901b166068820152607c0190565b6001600160a01b039384168152919092166020820152604081019190915260600190565b96875260208701959095526001600160601b0319606094851b8116604088015292841b83166054870152921b166068840152607c830152609c82015260bc0190565b81810381811115612e8957612e896149f8565b5f5f5f5f60808587031215614c26575f5ffd5b845160208601516040870151606088015192965090945092506145b08161437d565b5f5f60408385031215614c59575f5ffd5b505080516020909101519092909150565b5f82614c7857614c78614a23565b500490565b6001815b6001841115613e0657808504811115614c9c57614c9c6149f8565b6001841615614caa57908102905b60019390931c928002614c81565b5f82614cc657506001612e89565b81614cd257505f612e89565b8160018114614ce85760028114614cf257614d0e565b6001915050612e89565b60ff841115614d0357614d036149f8565b50506001821b612e89565b5060208310610133831016604e8410600b8410161715614d31575081810a612e89565b614d3d5f198484614c7d565b805f1904821115614d5057614d506149f8565b029392505050565b5f6131dd8383614cb8565b6020810160038310614d7757614d776148ac565b91905290565b5f82518060208501845e5f920191825250919050565b5f60ff831680614da557614da5614a23565b8060ff8416069150509291505056fe01b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1200d7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f8300d7513ffe3a01a9f6606089d1b67011bca35bec018ac0faa914e1c529408f830101b0b3f9d6e360167e522fa2b18ba597ad7b2b35841fec7e1ca4dbb0adea1202a2646970667358221220bb78473cded9ce19b0fb51e55c6e9ab33afafa5b99180505a238de12c2c5c12764736f6c634300081c0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in S
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.